123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264 |
- /**********************************************************************
- * Copyright (c) 2013, 2014 Pieter Wuille *
- * Distributed under the MIT software license, see the accompanying *
- * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
- **********************************************************************/
- #ifndef _SECP256K1_ECDSA_IMPL_H_
- #define _SECP256K1_ECDSA_IMPL_H_
- #include "scalar.h"
- #include "field.h"
- #include "group.h"
- #include "ecmult.h"
- #include "ecmult_gen.h"
- #include "ecdsa.h"
- /** Group order for secp256k1 defined as 'n' in "Standards for Efficient Cryptography" (SEC2) 2.7.1
- * sage: for t in xrange(1023, -1, -1):
- * .. p = 2**256 - 2**32 - t
- * .. if p.is_prime():
- * .. print '%x'%p
- * .. break
- * 'fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f'
- * sage: a = 0
- * sage: b = 7
- * sage: F = FiniteField (p)
- * sage: '%x' % (EllipticCurve ([F (a), F (b)]).order())
- * 'fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141'
- */
- static const secp256k1_fe_t secp256k1_ecdsa_const_order_as_fe = SECP256K1_FE_CONST(
- 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
- 0xBAAEDCE6UL, 0xAF48A03BUL, 0xBFD25E8CUL, 0xD0364141UL
- );
- /** Difference between field and order, values 'p' and 'n' values defined in
- * "Standards for Efficient Cryptography" (SEC2) 2.7.1.
- * sage: p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
- * sage: a = 0
- * sage: b = 7
- * sage: F = FiniteField (p)
- * sage: '%x' % (p - EllipticCurve ([F (a), F (b)]).order())
- * '14551231950b75fc4402da1722fc9baee'
- */
- static const secp256k1_fe_t secp256k1_ecdsa_const_p_minus_order = SECP256K1_FE_CONST(
- 0, 0, 0, 1, 0x45512319UL, 0x50B75FC4UL, 0x402DA172UL, 0x2FC9BAEEUL
- );
- static int secp256k1_ecdsa_sig_parse(secp256k1_ecdsa_sig_t *r, const unsigned char *sig, int size) {
- unsigned char ra[32] = {0}, sa[32] = {0};
- const unsigned char *rp;
- const unsigned char *sp;
- int lenr;
- int lens;
- int overflow;
- if (sig[0] != 0x30) {
- return 0;
- }
- lenr = sig[3];
- if (5+lenr >= size) {
- return 0;
- }
- lens = sig[lenr+5];
- if (sig[1] != lenr+lens+4) {
- return 0;
- }
- if (lenr+lens+6 > size) {
- return 0;
- }
- if (sig[2] != 0x02) {
- return 0;
- }
- if (lenr == 0) {
- return 0;
- }
- if (sig[lenr+4] != 0x02) {
- return 0;
- }
- if (lens == 0) {
- return 0;
- }
- sp = sig + 6 + lenr;
- while (lens > 0 && sp[0] == 0) {
- lens--;
- sp++;
- }
- if (lens > 32) {
- return 0;
- }
- rp = sig + 4;
- while (lenr > 0 && rp[0] == 0) {
- lenr--;
- rp++;
- }
- if (lenr > 32) {
- return 0;
- }
- memcpy(ra + 32 - lenr, rp, lenr);
- memcpy(sa + 32 - lens, sp, lens);
- overflow = 0;
- secp256k1_scalar_set_b32(&r->r, ra, &overflow);
- if (overflow) {
- return 0;
- }
- secp256k1_scalar_set_b32(&r->s, sa, &overflow);
- if (overflow) {
- return 0;
- }
- return 1;
- }
- static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, int *size, const secp256k1_ecdsa_sig_t *a) {
- unsigned char r[33] = {0}, s[33] = {0};
- unsigned char *rp = r, *sp = s;
- int lenR = 33, lenS = 33;
- secp256k1_scalar_get_b32(&r[1], &a->r);
- secp256k1_scalar_get_b32(&s[1], &a->s);
- while (lenR > 1 && rp[0] == 0 && rp[1] < 0x80) { lenR--; rp++; }
- while (lenS > 1 && sp[0] == 0 && sp[1] < 0x80) { lenS--; sp++; }
- if (*size < 6+lenS+lenR) {
- return 0;
- }
- *size = 6 + lenS + lenR;
- sig[0] = 0x30;
- sig[1] = 4 + lenS + lenR;
- sig[2] = 0x02;
- sig[3] = lenR;
- memcpy(sig+4, rp, lenR);
- sig[4+lenR] = 0x02;
- sig[5+lenR] = lenS;
- memcpy(sig+lenR+6, sp, lenS);
- return 1;
- }
- static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context_t *ctx, const secp256k1_ecdsa_sig_t *sig, const secp256k1_ge_t *pubkey, const secp256k1_scalar_t *message) {
- unsigned char c[32];
- secp256k1_scalar_t sn, u1, u2;
- secp256k1_fe_t xr;
- secp256k1_gej_t pubkeyj;
- secp256k1_gej_t pr;
- if (secp256k1_scalar_is_zero(&sig->r) || secp256k1_scalar_is_zero(&sig->s)) {
- return 0;
- }
- secp256k1_scalar_inverse_var(&sn, &sig->s);
- secp256k1_scalar_mul(&u1, &sn, message);
- secp256k1_scalar_mul(&u2, &sn, &sig->r);
- secp256k1_gej_set_ge(&pubkeyj, pubkey);
- secp256k1_ecmult(ctx, &pr, &pubkeyj, &u2, &u1);
- if (secp256k1_gej_is_infinity(&pr)) {
- return 0;
- }
- secp256k1_scalar_get_b32(c, &sig->r);
- secp256k1_fe_set_b32(&xr, c);
- /** We now have the recomputed R point in pr, and its claimed x coordinate (modulo n)
- * in xr. Naively, we would extract the x coordinate from pr (requiring a inversion modulo p),
- * compute the remainder modulo n, and compare it to xr. However:
- *
- * xr == X(pr) mod n
- * <=> exists h. (xr + h * n < p && xr + h * n == X(pr))
- * [Since 2 * n > p, h can only be 0 or 1]
- * <=> (xr == X(pr)) || (xr + n < p && xr + n == X(pr))
- * [In Jacobian coordinates, X(pr) is pr.x / pr.z^2 mod p]
- * <=> (xr == pr.x / pr.z^2 mod p) || (xr + n < p && xr + n == pr.x / pr.z^2 mod p)
- * [Multiplying both sides of the equations by pr.z^2 mod p]
- * <=> (xr * pr.z^2 mod p == pr.x) || (xr + n < p && (xr + n) * pr.z^2 mod p == pr.x)
- *
- * Thus, we can avoid the inversion, but we have to check both cases separately.
- * secp256k1_gej_eq_x implements the (xr * pr.z^2 mod p == pr.x) test.
- */
- if (secp256k1_gej_eq_x_var(&xr, &pr)) {
- /* xr.x == xr * xr.z^2 mod p, so the signature is valid. */
- return 1;
- }
- if (secp256k1_fe_cmp_var(&xr, &secp256k1_ecdsa_const_p_minus_order) >= 0) {
- /* xr + p >= n, so we can skip testing the second case. */
- return 0;
- }
- secp256k1_fe_add(&xr, &secp256k1_ecdsa_const_order_as_fe);
- if (secp256k1_gej_eq_x_var(&xr, &pr)) {
- /* (xr + n) * pr.z^2 mod p == pr.x, so the signature is valid. */
- return 1;
- }
- return 0;
- }
- static int secp256k1_ecdsa_sig_recover(const secp256k1_ecmult_context_t *ctx, const secp256k1_ecdsa_sig_t *sig, secp256k1_ge_t *pubkey, const secp256k1_scalar_t *message, int recid) {
- unsigned char brx[32];
- secp256k1_fe_t fx;
- secp256k1_ge_t x;
- secp256k1_gej_t xj;
- secp256k1_scalar_t rn, u1, u2;
- secp256k1_gej_t qj;
- if (secp256k1_scalar_is_zero(&sig->r) || secp256k1_scalar_is_zero(&sig->s)) {
- return 0;
- }
- secp256k1_scalar_get_b32(brx, &sig->r);
- VERIFY_CHECK(secp256k1_fe_set_b32(&fx, brx)); /* brx comes from a scalar, so is less than the order; certainly less than p */
- if (recid & 2) {
- if (secp256k1_fe_cmp_var(&fx, &secp256k1_ecdsa_const_p_minus_order) >= 0) {
- return 0;
- }
- secp256k1_fe_add(&fx, &secp256k1_ecdsa_const_order_as_fe);
- }
- if (!secp256k1_ge_set_xo_var(&x, &fx, recid & 1)) {
- return 0;
- }
- secp256k1_gej_set_ge(&xj, &x);
- secp256k1_scalar_inverse_var(&rn, &sig->r);
- secp256k1_scalar_mul(&u1, &rn, message);
- secp256k1_scalar_negate(&u1, &u1);
- secp256k1_scalar_mul(&u2, &rn, &sig->s);
- secp256k1_ecmult(ctx, &qj, &xj, &u2, &u1);
- secp256k1_ge_set_gej_var(pubkey, &qj);
- return !secp256k1_gej_is_infinity(&qj);
- }
- static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context_t *ctx, secp256k1_ecdsa_sig_t *sig, const secp256k1_scalar_t *seckey, const secp256k1_scalar_t *message, const secp256k1_scalar_t *nonce, int *recid) {
- unsigned char b[32];
- secp256k1_gej_t rp;
- secp256k1_ge_t r;
- secp256k1_scalar_t n;
- int overflow = 0;
- secp256k1_ecmult_gen(ctx, &rp, nonce);
- secp256k1_ge_set_gej(&r, &rp);
- secp256k1_fe_normalize(&r.x);
- secp256k1_fe_normalize(&r.y);
- secp256k1_fe_get_b32(b, &r.x);
- secp256k1_scalar_set_b32(&sig->r, b, &overflow);
- if (secp256k1_scalar_is_zero(&sig->r)) {
- /* P.x = order is on the curve, so technically sig->r could end up zero, which would be an invalid signature. */
- secp256k1_gej_clear(&rp);
- secp256k1_ge_clear(&r);
- return 0;
- }
- if (recid) {
- *recid = (overflow ? 2 : 0) | (secp256k1_fe_is_odd(&r.y) ? 1 : 0);
- }
- secp256k1_scalar_mul(&n, &sig->r, seckey);
- secp256k1_scalar_add(&n, &n, message);
- secp256k1_scalar_inverse(&sig->s, nonce);
- secp256k1_scalar_mul(&sig->s, &sig->s, &n);
- secp256k1_scalar_clear(&n);
- secp256k1_gej_clear(&rp);
- secp256k1_ge_clear(&r);
- if (secp256k1_scalar_is_zero(&sig->s)) {
- return 0;
- }
- if (secp256k1_scalar_is_high(&sig->s)) {
- secp256k1_scalar_negate(&sig->s, &sig->s);
- if (recid) {
- *recid ^= 1;
- }
- }
- return 1;
- }
- #endif
|