123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201 |
- // Copyright 2012 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package bn256
- // For details of the algorithms used, see "Multiplication and Squaring on
- // Pairing-Friendly Fields, Devegili et al.
- // http://eprint.iacr.org/2006/471.pdf.
- import (
- "math/big"
- )
- // gfP12 implements the field of size p¹² as a quadratic extension of gfP6
- // where ω²=τ.
- type gfP12 struct {
- x, y *gfP6 // value is xω + y
- }
- func newGFp12(pool *bnPool) *gfP12 {
- return &gfP12{newGFp6(pool), newGFp6(pool)}
- }
- func (e *gfP12) String() string {
- return "(" + e.x.String() + "," + e.y.String() + ")"
- }
- func (e *gfP12) Put(pool *bnPool) {
- e.x.Put(pool)
- e.y.Put(pool)
- }
- func (e *gfP12) Set(a *gfP12) *gfP12 {
- e.x.Set(a.x)
- e.y.Set(a.y)
- return e
- }
- func (e *gfP12) SetZero() *gfP12 {
- e.x.SetZero()
- e.y.SetZero()
- return e
- }
- func (e *gfP12) SetOne() *gfP12 {
- e.x.SetZero()
- e.y.SetOne()
- return e
- }
- func (e *gfP12) Minimal() {
- e.x.Minimal()
- e.y.Minimal()
- }
- func (e *gfP12) IsZero() bool {
- e.Minimal()
- return e.x.IsZero() && e.y.IsZero()
- }
- func (e *gfP12) IsOne() bool {
- e.Minimal()
- return e.x.IsZero() && e.y.IsOne()
- }
- func (e *gfP12) Conjugate(a *gfP12) *gfP12 {
- e.x.Negative(a.x)
- e.y.Set(a.y)
- return a
- }
- func (e *gfP12) Negative(a *gfP12) *gfP12 {
- e.x.Negative(a.x)
- e.y.Negative(a.y)
- return e
- }
- // Frobenius computes (xω+y)^p = x^p ω·ξ^((p-1)/6) + y^p
- func (e *gfP12) Frobenius(a *gfP12, pool *bnPool) *gfP12 {
- e.x.Frobenius(a.x, pool)
- e.y.Frobenius(a.y, pool)
- e.x.MulScalar(e.x, xiToPMinus1Over6, pool)
- return e
- }
- // FrobeniusP2 computes (xω+y)^p² = x^p² ω·ξ^((p²-1)/6) + y^p²
- func (e *gfP12) FrobeniusP2(a *gfP12, pool *bnPool) *gfP12 {
- e.x.FrobeniusP2(a.x)
- e.x.MulGFP(e.x, xiToPSquaredMinus1Over6)
- e.y.FrobeniusP2(a.y)
- return e
- }
- func (e *gfP12) Add(a, b *gfP12) *gfP12 {
- e.x.Add(a.x, b.x)
- e.y.Add(a.y, b.y)
- return e
- }
- func (e *gfP12) Sub(a, b *gfP12) *gfP12 {
- e.x.Sub(a.x, b.x)
- e.y.Sub(a.y, b.y)
- return e
- }
- func (e *gfP12) Mul(a, b *gfP12, pool *bnPool) *gfP12 {
- tx := newGFp6(pool)
- tx.Mul(a.x, b.y, pool)
- t := newGFp6(pool)
- t.Mul(b.x, a.y, pool)
- tx.Add(tx, t)
- ty := newGFp6(pool)
- ty.Mul(a.y, b.y, pool)
- t.Mul(a.x, b.x, pool)
- t.MulTau(t, pool)
- e.y.Add(ty, t)
- e.x.Set(tx)
- tx.Put(pool)
- ty.Put(pool)
- t.Put(pool)
- return e
- }
- func (e *gfP12) MulScalar(a *gfP12, b *gfP6, pool *bnPool) *gfP12 {
- e.x.Mul(e.x, b, pool)
- e.y.Mul(e.y, b, pool)
- return e
- }
- func (c *gfP12) Exp(a *gfP12, power *big.Int, pool *bnPool) *gfP12 {
- sum := newGFp12(pool)
- sum.SetOne()
- t := newGFp12(pool)
- for i := power.BitLen() - 1; i >= 0; i-- {
- t.Square(sum, pool)
- if power.Bit(i) != 0 {
- sum.Mul(t, a, pool)
- } else {
- sum.Set(t)
- }
- }
- c.Set(sum)
- sum.Put(pool)
- t.Put(pool)
- return c
- }
- func (e *gfP12) Square(a *gfP12, pool *bnPool) *gfP12 {
- // Complex squaring algorithm
- v0 := newGFp6(pool)
- v0.Mul(a.x, a.y, pool)
- t := newGFp6(pool)
- t.MulTau(a.x, pool)
- t.Add(a.y, t)
- ty := newGFp6(pool)
- ty.Add(a.x, a.y)
- ty.Mul(ty, t, pool)
- ty.Sub(ty, v0)
- t.MulTau(v0, pool)
- ty.Sub(ty, t)
- e.y.Set(ty)
- e.x.Double(v0)
- v0.Put(pool)
- t.Put(pool)
- ty.Put(pool)
- return e
- }
- func (e *gfP12) Invert(a *gfP12, pool *bnPool) *gfP12 {
- // See "Implementing cryptographic pairings", M. Scott, section 3.2.
- // ftp://136.206.11.249/pub/crypto/pairings.pdf
- t1 := newGFp6(pool)
- t2 := newGFp6(pool)
- t1.Square(a.x, pool)
- t2.Square(a.y, pool)
- t1.MulTau(t1, pool)
- t1.Sub(t2, t1)
- t2.Invert(t1, pool)
- e.x.Negative(a.x)
- e.y.Set(a.y)
- e.MulScalar(e, t2, pool)
- t1.Put(pool)
- t2.Put(pool)
- return e
- }
|