123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398 |
- // Copyright 2012 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package bn256
- func lineFunctionAdd(r, p *twistPoint, q *curvePoint, r2 *gfP2, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) {
- // See the mixed addition algorithm from "Faster Computation of the
- // Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
- B := newGFp2(pool).Mul(p.x, r.t, pool)
- D := newGFp2(pool).Add(p.y, r.z)
- D.Square(D, pool)
- D.Sub(D, r2)
- D.Sub(D, r.t)
- D.Mul(D, r.t, pool)
- H := newGFp2(pool).Sub(B, r.x)
- I := newGFp2(pool).Square(H, pool)
- E := newGFp2(pool).Add(I, I)
- E.Add(E, E)
- J := newGFp2(pool).Mul(H, E, pool)
- L1 := newGFp2(pool).Sub(D, r.y)
- L1.Sub(L1, r.y)
- V := newGFp2(pool).Mul(r.x, E, pool)
- rOut = newTwistPoint(pool)
- rOut.x.Square(L1, pool)
- rOut.x.Sub(rOut.x, J)
- rOut.x.Sub(rOut.x, V)
- rOut.x.Sub(rOut.x, V)
- rOut.z.Add(r.z, H)
- rOut.z.Square(rOut.z, pool)
- rOut.z.Sub(rOut.z, r.t)
- rOut.z.Sub(rOut.z, I)
- t := newGFp2(pool).Sub(V, rOut.x)
- t.Mul(t, L1, pool)
- t2 := newGFp2(pool).Mul(r.y, J, pool)
- t2.Add(t2, t2)
- rOut.y.Sub(t, t2)
- rOut.t.Square(rOut.z, pool)
- t.Add(p.y, rOut.z)
- t.Square(t, pool)
- t.Sub(t, r2)
- t.Sub(t, rOut.t)
- t2.Mul(L1, p.x, pool)
- t2.Add(t2, t2)
- a = newGFp2(pool)
- a.Sub(t2, t)
- c = newGFp2(pool)
- c.MulScalar(rOut.z, q.y)
- c.Add(c, c)
- b = newGFp2(pool)
- b.SetZero()
- b.Sub(b, L1)
- b.MulScalar(b, q.x)
- b.Add(b, b)
- B.Put(pool)
- D.Put(pool)
- H.Put(pool)
- I.Put(pool)
- E.Put(pool)
- J.Put(pool)
- L1.Put(pool)
- V.Put(pool)
- t.Put(pool)
- t2.Put(pool)
- return
- }
- func lineFunctionDouble(r *twistPoint, q *curvePoint, pool *bnPool) (a, b, c *gfP2, rOut *twistPoint) {
- // See the doubling algorithm for a=0 from "Faster Computation of the
- // Tate Pairing", http://arxiv.org/pdf/0904.0854v3.pdf
- A := newGFp2(pool).Square(r.x, pool)
- B := newGFp2(pool).Square(r.y, pool)
- C_ := newGFp2(pool).Square(B, pool)
- D := newGFp2(pool).Add(r.x, B)
- D.Square(D, pool)
- D.Sub(D, A)
- D.Sub(D, C_)
- D.Add(D, D)
- E := newGFp2(pool).Add(A, A)
- E.Add(E, A)
- G := newGFp2(pool).Square(E, pool)
- rOut = newTwistPoint(pool)
- rOut.x.Sub(G, D)
- rOut.x.Sub(rOut.x, D)
- rOut.z.Add(r.y, r.z)
- rOut.z.Square(rOut.z, pool)
- rOut.z.Sub(rOut.z, B)
- rOut.z.Sub(rOut.z, r.t)
- rOut.y.Sub(D, rOut.x)
- rOut.y.Mul(rOut.y, E, pool)
- t := newGFp2(pool).Add(C_, C_)
- t.Add(t, t)
- t.Add(t, t)
- rOut.y.Sub(rOut.y, t)
- rOut.t.Square(rOut.z, pool)
- t.Mul(E, r.t, pool)
- t.Add(t, t)
- b = newGFp2(pool)
- b.SetZero()
- b.Sub(b, t)
- b.MulScalar(b, q.x)
- a = newGFp2(pool)
- a.Add(r.x, E)
- a.Square(a, pool)
- a.Sub(a, A)
- a.Sub(a, G)
- t.Add(B, B)
- t.Add(t, t)
- a.Sub(a, t)
- c = newGFp2(pool)
- c.Mul(rOut.z, r.t, pool)
- c.Add(c, c)
- c.MulScalar(c, q.y)
- A.Put(pool)
- B.Put(pool)
- C_.Put(pool)
- D.Put(pool)
- E.Put(pool)
- G.Put(pool)
- t.Put(pool)
- return
- }
- func mulLine(ret *gfP12, a, b, c *gfP2, pool *bnPool) {
- a2 := newGFp6(pool)
- a2.x.SetZero()
- a2.y.Set(a)
- a2.z.Set(b)
- a2.Mul(a2, ret.x, pool)
- t3 := newGFp6(pool).MulScalar(ret.y, c, pool)
- t := newGFp2(pool)
- t.Add(b, c)
- t2 := newGFp6(pool)
- t2.x.SetZero()
- t2.y.Set(a)
- t2.z.Set(t)
- ret.x.Add(ret.x, ret.y)
- ret.y.Set(t3)
- ret.x.Mul(ret.x, t2, pool)
- ret.x.Sub(ret.x, a2)
- ret.x.Sub(ret.x, ret.y)
- a2.MulTau(a2, pool)
- ret.y.Add(ret.y, a2)
- a2.Put(pool)
- t3.Put(pool)
- t2.Put(pool)
- t.Put(pool)
- }
- // sixuPlus2NAF is 6u+2 in non-adjacent form.
- var sixuPlus2NAF = []int8{0, 0, 0, 1, 0, 1, 0, -1, 0, 0, 1, -1, 0, 0, 1, 0,
- 0, 1, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 0, 0, 1, 1,
- 1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 1,
- 1, 0, 0, -1, 0, 0, 0, 1, 1, 0, -1, 0, 0, 1, 0, 1, 1}
- // miller implements the Miller loop for calculating the Optimal Ate pairing.
- // See algorithm 1 from http://cryptojedi.org/papers/dclxvi-20100714.pdf
- func miller(q *twistPoint, p *curvePoint, pool *bnPool) *gfP12 {
- ret := newGFp12(pool)
- ret.SetOne()
- aAffine := newTwistPoint(pool)
- aAffine.Set(q)
- aAffine.MakeAffine(pool)
- bAffine := newCurvePoint(pool)
- bAffine.Set(p)
- bAffine.MakeAffine(pool)
- minusA := newTwistPoint(pool)
- minusA.Negative(aAffine, pool)
- r := newTwistPoint(pool)
- r.Set(aAffine)
- r2 := newGFp2(pool)
- r2.Square(aAffine.y, pool)
- for i := len(sixuPlus2NAF) - 1; i > 0; i-- {
- a, b, c, newR := lineFunctionDouble(r, bAffine, pool)
- if i != len(sixuPlus2NAF)-1 {
- ret.Square(ret, pool)
- }
- mulLine(ret, a, b, c, pool)
- a.Put(pool)
- b.Put(pool)
- c.Put(pool)
- r.Put(pool)
- r = newR
- switch sixuPlus2NAF[i-1] {
- case 1:
- a, b, c, newR = lineFunctionAdd(r, aAffine, bAffine, r2, pool)
- case -1:
- a, b, c, newR = lineFunctionAdd(r, minusA, bAffine, r2, pool)
- default:
- continue
- }
- mulLine(ret, a, b, c, pool)
- a.Put(pool)
- b.Put(pool)
- c.Put(pool)
- r.Put(pool)
- r = newR
- }
- // In order to calculate Q1 we have to convert q from the sextic twist
- // to the full GF(p^12) group, apply the Frobenius there, and convert
- // back.
- //
- // The twist isomorphism is (x', y') -> (xω², yω³). If we consider just
- // x for a moment, then after applying the Frobenius, we have x̄ω^(2p)
- // where x̄ is the conjugate of x. If we are going to apply the inverse
- // isomorphism we need a value with a single coefficient of ω² so we
- // rewrite this as x̄ω^(2p-2)ω². ξ⁶ = ω and, due to the construction of
- // p, 2p-2 is a multiple of six. Therefore we can rewrite as
- // x̄ξ^((p-1)/3)ω² and applying the inverse isomorphism eliminates the
- // ω².
- //
- // A similar argument can be made for the y value.
- q1 := newTwistPoint(pool)
- q1.x.Conjugate(aAffine.x)
- q1.x.Mul(q1.x, xiToPMinus1Over3, pool)
- q1.y.Conjugate(aAffine.y)
- q1.y.Mul(q1.y, xiToPMinus1Over2, pool)
- q1.z.SetOne()
- q1.t.SetOne()
- // For Q2 we are applying the p² Frobenius. The two conjugations cancel
- // out and we are left only with the factors from the isomorphism. In
- // the case of x, we end up with a pure number which is why
- // xiToPSquaredMinus1Over3 is ∈ GF(p). With y we get a factor of -1. We
- // ignore this to end up with -Q2.
- minusQ2 := newTwistPoint(pool)
- minusQ2.x.MulScalar(aAffine.x, xiToPSquaredMinus1Over3)
- minusQ2.y.Set(aAffine.y)
- minusQ2.z.SetOne()
- minusQ2.t.SetOne()
- r2.Square(q1.y, pool)
- a, b, c, newR := lineFunctionAdd(r, q1, bAffine, r2, pool)
- mulLine(ret, a, b, c, pool)
- a.Put(pool)
- b.Put(pool)
- c.Put(pool)
- r.Put(pool)
- r = newR
- r2.Square(minusQ2.y, pool)
- a, b, c, newR = lineFunctionAdd(r, minusQ2, bAffine, r2, pool)
- mulLine(ret, a, b, c, pool)
- a.Put(pool)
- b.Put(pool)
- c.Put(pool)
- r.Put(pool)
- r = newR
- aAffine.Put(pool)
- bAffine.Put(pool)
- minusA.Put(pool)
- r.Put(pool)
- r2.Put(pool)
- return ret
- }
- // finalExponentiation computes the (p¹²-1)/Order-th power of an element of
- // GF(p¹²) to obtain an element of GT (steps 13-15 of algorithm 1 from
- // http://cryptojedi.org/papers/dclxvi-20100714.pdf)
- func finalExponentiation(in *gfP12, pool *bnPool) *gfP12 {
- t1 := newGFp12(pool)
- // This is the p^6-Frobenius
- t1.x.Negative(in.x)
- t1.y.Set(in.y)
- inv := newGFp12(pool)
- inv.Invert(in, pool)
- t1.Mul(t1, inv, pool)
- t2 := newGFp12(pool).FrobeniusP2(t1, pool)
- t1.Mul(t1, t2, pool)
- fp := newGFp12(pool).Frobenius(t1, pool)
- fp2 := newGFp12(pool).FrobeniusP2(t1, pool)
- fp3 := newGFp12(pool).Frobenius(fp2, pool)
- fu, fu2, fu3 := newGFp12(pool), newGFp12(pool), newGFp12(pool)
- fu.Exp(t1, u, pool)
- fu2.Exp(fu, u, pool)
- fu3.Exp(fu2, u, pool)
- y3 := newGFp12(pool).Frobenius(fu, pool)
- fu2p := newGFp12(pool).Frobenius(fu2, pool)
- fu3p := newGFp12(pool).Frobenius(fu3, pool)
- y2 := newGFp12(pool).FrobeniusP2(fu2, pool)
- y0 := newGFp12(pool)
- y0.Mul(fp, fp2, pool)
- y0.Mul(y0, fp3, pool)
- y1, y4, y5 := newGFp12(pool), newGFp12(pool), newGFp12(pool)
- y1.Conjugate(t1)
- y5.Conjugate(fu2)
- y3.Conjugate(y3)
- y4.Mul(fu, fu2p, pool)
- y4.Conjugate(y4)
- y6 := newGFp12(pool)
- y6.Mul(fu3, fu3p, pool)
- y6.Conjugate(y6)
- t0 := newGFp12(pool)
- t0.Square(y6, pool)
- t0.Mul(t0, y4, pool)
- t0.Mul(t0, y5, pool)
- t1.Mul(y3, y5, pool)
- t1.Mul(t1, t0, pool)
- t0.Mul(t0, y2, pool)
- t1.Square(t1, pool)
- t1.Mul(t1, t0, pool)
- t1.Square(t1, pool)
- t0.Mul(t1, y1, pool)
- t1.Mul(t1, y0, pool)
- t0.Square(t0, pool)
- t0.Mul(t0, t1, pool)
- inv.Put(pool)
- t1.Put(pool)
- t2.Put(pool)
- fp.Put(pool)
- fp2.Put(pool)
- fp3.Put(pool)
- fu.Put(pool)
- fu2.Put(pool)
- fu3.Put(pool)
- fu2p.Put(pool)
- fu3p.Put(pool)
- y0.Put(pool)
- y1.Put(pool)
- y2.Put(pool)
- y3.Put(pool)
- y4.Put(pool)
- y5.Put(pool)
- y6.Put(pool)
- return t0
- }
- func optimalAte(a *twistPoint, b *curvePoint, pool *bnPool) *gfP12 {
- e := miller(a, b, pool)
- ret := finalExponentiation(e, pool)
- e.Put(pool)
- if a.IsInfinity() || b.IsInfinity() {
- ret.SetOne()
- }
- return ret
- }
|