12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595 |
- ;;; SRFI-1 list-processing library -*- Scheme -*-
- ;;; Reference implementation
- ;;;
- ;;; Copyright (c) 1998, 1999 by Olin Shivers. You may do as you please with
- ;;; this code as long as you do not remove this copyright notice or
- ;;; hold me liable for its use. Please send bug reports to shivers@ai.mit.edu.
- ;;; -Olin
- ;;; This is a library of list- and pair-processing functions. I wrote it after
- ;;; carefully considering the functions provided by the libraries found in
- ;;; R4RS/R5RS Scheme, MIT Scheme, Gambit, RScheme, MzScheme, slib, Common
- ;;; Lisp, Bigloo, guile, T, APL and the SML standard basis. It is a pretty
- ;;; rich toolkit, providing a superset of the functionality found in any of
- ;;; the various Schemes I considered.
- ;;; This implementation is intended as a portable reference implementation
- ;;; for SRFI-1. See the porting notes below for more information.
- ;;; Exported:
- ;;; xcons tree-copy make-list list-tabulate cons* list-copy
- ;;; proper-list? circular-list? dotted-list? not-pair? null-list? list=
- ;;; circular-list length+
- ;;; iota
- ;;; first second third fourth fifth sixth seventh eighth ninth tenth
- ;;; car+cdr
- ;;; take drop
- ;;; take-right drop-right
- ;;; take! drop-right!
- ;;; split-at split-at!
- ;;; last last-pair
- ;;; zip unzip1 unzip2 unzip3 unzip4 unzip5
- ;;; count
- ;;; append! append-reverse append-reverse! concatenate concatenate!
- ;;; unfold fold pair-fold reduce
- ;;; unfold-right fold-right pair-fold-right reduce-right
- ;;; append-map append-map! map! pair-for-each filter-map map-in-order
- ;;; filter partition remove
- ;;; filter! partition! remove!
- ;;; find find-tail any every list-index
- ;;; take-while drop-while take-while!
- ;;; span break span! break!
- ;;; delete delete!
- ;;; alist-cons alist-copy
- ;;; delete-duplicates delete-duplicates!
- ;;; alist-delete alist-delete!
- ;;; reverse!
- ;;; lset<= lset= lset-adjoin
- ;;; lset-union lset-intersection lset-difference lset-xor lset-diff+intersection
- ;;; lset-union! lset-intersection! lset-difference! lset-xor! lset-diff+intersection!
- ;;;
- ;;; In principle, the following R4RS list- and pair-processing procedures
- ;;; are also part of this package's exports, although they are not defined
- ;;; in this file:
- ;;; Primitives: cons pair? null? car cdr set-car! set-cdr!
- ;;; Non-primitives: list length append reverse cadr ... cddddr list-ref
- ;;; memq memv assq assv
- ;;; (The non-primitives are defined in this file, but commented out.)
- ;;;
- ;;; These R4RS procedures have extended definitions in SRFI-1 and are defined
- ;;; in this file:
- ;;; map for-each member assoc
- ;;;
- ;;; The remaining two R4RS list-processing procedures are not included:
- ;;; list-tail (use drop)
- ;;; list? (use proper-list?)
- ;;; A note on recursion and iteration/reversal:
- ;;; Many iterative list-processing algorithms naturally compute the elements
- ;;; of the answer list in the wrong order (left-to-right or head-to-tail) from
- ;;; the order needed to cons them into the proper answer (right-to-left, or
- ;;; tail-then-head). One style or idiom of programming these algorithms, then,
- ;;; loops, consing up the elements in reverse order, then destructively
- ;;; reverses the list at the end of the loop. I do not do this. The natural
- ;;; and efficient way to code these algorithms is recursively. This trades off
- ;;; intermediate temporary list structure for intermediate temporary stack
- ;;; structure. In a stack-based system, this improves cache locality and
- ;;; lightens the load on the GC system. Don't stand on your head to iterate!
- ;;; Recurse, where natural. Multiple-value returns make this even more
- ;;; convenient, when the recursion/iteration has multiple state values.
- ;;; Porting:
- ;;; This is carefully tuned code; do not modify casually.
- ;;; - It is careful to share storage when possible;
- ;;; - Side-effecting code tries not to perform redundant writes.
- ;;;
- ;;; That said, a port of this library to a specific Scheme system might wish
- ;;; to tune this code to exploit particulars of the implementation.
- ;;; The single most important compiler-specific optimisation you could make
- ;;; to this library would be to add rewrite rules or transforms to:
- ;;; - transform applications of n-ary procedures (e.g. LIST=, CONS*, APPEND,
- ;;; LSET-UNION) into multiple applications of a primitive two-argument
- ;;; variant.
- ;;; - transform applications of the mapping functions (MAP, FOR-EACH, FOLD,
- ;;; ANY, EVERY) into open-coded loops. The killer here is that these
- ;;; functions are n-ary. Handling the general case is quite inefficient,
- ;;; requiring many intermediate data structures to be allocated and
- ;;; discarded.
- ;;; - transform applications of procedures that take optional arguments
- ;;; into calls to variants that do not take optional arguments. This
- ;;; eliminates unnecessary consing and parsing of the rest parameter.
- ;;;
- ;;; These transforms would provide BIG speedups. In particular, the n-ary
- ;;; mapping functions are particularly slow and cons-intensive, and are good
- ;;; candidates for tuning. I have coded fast paths for the single-list cases,
- ;;; but what you really want to do is exploit the fact that the compiler
- ;;; usually knows how many arguments are being passed to a particular
- ;;; application of these functions -- they are usually explicitly called, not
- ;;; passed around as higher-order values. If you can arrange to have your
- ;;; compiler produce custom code or custom linkages based on the number of
- ;;; arguments in the call, you can speed these functions up a *lot*. But this
- ;;; kind of compiler technology no longer exists in the Scheme world as far as
- ;;; I can see.
- ;;;
- ;;; Note that this code is, of course, dependent upon standard bindings for
- ;;; the R5RS procedures -- i.e., it assumes that the variable CAR is bound
- ;;; to the procedure that takes the car of a list. If your Scheme
- ;;; implementation allows user code to alter the bindings of these procedures
- ;;; in a manner that would be visible to these definitions, then there might
- ;;; be trouble. You could consider horrible kludgery along the lines of
- ;;; (define fact
- ;;; (let ((= =) (- -) (* *))
- ;;; (letrec ((real-fact (lambda (n)
- ;;; (if (= n 0) 1 (* n (real-fact (- n 1)))))))
- ;;; real-fact)))
- ;;; Or you could consider shifting to a reasonable Scheme system that, say,
- ;;; has a module system protecting code from this kind of lossage.
- ;;;
- ;;; This code does a fair amount of run-time argument checking. If your
- ;;; Scheme system has a sophisticated compiler that can eliminate redundant
- ;;; error checks, this is no problem. However, if not, these checks incur
- ;;; some performance overhead -- and, in a safe Scheme implementation, they
- ;;; are in some sense redundant: if we don't check to see that the PROC
- ;;; parameter is a procedure, we'll find out anyway three lines later when
- ;;; we try to call the value. It's pretty easy to rip all this argument
- ;;; checking code out if it's inappropriate for your implementation -- just
- ;;; nuke every call to CHECK-ARG.
- ;;;
- ;;; On the other hand, if you *do* have a sophisticated compiler that will
- ;;; actually perform soft-typing and eliminate redundant checks (Rice's systems
- ;;; being the only possible candidate of which I'm aware), leaving these checks
- ;;; in can *help*, since their presence can be elided in redundant cases,
- ;;; and in cases where they are needed, performing the checks early, at
- ;;; procedure entry, can "lift" a check out of a loop.
- ;;;
- ;;; Finally, I have only checked the properties that can portably be checked
- ;;; with R5RS Scheme -- and this is not complete. You may wish to alter
- ;;; the CHECK-ARG parameter checks to perform extra, implementation-specific
- ;;; checks, such as procedure arity for higher-order values.
- ;;;
- ;;; The code has only these non-R4RS dependencies:
- ;;; A few calls to an ERROR procedure;
- ;;; Uses of the R5RS multiple-value procedure VALUES and the m-v binding
- ;;; RECEIVE macro (which isn't R5RS, but is a trivial macro).
- ;;; Many calls to a parameter-checking procedure check-arg:
- ;;; (define (check-arg pred val caller)
- ;;; (let lp ((val val))
- ;;; (if (pred val) val (lp (error "Bad argument" val pred caller)))))
- ;;; A few uses of the LET-OPTIONAL and :OPTIONAL macros for parsing
- ;;; optional arguments.
- ;;;
- ;;; Most of these procedures use the NULL-LIST? test to trigger the
- ;;; base case in the inner loop or recursion. The NULL-LIST? function
- ;;; is defined to be a careful one -- it raises an error if passed a
- ;;; non-nil, non-pair value. The spec allows an implementation to use
- ;;; a less-careful implementation that simply defines NULL-LIST? to
- ;;; be NOT-PAIR?. This would speed up the inner loops of these procedures
- ;;; at the expense of having them silently accept dotted lists.
- ;;; A note on dotted lists:
- ;;; I, personally, take the view that the only consistent view of lists
- ;;; in Scheme is the view that *everything* is a list -- values such as
- ;;; 3 or "foo" or 'bar are simply empty dotted lists. This is due to the
- ;;; fact that Scheme actually has no true list type. It has a pair type,
- ;;; and there is an *interpretation* of the trees built using this type
- ;;; as lists.
- ;;;
- ;;; I lobbied to have these list-processing procedures hew to this
- ;;; view, and accept any value as a list argument. I was overwhelmingly
- ;;; overruled during the SRFI discussion phase. So I am inserting this
- ;;; text in the reference lib and the SRFI spec as a sort of "minority
- ;;; opinion" dissent.
- ;;;
- ;;; Many of the procedures in this library can be trivially redefined
- ;;; to handle dotted lists, just by changing the NULL-LIST? base-case
- ;;; check to NOT-PAIR?, meaning that any non-pair value is taken to be
- ;;; an empty list. For most of these procedures, that's all that is
- ;;; required.
- ;;;
- ;;; However, we have to do a little more work for some procedures that
- ;;; *produce* lists from other lists. Were we to extend these procedures to
- ;;; accept dotted lists, we would have to define how they terminate the lists
- ;;; produced as results when passed a dotted list. I designed a coherent set
- ;;; of termination rules for these cases; this was posted to the SRFI-1
- ;;; discussion list. I additionally wrote an earlier version of this library
- ;;; that implemented that spec. It has been discarded during later phases of
- ;;; the definition and implementation of this library.
- ;;;
- ;;; The argument *against* defining these procedures to work on dotted
- ;;; lists is that dotted lists are the rare, odd case, and that by
- ;;; arranging for the procedures to handle them, we lose error checking
- ;;; in the cases where a dotted list is passed by accident -- e.g., when
- ;;; the programmer swaps a two arguments to a list-processing function,
- ;;; one being a scalar and one being a list. For example,
- ;;; (member '(1 3 5 7 9) 7)
- ;;; This would quietly return #f if we extended MEMBER to accept dotted
- ;;; lists.
- ;;;
- ;;; The SRFI discussion record contains more discussion on this topic.
- ;;; Constructors
- ;;;;;;;;;;;;;;;;
- ;;; Occasionally useful as a value to be passed to a fold or other
- ;;; higher-order procedure.
- (define (xcons d a) (cons a d))
- ;;;; Recursively copy every cons.
- ;(define (tree-copy x)
- ; (let recur ((x x))
- ; (if (not (pair? x)) x
- ; (cons (recur (car x)) (recur (cdr x))))))
- ;;; Make a list of length LEN.
- (define (make-list len . maybe-elt)
- (check-arg (lambda (n) (and (integer? n) (>= n 0))) len make-list)
- (let ((elt (cond ((null? maybe-elt) #f) ; Default value
- ((null? (cdr maybe-elt)) (car maybe-elt))
- (else (error "Too many arguments to MAKE-LIST"
- (cons len maybe-elt))))))
- (do ((i len (- i 1))
- (ans '() (cons elt ans)))
- ((<= i 0) ans))))
- ;(define (list . ans) ans) ; R4RS
- ;;; Make a list of length LEN. Elt i is (PROC i) for 0 <= i < LEN.
- (define (list-tabulate len proc)
- (check-arg (lambda (n) (and (integer? n) (>= n 0))) len list-tabulate)
- (check-arg procedure? proc list-tabulate)
- (do ((i (- len 1) (- i 1))
- (ans '() (cons (proc i) ans)))
- ((< i 0) ans)))
- ;;; (cons* a1 a2 ... an) = (cons a1 (cons a2 (cons ... an)))
- ;;; (cons* a1) = a1 (cons* a1 a2 ...) = (cons a1 (cons* a2 ...))
- ;;;
- ;;; (cons first (unfold not-pair? car cdr rest values))
- (define (cons* first . rest)
- (let recur ((x first) (rest rest))
- (if (pair? rest)
- (cons x (recur (car rest) (cdr rest)))
- x)))
- ;;; (unfold not-pair? car cdr lis values)
- (define (list-copy lis)
- (let recur ((lis lis))
- (if (pair? lis)
- (cons (car lis) (recur (cdr lis)))
- lis)))
- ;;; IOTA count [start step] (start start+step ... start+(count-1)*step)
- (define (iota count . maybe-start+step)
- (check-arg integer? count iota)
- (if (< count 0) (error "Negative step count" iota count))
- (let-optionals maybe-start+step ((start 0) (step 1))
- (check-arg number? start iota)
- (check-arg number? step iota)
- (let loop ((n 0) (r '()))
- (if (= n count)
- (reverse r)
- (loop (+ 1 n)
- (cons (+ start (* n step)) r))))))
-
- ;;; I thought these were lovely, but the public at large did not share my
- ;;; enthusiasm...
- ;;; :IOTA to (0 ... to-1)
- ;;; :IOTA from to (from ... to-1)
- ;;; :IOTA from to step (from from+step ...)
- ;;; IOTA: to (1 ... to)
- ;;; IOTA: from to (from+1 ... to)
- ;;; IOTA: from to step (from+step from+2step ...)
- ;(define (%parse-iota-args arg1 rest-args proc)
- ; (let ((check (lambda (n) (check-arg integer? n proc))))
- ; (check arg1)
- ; (if (pair? rest-args)
- ; (let ((arg2 (check (car rest-args)))
- ; (rest (cdr rest-args)))
- ; (if (pair? rest)
- ; (let ((arg3 (check (car rest)))
- ; (rest (cdr rest)))
- ; (if (pair? rest) (error "Too many parameters" proc arg1 rest-args)
- ; (values arg1 arg2 arg3)))
- ; (values arg1 arg2 1)))
- ; (values 0 arg1 1))))
- ;
- ;(define (iota: arg1 . rest-args)
- ; (receive (from to step) (%parse-iota-args arg1 rest-args iota:)
- ; (let* ((numsteps (floor (/ (- to from) step)))
- ; (last-val (+ from (* step numsteps))))
- ; (if (< numsteps 0) (error "Negative step count" iota: from to step))
- ; (do ((steps-left numsteps (- steps-left 1))
- ; (val last-val (- val step))
- ; (ans '() (cons val ans)))
- ; ((<= steps-left 0) ans)))))
- ;
- ;
- ;(define (:iota arg1 . rest-args)
- ; (receive (from to step) (%parse-iota-args arg1 rest-args :iota)
- ; (let* ((numsteps (ceiling (/ (- to from) step)))
- ; (last-val (+ from (* step (- numsteps 1)))))
- ; (if (< numsteps 0) (error "Negative step count" :iota from to step))
- ; (do ((steps-left numsteps (- steps-left 1))
- ; (val last-val (- val step))
- ; (ans '() (cons val ans)))
- ; ((<= steps-left 0) ans)))))
- (define (circular-list val1 . vals)
- (let ((ans (cons val1 vals)))
- (set-cdr! (last-pair ans) ans)
- ans))
- ;;; <proper-list> ::= () ; Empty proper list
- ;;; | (cons <x> <proper-list>) ; Proper-list pair
- ;;; Note that this definition rules out circular lists -- and this
- ;;; function is required to detect this case and return false.
- (define (proper-list? x)
- (let lp ((x x) (lag x))
- (if (pair? x)
- (let ((x (cdr x)))
- (if (pair? x)
- (let ((x (cdr x))
- (lag (cdr lag)))
- (and (not (eq? x lag)) (lp x lag)))
- (null? x)))
- (null? x))))
- ;;; A dotted list is a finite list (possibly of length 0) terminated
- ;;; by a non-nil value. Any non-cons, non-nil value (e.g., "foo" or 5)
- ;;; is a dotted list of length 0.
- ;;;
- ;;; <dotted-list> ::= <non-nil,non-pair> ; Empty dotted list
- ;;; | (cons <x> <dotted-list>) ; Proper-list pair
- (define (dotted-list? x)
- (let lp ((x x) (lag x))
- (if (pair? x)
- (let ((x (cdr x)))
- (if (pair? x)
- (let ((x (cdr x))
- (lag (cdr lag)))
- (and (not (eq? x lag)) (lp x lag)))
- (not (null? x))))
- (not (null? x)))))
- (define (circular-list? x)
- (let lp ((x x) (lag x))
- (and (pair? x)
- (let ((x (cdr x)))
- (and (pair? x)
- (let ((x (cdr x))
- (lag (cdr lag)))
- (or (eq? x lag) (lp x lag))))))))
- (define (not-pair? x) (not (pair? x))) ; Inline me.
- ;;; This is a legal definition which is fast and sloppy:
- ;;; (define null-list? not-pair?)
- ;;; but we'll provide a more careful one:
- (define (null-list? l)
- (cond ((pair? l) #f)
- ((null? l) #t)
- (else (error "null-list?: argument out of domain" l))))
-
- (define (list= = . lists)
- (or (null? lists) ; special case
- (let lp1 ((list-a (car lists)) (others (cdr lists)))
- (or (null? others)
- (let ((list-b (car others))
- (others (cdr others)))
- (if (eq? list-a list-b) ; EQ? => LIST=
- (lp1 list-b others)
- (let lp2 ((list-a list-a) (list-b list-b))
- (if (null-list? list-a)
- (and (null-list? list-b)
- (lp1 list-b others))
- (and (not (null-list? list-b))
- (= (car list-a) (car list-b))
- (lp2 (cdr list-a) (cdr list-b)))))))))))
-
- ;;; R4RS, so commented out.
- ;(define (length x) ; LENGTH may diverge or
- ; (let lp ((x x) (len 0)) ; raise an error if X is
- ; (if (pair? x) ; a circular list. This version
- ; (lp (cdr x) (+ len 1)) ; diverges.
- ; len)))
- (define (length+ x) ; Returns #f if X is circular.
- (let lp ((x x) (lag x) (len 0))
- (if (pair? x)
- (let ((x (cdr x))
- (len (+ len 1)))
- (if (pair? x)
- (let ((x (cdr x))
- (lag (cdr lag))
- (len (+ len 1)))
- (and (not (eq? x lag)) (lp x lag len)))
- len))
- len)))
- (define (zip list1 . more-lists) (apply map list list1 more-lists))
- ;;; Selectors
- ;;;;;;;;;;;;;
- ;;; R4RS non-primitives:
- ;(define (caar x) (car (car x)))
- ;(define (cadr x) (car (cdr x)))
- ;(define (cdar x) (cdr (car x)))
- ;(define (cddr x) (cdr (cdr x)))
- ;
- ;(define (caaar x) (caar (car x)))
- ;(define (caadr x) (caar (cdr x)))
- ;(define (cadar x) (cadr (car x)))
- ;(define (caddr x) (cadr (cdr x)))
- ;(define (cdaar x) (cdar (car x)))
- ;(define (cdadr x) (cdar (cdr x)))
- ;(define (cddar x) (cddr (car x)))
- ;(define (cdddr x) (cddr (cdr x)))
- ;
- ;(define (caaaar x) (caaar (car x)))
- ;(define (caaadr x) (caaar (cdr x)))
- ;(define (caadar x) (caadr (car x)))
- ;(define (caaddr x) (caadr (cdr x)))
- ;(define (cadaar x) (cadar (car x)))
- ;(define (cadadr x) (cadar (cdr x)))
- ;(define (caddar x) (caddr (car x)))
- ;(define (cadddr x) (caddr (cdr x)))
- ;(define (cdaaar x) (cdaar (car x)))
- ;(define (cdaadr x) (cdaar (cdr x)))
- ;(define (cdadar x) (cdadr (car x)))
- ;(define (cdaddr x) (cdadr (cdr x)))
- ;(define (cddaar x) (cddar (car x)))
- ;(define (cddadr x) (cddar (cdr x)))
- ;(define (cdddar x) (cdddr (car x)))
- ;(define (cddddr x) (cdddr (cdr x)))
- (define first car)
- (define second cadr)
- (define third caddr)
- (define fourth cadddr)
- (define (fifth x) (car (cddddr x)))
- (define (sixth x) (cadr (cddddr x)))
- (define (seventh x) (caddr (cddddr x)))
- (define (eighth x) (cadddr (cddddr x)))
- (define (ninth x) (car (cddddr (cddddr x))))
- (define (tenth x) (cadr (cddddr (cddddr x))))
- (define (car+cdr pair) (values (car pair) (cdr pair)))
- ;;; take & drop
- (define (take lis k)
- (check-arg integer? k take)
- (let recur ((lis lis) (k k))
- (if (zero? k) '()
- (cons (car lis)
- (recur (cdr lis) (- k 1))))))
- (define (drop lis k)
- (check-arg integer? k drop)
- (let iter ((lis lis) (k k))
- (if (zero? k) lis (iter (cdr lis) (- k 1)))))
- (define (take! lis k)
- (check-arg integer? k take!)
- (if (zero? k) '()
- (begin (set-cdr! (drop lis (- k 1)) '())
- lis)))
- ;;; TAKE-RIGHT and DROP-RIGHT work by getting two pointers into the list,
- ;;; off by K, then chasing down the list until the lead pointer falls off
- ;;; the end.
- (define (take-right lis k)
- (check-arg integer? k take-right)
- (let lp ((lag lis) (lead (drop lis k)))
- (if (pair? lead)
- (lp (cdr lag) (cdr lead))
- lag)))
- (define (drop-right lis k)
- (check-arg integer? k drop-right)
- (let recur ((lag lis) (lead (drop lis k)))
- (if (pair? lead)
- (cons (car lag) (recur (cdr lag) (cdr lead)))
- '())))
- ;;; In this function, LEAD is actually K+1 ahead of LAG. This lets
- ;;; us stop LAG one step early, in time to smash its cdr to ().
- (define (drop-right! lis k)
- (check-arg integer? k drop-right!)
- (let ((lead (drop lis k)))
- (if (pair? lead)
- (let lp ((lag lis) (lead (cdr lead))) ; Standard case
- (if (pair? lead)
- (lp (cdr lag) (cdr lead))
- (begin (set-cdr! lag '())
- lis)))
- '()))) ; Special case dropping everything -- no cons to side-effect.
- ;(define (list-ref lis i) (car (drop lis i))) ; R4RS
- ;;; These use the APL convention, whereby negative indices mean
- ;;; "from the right." I liked them, but they didn't win over the
- ;;; SRFI reviewers.
- ;;; K >= 0: Take and drop K elts from the front of the list.
- ;;; K <= 0: Take and drop -K elts from the end of the list.
- ;(define (take lis k)
- ; (check-arg integer? k take)
- ; (if (negative? k)
- ; (list-tail lis (+ k (length lis)))
- ; (let recur ((lis lis) (k k))
- ; (if (zero? k) '()
- ; (cons (car lis)
- ; (recur (cdr lis) (- k 1)))))))
- ;
- ;(define (drop lis k)
- ; (check-arg integer? k drop)
- ; (if (negative? k)
- ; (let recur ((lis lis) (nelts (+ k (length lis))))
- ; (if (zero? nelts) '()
- ; (cons (car lis)
- ; (recur (cdr lis) (- nelts 1)))))
- ; (list-tail lis k)))
- ;
- ;
- ;(define (take! lis k)
- ; (check-arg integer? k take!)
- ; (cond ((zero? k) '())
- ; ((positive? k)
- ; (set-cdr! (list-tail lis (- k 1)) '())
- ; lis)
- ; (else (list-tail lis (+ k (length lis))))))
- ;
- ;(define (drop! lis k)
- ; (check-arg integer? k drop!)
- ; (if (negative? k)
- ; (let ((nelts (+ k (length lis))))
- ; (if (zero? nelts) '()
- ; (begin (set-cdr! (list-tail lis (- nelts 1)) '())
- ; lis)))
- ; (list-tail lis k)))
- (define (split-at x k)
- (check-arg integer? k split-at)
- (let recur ((lis x) (k k))
- (if (zero? k) (values '() lis)
- (receive (prefix suffix) (recur (cdr lis) (- k 1))
- (values (cons (car lis) prefix) suffix)))))
- (define (split-at! x k)
- (check-arg integer? k split-at!)
- (if (zero? k) (values '() x)
- (let* ((prev (drop x (- k 1)))
- (suffix (cdr prev)))
- (set-cdr! prev '())
- (values x suffix))))
- (define (last lis) (car (last-pair lis)))
- (define (last-pair lis)
- (check-arg pair? lis last-pair)
- (let lp ((lis lis))
- (let ((tail (cdr lis)))
- (if (pair? tail) (lp tail) lis))))
- ;;; Unzippers -- 1 through 5
- ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
- (define (unzip1 lis) (map car lis))
- (define (unzip2 lis)
- (let recur ((lis lis))
- (if (null-list? lis) (values lis lis) ; Use NOT-PAIR? to handle
- (let ((elt (car lis))) ; dotted lists.
- (receive (a b) (recur (cdr lis))
- (values (cons (car elt) a)
- (cons (cadr elt) b)))))))
- (define (unzip3 lis)
- (let recur ((lis lis))
- (if (null-list? lis) (values lis lis lis)
- (let ((elt (car lis)))
- (receive (a b c) (recur (cdr lis))
- (values (cons (car elt) a)
- (cons (cadr elt) b)
- (cons (caddr elt) c)))))))
- (define (unzip4 lis)
- (let recur ((lis lis))
- (if (null-list? lis) (values lis lis lis lis)
- (let ((elt (car lis)))
- (receive (a b c d) (recur (cdr lis))
- (values (cons (car elt) a)
- (cons (cadr elt) b)
- (cons (caddr elt) c)
- (cons (cadddr elt) d)))))))
- (define (unzip5 lis)
- (let recur ((lis lis))
- (if (null-list? lis) (values lis lis lis lis lis)
- (let ((elt (car lis)))
- (receive (a b c d e) (recur (cdr lis))
- (values (cons (car elt) a)
- (cons (cadr elt) b)
- (cons (caddr elt) c)
- (cons (cadddr elt) d)
- (cons (car (cddddr elt)) e)))))))
- ;;; append! append-reverse append-reverse! concatenate concatenate!
- ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
- (define (append! . lists)
- ;; First, scan through lists looking for a non-empty one.
- (let lp ((lists lists) (prev '()))
- (if (not (pair? lists)) prev
- (let ((first (car lists))
- (rest (cdr lists)))
- (if (not (pair? first)) (lp rest first)
- ;; Now, do the splicing.
- (let lp2 ((tail-cons (last-pair first))
- (rest rest))
- (if (pair? rest)
- (let ((next (car rest))
- (rest (cdr rest)))
- (set-cdr! tail-cons next)
- (lp2 (if (pair? next) (last-pair next) tail-cons)
- rest))
- first)))))))
- ;;; APPEND is R4RS.
- ;(define (append . lists)
- ; (if (pair? lists)
- ; (let recur ((list1 (car lists)) (lists (cdr lists)))
- ; (if (pair? lists)
- ; (let ((tail (recur (car lists) (cdr lists))))
- ; (fold-right cons tail list1)) ; Append LIST1 & TAIL.
- ; list1))
- ; '()))
- ;(define (append-reverse rev-head tail) (fold cons tail rev-head))
- ;(define (append-reverse! rev-head tail)
- ; (pair-fold (lambda (pair tail) (set-cdr! pair tail) pair)
- ; tail
- ; rev-head))
- ;;; Hand-inline the FOLD and PAIR-FOLD ops for speed.
- (define (append-reverse rev-head tail)
- (let lp ((rev-head rev-head) (tail tail))
- (if (null-list? rev-head) tail
- (lp (cdr rev-head) (cons (car rev-head) tail)))))
- (define (append-reverse! rev-head tail)
- (let lp ((rev-head rev-head) (tail tail))
- (if (null-list? rev-head) tail
- (let ((next-rev (cdr rev-head)))
- (set-cdr! rev-head tail)
- (lp next-rev rev-head)))))
- (define (concatenate lists) (reduce-right append '() lists))
- (define (concatenate! lists) (reduce-right append! '() lists))
- ;;; Fold/map internal utilities
- ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
- ;;; These little internal utilities are used by the general
- ;;; fold & mapper funs for the n-ary cases . It'd be nice if they got inlined.
- ;;; One the other hand, the n-ary cases are painfully inefficient as it is.
- ;;; An aggressive implementation should simply re-write these functions
- ;;; for raw efficiency; I have written them for as much clarity, portability,
- ;;; and simplicity as can be achieved.
- ;;;
- ;;; I use the dreaded call/cc to do local aborts. A good compiler could
- ;;; handle this with extreme efficiency. An implementation that provides
- ;;; a one-shot, non-persistent continuation grabber could help the compiler
- ;;; out by using that in place of the call/cc's in these routines.
- ;;;
- ;;; These functions have funky definitions that are precisely tuned to
- ;;; the needs of the fold/map procs -- for example, to minimize the number
- ;;; of times the argument lists need to be examined.
- ;;; Return (map cdr lists).
- ;;; However, if any element of LISTS is empty, just abort and return '().
- (define (%cdrs lists)
- (call-with-current-continuation
- (lambda (abort)
- (let recur ((lists lists))
- (if (pair? lists)
- (let ((lis (car lists)))
- (if (null-list? lis) (abort '())
- (cons (cdr lis) (recur (cdr lists)))))
- '())))))
- (define (%cars+ lists last-elt) ; (append! (map car lists) (list last-elt))
- (let recur ((lists lists))
- (if (pair? lists) (cons (caar lists) (recur (cdr lists))) (list last-elt))))
- ;;; LISTS is a (not very long) non-empty list of lists.
- ;;; Return two lists: the cars & the cdrs of the lists.
- ;;; However, if any of the lists is empty, just abort and return [() ()].
- (define (%cars+cdrs lists)
- (call-with-current-continuation
- (lambda (abort)
- (let recur ((lists lists))
- (if (pair? lists)
- (receive (list other-lists) (car+cdr lists)
- (if (null-list? list) (abort '() '()) ; LIST is empty -- bail out
- (receive (a d) (car+cdr list)
- (receive (cars cdrs) (recur other-lists)
- (values (cons a cars) (cons d cdrs))))))
- (values '() '()))))))
- ;;; Like %CARS+CDRS, but we pass in a final elt tacked onto the end of the
- ;;; cars list. What a hack.
- (define (%cars+cdrs+ lists cars-final)
- (call-with-current-continuation
- (lambda (abort)
- (let recur ((lists lists))
- (if (pair? lists)
- (receive (list other-lists) (car+cdr lists)
- (if (null-list? list) (abort '() '()) ; LIST is empty -- bail out
- (receive (a d) (car+cdr list)
- (receive (cars cdrs) (recur other-lists)
- (values (cons a cars) (cons d cdrs))))))
- (values (list cars-final) '()))))))
- ;;; Like %CARS+CDRS, but blow up if any list is empty.
- (define (%cars+cdrs/no-test lists)
- (let recur ((lists lists))
- (if (pair? lists)
- (receive (list other-lists) (car+cdr lists)
- (receive (a d) (car+cdr list)
- (receive (cars cdrs) (recur other-lists)
- (values (cons a cars) (cons d cdrs)))))
- (values '() '()))))
- ;;; count
- ;;;;;;;;;
- (define (count pred list1 . lists)
- (check-arg procedure? pred count)
- (if (pair? lists)
- ;; N-ary case
- (let lp ((list1 list1) (lists lists) (i 0))
- (if (null-list? list1) i
- (receive (as ds) (%cars+cdrs lists)
- (if (null? as) i
- (lp (cdr list1) ds
- (if (apply pred (car list1) as) (+ i 1) i))))))
- ;; Fast path
- (let lp ((lis list1) (i 0))
- (if (null-list? lis) i
- (lp (cdr lis) (if (pred (car lis)) (+ i 1) i))))))
- ;;; fold/unfold
- ;;;;;;;;;;;;;;;
- (define (unfold-right p f g seed . maybe-tail)
- (check-arg procedure? p unfold-right)
- (check-arg procedure? f unfold-right)
- (check-arg procedure? g unfold-right)
- (let lp ((seed seed) (ans (:optional maybe-tail '())))
- (if (p seed) ans
- (lp (g seed)
- (cons (f seed) ans)))))
- (define (unfold p f g seed . maybe-tail-gen)
- (check-arg procedure? p unfold)
- (check-arg procedure? f unfold)
- (check-arg procedure? g unfold)
- (if (pair? maybe-tail-gen)
- (let ((tail-gen (car maybe-tail-gen)))
- (if (pair? (cdr maybe-tail-gen))
- (apply error "Too many arguments" unfold p f g seed maybe-tail-gen)
- (let recur ((seed seed))
- (if (p seed) (tail-gen seed)
- (cons (f seed) (recur (g seed)))))))
- (let recur ((seed seed))
- (if (p seed) '()
- (cons (f seed) (recur (g seed)))))))
-
- (define (fold kons knil lis1 . lists)
- (check-arg procedure? kons fold)
- (if (pair? lists)
- (let lp ((lists (cons lis1 lists)) (ans knil)) ; N-ary case
- (receive (cars+ans cdrs) (%cars+cdrs+ lists ans)
- (if (null? cars+ans) ans ; Done.
- (lp cdrs (apply kons cars+ans)))))
-
- (let lp ((lis lis1) (ans knil)) ; Fast path
- (if (null-list? lis) ans
- (lp (cdr lis) (kons (car lis) ans))))))
- (define (fold-right kons knil lis1 . lists)
- (check-arg procedure? kons fold-right)
- (if (pair? lists)
- (let recur ((lists (cons lis1 lists))) ; N-ary case
- (let ((cdrs (%cdrs lists)))
- (if (null? cdrs) knil
- (apply kons (%cars+ lists (recur cdrs))))))
- (let recur ((lis lis1)) ; Fast path
- (if (null-list? lis) knil
- (let ((head (car lis)))
- (kons head (recur (cdr lis))))))))
- (define (pair-fold-right f zero lis1 . lists)
- (check-arg procedure? f pair-fold-right)
- (if (pair? lists)
- (let recur ((lists (cons lis1 lists))) ; N-ary case
- (let ((cdrs (%cdrs lists)))
- (if (null? cdrs) zero
- (apply f (append! lists (list (recur cdrs)))))))
- (let recur ((lis lis1)) ; Fast path
- (if (null-list? lis) zero (f lis (recur (cdr lis)))))))
- (define (pair-fold f zero lis1 . lists)
- (check-arg procedure? f pair-fold)
- (if (pair? lists)
- (let lp ((lists (cons lis1 lists)) (ans zero)) ; N-ary case
- (let ((tails (%cdrs lists)))
- (if (null? tails) ans
- (lp tails (apply f (append! lists (list ans)))))))
- (let lp ((lis lis1) (ans zero))
- (if (null-list? lis) ans
- (let ((tail (cdr lis))) ; Grab the cdr now,
- (lp tail (f lis ans))))))) ; in case F SET-CDR!s LIS.
-
- ;;; REDUCE and REDUCE-RIGHT only use RIDENTITY in the empty-list case.
- ;;; These cannot meaningfully be n-ary.
- (define (reduce f ridentity lis)
- (check-arg procedure? f reduce)
- (if (null-list? lis) ridentity
- (fold f (car lis) (cdr lis))))
- (define (reduce-right f ridentity lis)
- (check-arg procedure? f reduce-right)
- (if (null-list? lis) ridentity
- (let recur ((head (car lis)) (lis (cdr lis)))
- (if (pair? lis)
- (f head (recur (car lis) (cdr lis)))
- head))))
- ;;; Mappers: append-map append-map! pair-for-each map! filter-map map-in-order
- ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
- (define (append-map f lis1 . lists)
- (really-append-map append-map append f lis1 lists))
- (define (append-map! f lis1 . lists)
- (really-append-map append-map! append! f lis1 lists))
- (define (really-append-map who appender f lis1 lists)
- (check-arg procedure? f who)
- (if (pair? lists)
- (receive (cars cdrs) (%cars+cdrs (cons lis1 lists))
- (if (null? cars) '()
- (let recur ((cars cars) (cdrs cdrs))
- (let ((vals (apply f cars)))
- (receive (cars2 cdrs2) (%cars+cdrs cdrs)
- (if (null? cars2) vals
- (appender vals (recur cars2 cdrs2))))))))
- ;; Fast path
- (if (null-list? lis1) '()
- (let recur ((elt (car lis1)) (rest (cdr lis1)))
- (let ((vals (f elt)))
- (if (null-list? rest) vals
- (appender vals (recur (car rest) (cdr rest)))))))))
- (define (pair-for-each proc lis1 . lists)
- (check-arg procedure? proc pair-for-each)
- (if (pair? lists)
- (let lp ((lists (cons lis1 lists)))
- (let ((tails (%cdrs lists)))
- (if (pair? tails)
- (begin (apply proc lists)
- (lp tails)))))
- ;; Fast path.
- (let lp ((lis lis1))
- (if (not (null-list? lis))
- (let ((tail (cdr lis))) ; Grab the cdr now,
- (proc lis) ; in case PROC SET-CDR!s LIS.
- (lp tail))))))
- ;;; We stop when LIS1 runs out, not when any list runs out.
- (define (map! f lis1 . lists)
- (check-arg procedure? f map!)
- (if (pair? lists)
- (let lp ((lis1 lis1) (lists lists))
- (if (not (null-list? lis1))
- (receive (heads tails) (%cars+cdrs/no-test lists)
- (set-car! lis1 (apply f (car lis1) heads))
- (lp (cdr lis1) tails))))
- ;; Fast path.
- (pair-for-each (lambda (pair) (set-car! pair (f (car pair)))) lis1))
- lis1)
- ;;; Map F across L, and save up all the non-false results.
- (define (filter-map f lis1 . lists)
- (check-arg procedure? f filter-map)
- (if (pair? lists)
- (let recur ((lists (cons lis1 lists)))
- (receive (cars cdrs) (%cars+cdrs lists)
- (if (pair? cars)
- (cond ((apply f cars) => (lambda (x) (cons x (recur cdrs))))
- (else (recur cdrs))) ; Tail call in this arm.
- '())))
-
- ;; Fast path.
- (let recur ((lis lis1))
- (if (null-list? lis) lis
- (let ((tail (recur (cdr lis))))
- (cond ((f (car lis)) => (lambda (x) (cons x tail)))
- (else tail)))))))
- ;;; Map F across lists, guaranteeing to go left-to-right.
- ;;; NOTE: Some implementations of R5RS MAP are compliant with this spec;
- ;;; in which case this procedure may simply be defined as a synonym for MAP.
- (define (map-in-order f lis1 . lists)
- (check-arg procedure? f map-in-order)
- (if (pair? lists)
- (let recur ((lists (cons lis1 lists)))
- (receive (cars cdrs) (%cars+cdrs lists)
- (if (pair? cars)
- (let ((x (apply f cars))) ; Do head first,
- (cons x (recur cdrs))) ; then tail.
- '())))
-
- ;; Fast path.
- (let recur ((lis lis1))
- (if (null-list? lis) lis
- (let ((tail (cdr lis))
- (x (f (car lis)))) ; Do head first,
- (cons x (recur tail))))))) ; then tail.
- ;;; We extend MAP to handle arguments of unequal length.
- (define map map-in-order)
- ;;; filter, remove, partition
- ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
- ;;; FILTER, REMOVE, PARTITION and their destructive counterparts do not
- ;;; disorder the elements of their argument.
- ;; This FILTER shares the longest tail of L that has no deleted elements.
- ;; If Scheme had multi-continuation calls, they could be made more efficient.
- (define (filter pred lis) ; Sleazing with EQ? makes this
- (check-arg procedure? pred filter) ; one faster.
- (let recur ((lis lis))
- (if (null-list? lis) lis ; Use NOT-PAIR? to handle dotted lists.
- (let ((head (car lis))
- (tail (cdr lis)))
- (if (pred head)
- (let ((new-tail (recur tail))) ; Replicate the RECUR call so
- (if (eq? tail new-tail) lis
- (cons head new-tail)))
- (recur tail)))))) ; this one can be a tail call.
- ;;; Another version that shares longest tail.
- ;(define (filter pred lis)
- ; (receive (ans no-del?)
- ; ;; (recur l) returns L with (pred x) values filtered.
- ; ;; It also returns a flag NO-DEL? if the returned value
- ; ;; is EQ? to L, i.e. if it didn't have to delete anything.
- ; (let recur ((l l))
- ; (if (null-list? l) (values l #t)
- ; (let ((x (car l))
- ; (tl (cdr l)))
- ; (if (pred x)
- ; (receive (ans no-del?) (recur tl)
- ; (if no-del?
- ; (values l #t)
- ; (values (cons x ans) #f)))
- ; (receive (ans no-del?) (recur tl) ; Delete X.
- ; (values ans #f))))))
- ; ans))
- ;(define (filter! pred lis) ; Things are much simpler
- ; (let recur ((lis lis)) ; if you are willing to
- ; (if (pair? lis) ; push N stack frames & do N
- ; (cond ((pred (car lis)) ; SET-CDR! writes, where N is
- ; (set-cdr! lis (recur (cdr lis))); the length of the answer.
- ; lis)
- ; (else (recur (cdr lis))))
- ; lis)))
- ;;; This implementation of FILTER!
- ;;; - doesn't cons, and uses no stack;
- ;;; - is careful not to do redundant SET-CDR! writes, as writes to memory are
- ;;; usually expensive on modern machines, and can be extremely expensive on
- ;;; modern Schemes (e.g., ones that have generational GC's).
- ;;; It just zips down contiguous runs of in and out elts in LIS doing the
- ;;; minimal number of SET-CDR!s to splice the tail of one run of ins to the
- ;;; beginning of the next.
- (define (filter! pred lis)
- (check-arg procedure? pred filter!)
- (let lp ((ans lis))
- (cond ((null-list? ans) ans) ; Scan looking for
- ((not (pred (car ans))) (lp (cdr ans))) ; first cons of result.
- ;; ANS is the eventual answer.
- ;; SCAN-IN: (CDR PREV) = LIS and (CAR PREV) satisfies PRED.
- ;; Scan over a contiguous segment of the list that
- ;; satisfies PRED.
- ;; SCAN-OUT: (CAR PREV) satisfies PRED. Scan over a contiguous
- ;; segment of the list that *doesn't* satisfy PRED.
- ;; When the segment ends, patch in a link from PREV
- ;; to the start of the next good segment, and jump to
- ;; SCAN-IN.
- (else (letrec ((scan-in (lambda (prev lis)
- (if (pair? lis)
- (if (pred (car lis))
- (scan-in lis (cdr lis))
- (scan-out prev (cdr lis))))))
- (scan-out (lambda (prev lis)
- (let lp ((lis lis))
- (if (pair? lis)
- (if (pred (car lis))
- (begin (set-cdr! prev lis)
- (scan-in lis (cdr lis)))
- (lp (cdr lis)))
- (set-cdr! prev lis))))))
- (scan-in ans (cdr ans))
- ans)))))
- ;;; Answers share common tail with LIS where possible;
- ;;; the technique is slightly subtle.
- (define (partition pred lis)
- (check-arg procedure? pred partition)
- (let recur ((lis lis))
- (if (null-list? lis) (values lis lis) ; Use NOT-PAIR? to handle dotted lists.
- (let ((elt (car lis))
- (tail (cdr lis)))
- (receive (in out) (recur tail)
- (if (pred elt)
- (values (if (pair? out) (cons elt in) lis) out)
- (values in (if (pair? in) (cons elt out) lis))))))))
- ;(define (partition! pred lis) ; Things are much simpler
- ; (let recur ((lis lis)) ; if you are willing to
- ; (if (null-list? lis) (values lis lis) ; push N stack frames & do N
- ; (let ((elt (car lis))) ; SET-CDR! writes, where N is
- ; (receive (in out) (recur (cdr lis)) ; the length of LIS.
- ; (cond ((pred elt)
- ; (set-cdr! lis in)
- ; (values lis out))
- ; (else (set-cdr! lis out)
- ; (values in lis))))))))
- ;;; This implementation of PARTITION!
- ;;; - doesn't cons, and uses no stack;
- ;;; - is careful not to do redundant SET-CDR! writes, as writes to memory are
- ;;; usually expensive on modern machines, and can be extremely expensive on
- ;;; modern Schemes (e.g., ones that have generational GC's).
- ;;; It just zips down contiguous runs of in and out elts in LIS doing the
- ;;; minimal number of SET-CDR!s to splice these runs together into the result
- ;;; lists.
- (define (partition! pred lis)
- (check-arg procedure? pred partition!)
- (if (null-list? lis) (values lis lis)
- ;; This pair of loops zips down contiguous in & out runs of the
- ;; list, splicing the runs together. The invariants are
- ;; SCAN-IN: (cdr in-prev) = LIS.
- ;; SCAN-OUT: (cdr out-prev) = LIS.
- (letrec ((scan-in (lambda (in-prev out-prev lis)
- (let lp ((in-prev in-prev) (lis lis))
- (if (pair? lis)
- (if (pred (car lis))
- (lp lis (cdr lis))
- (begin (set-cdr! out-prev lis)
- (scan-out in-prev lis (cdr lis))))
- (set-cdr! out-prev lis))))) ; Done.
- (scan-out (lambda (in-prev out-prev lis)
- (let lp ((out-prev out-prev) (lis lis))
- (if (pair? lis)
- (if (pred (car lis))
- (begin (set-cdr! in-prev lis)
- (scan-in lis out-prev (cdr lis)))
- (lp lis (cdr lis)))
- (set-cdr! in-prev lis)))))) ; Done.
- ;; Crank up the scan&splice loops.
- (if (pred (car lis))
- ;; LIS begins in-list. Search for out-list's first pair.
- (let lp ((prev-l lis) (l (cdr lis)))
- (cond ((not (pair? l)) (values lis l))
- ((pred (car l)) (lp l (cdr l)))
- (else (scan-out prev-l l (cdr l))
- (values lis l)))) ; Done.
- ;; LIS begins out-list. Search for in-list's first pair.
- (let lp ((prev-l lis) (l (cdr lis)))
- (cond ((not (pair? l)) (values l lis))
- ((pred (car l))
- (scan-in l prev-l (cdr l))
- (values l lis)) ; Done.
- (else (lp l (cdr l)))))))))
- ;;; Inline us, please.
- (define (remove pred l) (filter (lambda (x) (not (pred x))) l))
- (define (remove! pred l) (filter! (lambda (x) (not (pred x))) l))
- ;;; Here's the taxonomy for the DELETE/ASSOC/MEMBER functions.
- ;;; (I don't actually think these are the world's most important
- ;;; functions -- the procedural FILTER/REMOVE/FIND/FIND-TAIL variants
- ;;; are far more general.)
- ;;;
- ;;; Function Action
- ;;; ---------------------------------------------------------------------------
- ;;; remove pred lis Delete by general predicate
- ;;; delete x lis [=] Delete by element comparison
- ;;;
- ;;; find pred lis Search by general predicate
- ;;; find-tail pred lis Search by general predicate
- ;;; member x lis [=] Search by element comparison
- ;;;
- ;;; assoc key lis [=] Search alist by key comparison
- ;;; alist-delete key alist [=] Alist-delete by key comparison
- (define (delete x lis . maybe-=)
- (let ((= (:optional maybe-= equal?)))
- (filter (lambda (y) (not (= x y))) lis)))
- (define (delete! x lis . maybe-=)
- (let ((= (:optional maybe-= equal?)))
- (filter! (lambda (y) (not (= x y))) lis)))
- ;;; Extended from R4RS to take an optional comparison argument.
- (define (member x lis . maybe-=)
- (let ((= (:optional maybe-= equal?)))
- (find-tail (lambda (y) (= x y)) lis)))
- ;;; R4RS, hence we don't bother to define.
- ;;; The MEMBER and then FIND-TAIL call should definitely
- ;;; be inlined for MEMQ & MEMV.
- ;(define (memq x lis) (member x lis eq?))
- ;(define (memv x lis) (member x lis eqv?))
- ;;; right-duplicate deletion
- ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
- ;;; delete-duplicates delete-duplicates!
- ;;;
- ;;; Beware -- these are N^2 algorithms. To efficiently remove duplicates
- ;;; in long lists, sort the list to bring duplicates together, then use a
- ;;; linear-time algorithm to kill the dups. Or use an algorithm based on
- ;;; element-marking. The former gives you O(n lg n), the latter is linear.
- (define (delete-duplicates lis . maybe-=)
- (let ((elt= (:optional maybe-= equal?)))
- (check-arg procedure? elt= delete-duplicates)
- (let recur ((lis lis))
- (if (null-list? lis) lis
- (let* ((x (car lis))
- (tail (cdr lis))
- (new-tail (recur (delete x tail elt=))))
- (if (eq? tail new-tail) lis (cons x new-tail)))))))
- (define (delete-duplicates! lis maybe-=)
- (let ((elt= (:optional maybe-= equal?)))
- (check-arg procedure? elt= delete-duplicates!)
- (let recur ((lis lis))
- (if (null-list? lis) lis
- (let* ((x (car lis))
- (tail (cdr lis))
- (new-tail (recur (delete! x tail elt=))))
- (if (eq? tail new-tail) lis (cons x new-tail)))))))
- ;;; alist stuff
- ;;;;;;;;;;;;;;;
- ;;; Extended from R4RS to take an optional comparison argument.
- (define (assoc x lis . maybe-=)
- (let ((= (:optional maybe-= equal?)))
- (find (lambda (entry) (= x (car entry))) lis)))
- (define (alist-cons key datum alist) (cons (cons key datum) alist))
- (define (alist-copy alist)
- (map (lambda (elt) (cons (car elt) (cdr elt)))
- alist))
- (define (alist-delete key alist . maybe-=)
- (let ((= (:optional maybe-= equal?)))
- (filter (lambda (elt) (not (= key (car elt)))) alist)))
- (define (alist-delete! key alist . maybe-=)
- (let ((= (:optional maybe-= equal?)))
- (filter! (lambda (elt) (not (= key (car elt)))) alist)))
- ;;; find find-tail take-while drop-while span break any every list-index
- ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
- (define (find pred list)
- (cond ((find-tail pred list) => car)
- (else #f)))
- (define (find-tail pred list)
- (check-arg procedure? pred find-tail)
- (let lp ((list list))
- (and (not (null-list? list))
- (if (pred (car list)) list
- (lp (cdr list))))))
- (define (take-while pred lis)
- (check-arg procedure? pred take-while)
- (let recur ((lis lis))
- (if (null-list? lis) '()
- (let ((x (car lis)))
- (if (pred x)
- (cons x (recur (cdr lis)))
- '())))))
- (define (drop-while pred lis)
- (check-arg procedure? pred drop-while)
- (let lp ((lis lis))
- (if (null-list? lis) '()
- (if (pred (car lis))
- (lp (cdr lis))
- lis))))
- (define (take-while! pred lis)
- (check-arg procedure? pred take-while!)
- (if (or (null-list? lis) (not (pred (car lis)))) '()
- (begin (let lp ((prev lis) (rest (cdr lis)))
- (if (pair? rest)
- (let ((x (car rest)))
- (if (pred x) (lp rest (cdr rest))
- (set-cdr! prev '())))))
- lis)))
- (define (span pred lis)
- (check-arg procedure? pred span)
- (let recur ((lis lis))
- (if (null-list? lis) (values '() '())
- (let ((x (car lis)))
- (if (pred x)
- (receive (prefix suffix) (recur (cdr lis))
- (values (cons x prefix) suffix))
- (values '() lis))))))
- (define (span! pred lis)
- (check-arg procedure? pred span!)
- (if (or (null-list? lis) (not (pred (car lis)))) (values '() lis)
- (let ((suffix (let lp ((prev lis) (rest (cdr lis)))
- (if (null-list? rest) rest
- (let ((x (car rest)))
- (if (pred x) (lp rest (cdr rest))
- (begin (set-cdr! prev '())
- rest)))))))
- (values lis suffix))))
-
- (define (break pred lis) (span (lambda (x) (not (pred x))) lis))
- (define (break! pred lis) (span! (lambda (x) (not (pred x))) lis))
- (define (any pred lis1 . lists)
- (check-arg procedure? pred any)
- (if (pair? lists)
- ;; N-ary case
- (receive (heads tails) (%cars+cdrs (cons lis1 lists))
- (and (pair? heads)
- (let lp ((heads heads) (tails tails))
- (receive (next-heads next-tails) (%cars+cdrs tails)
- (if (pair? next-heads)
- (or (apply pred heads) (lp next-heads next-tails))
- (apply pred heads)))))) ; Last PRED app is tail call.
- ;; Fast path
- (and (not (null-list? lis1))
- (let lp ((head (car lis1)) (tail (cdr lis1)))
- (if (null-list? tail)
- (pred head) ; Last PRED app is tail call.
- (or (pred head) (lp (car tail) (cdr tail))))))))
- ;(define (every pred list) ; Simple definition.
- ; (let lp ((list list)) ; Doesn't return the last PRED value.
- ; (or (not (pair? list))
- ; (and (pred (car list))
- ; (lp (cdr list))))))
- (define (every pred lis1 . lists)
- (check-arg procedure? pred every)
- (if (pair? lists)
- ;; N-ary case
- (receive (heads tails) (%cars+cdrs (cons lis1 lists))
- (or (not (pair? heads))
- (let lp ((heads heads) (tails tails))
- (receive (next-heads next-tails) (%cars+cdrs tails)
- (if (pair? next-heads)
- (and (apply pred heads) (lp next-heads next-tails))
- (apply pred heads)))))) ; Last PRED app is tail call.
- ;; Fast path
- (or (null-list? lis1)
- (let lp ((head (car lis1)) (tail (cdr lis1)))
- (if (null-list? tail)
- (pred head) ; Last PRED app is tail call.
- (and (pred head) (lp (car tail) (cdr tail))))))))
- (define (list-index pred lis1 . lists)
- (check-arg procedure? pred list-index)
- (if (pair? lists)
- ;; N-ary case
- (let lp ((lists (cons lis1 lists)) (n 0))
- (receive (heads tails) (%cars+cdrs lists)
- (and (pair? heads)
- (if (apply pred heads) n
- (lp tails (+ n 1))))))
- ;; Fast path
- (let lp ((lis lis1) (n 0))
- (and (not (null-list? lis))
- (if (pred (car lis)) n (lp (cdr lis) (+ n 1)))))))
- ;;; Reverse
- ;;;;;;;;;;;
- ;R4RS, so not defined here.
- ;(define (reverse lis) (fold cons '() lis))
-
- ;(define (reverse! lis)
- ; (pair-fold (lambda (pair tail) (set-cdr! pair tail) pair) '() lis))
- (define (reverse! lis)
- (let lp ((lis lis) (ans '()))
- (if (null-list? lis) ans
- (let ((tail (cdr lis)))
- (set-cdr! lis ans)
- (lp tail lis)))))
- ;;; Lists-as-sets
- ;;;;;;;;;;;;;;;;;
- ;;; This is carefully tuned code; do not modify casually.
- ;;; - It is careful to share storage when possible;
- ;;; - Side-effecting code tries not to perform redundant writes.
- ;;; - It tries to avoid linear-time scans in special cases where constant-time
- ;;; computations can be performed.
- ;;; - It relies on similar properties from the other list-lib procs it calls.
- ;;; For example, it uses the fact that the implementations of MEMBER and
- ;;; FILTER in this source code share longest common tails between args
- ;;; and results to get structure sharing in the lset procedures.
- (define (%lset2<= = lis1 lis2) (every (lambda (x) (member x lis2 =)) lis1))
- (define (lset<= = . lists)
- (check-arg procedure? = lset<=)
- (or (not (pair? lists)) ; 0-ary case
- (let lp ((s1 (car lists)) (rest (cdr lists)))
- (or (not (pair? rest))
- (let ((s2 (car rest)) (rest (cdr rest)))
- (and (or (eq? s2 s1) ; Fast path
- (%lset2<= = s1 s2)) ; Real test
- (lp s2 rest)))))))
- (define (lset= = . lists)
- (check-arg procedure? = lset=)
- (or (not (pair? lists)) ; 0-ary case
- (let lp ((s1 (car lists)) (rest (cdr lists)))
- (or (not (pair? rest))
- (let ((s2 (car rest))
- (rest (cdr rest)))
- (and (or (eq? s1 s2) ; Fast path
- (and (%lset2<= = s1 s2) (%lset2<= = s2 s1))) ; Real test
- (lp s2 rest)))))))
- (define (lset-adjoin = lis . elts)
- (check-arg procedure? = lset-adjoin)
- (fold (lambda (elt ans) (if (member elt ans =) ans (cons elt ans)))
- lis elts))
- (define (lset-union = . lists)
- (check-arg procedure? = lset-union)
- (reduce (lambda (lis ans) ; Compute ANS + LIS.
- (cond ((null? lis) ans) ; Don't copy any lists
- ((null? ans) lis) ; if we don't have to.
- ((eq? lis ans) ans)
- (else
- (fold (lambda (elt ans) (if (any (lambda (x) (= x elt)) ans)
- ans
- (cons elt ans)))
- ans lis))))
- '() lists))
- (define (lset-union! = . lists)
- (check-arg procedure? = lset-union!)
- (reduce (lambda (lis ans) ; Splice new elts of LIS onto the front of ANS.
- (cond ((null? lis) ans) ; Don't copy any lists
- ((null? ans) lis) ; if we don't have to.
- ((eq? lis ans) ans)
- (else
- (pair-fold (lambda (pair ans)
- (let ((elt (car pair)))
- (if (any (lambda (x) (= x elt)) ans)
- ans
- (begin (set-cdr! pair ans) pair))))
- ans lis))))
- '() lists))
- (define (lset-intersection = lis1 . lists)
- (check-arg procedure? = lset-intersection)
- (let ((lists (delete lis1 lists eq?))) ; Throw out any LIS1 vals.
- (cond ((any null-list? lists) '()) ; Short cut
- ((null? lists) lis1) ; Short cut
- (else (filter (lambda (x)
- (every (lambda (lis) (member x lis =)) lists))
- lis1)))))
- (define (lset-intersection! = lis1 . lists)
- (check-arg procedure? = lset-intersection!)
- (let ((lists (delete lis1 lists eq?))) ; Throw out any LIS1 vals.
- (cond ((any null-list? lists) '()) ; Short cut
- ((null? lists) lis1) ; Short cut
- (else (filter! (lambda (x)
- (every (lambda (lis) (member x lis =)) lists))
- lis1)))))
- (define (lset-difference = lis1 . lists)
- (check-arg procedure? = lset-difference)
- (let ((lists (filter pair? lists))) ; Throw out empty lists.
- (cond ((null? lists) lis1) ; Short cut
- ((memq lis1 lists) '()) ; Short cut
- (else (filter (lambda (x)
- (every (lambda (lis) (not (member x lis =)))
- lists))
- lis1)))))
- (define (lset-difference! = lis1 . lists)
- (check-arg procedure? = lset-difference!)
- (let ((lists (filter pair? lists))) ; Throw out empty lists.
- (cond ((null? lists) lis1) ; Short cut
- ((memq lis1 lists) '()) ; Short cut
- (else (filter! (lambda (x)
- (every (lambda (lis) (not (member x lis =)))
- lists))
- lis1)))))
- (define (lset-xor = . lists)
- (check-arg procedure? = lset-xor)
- (reduce (lambda (b a) ; Compute A xor B:
- ;; Note that this code relies on the constant-time
- ;; short-cuts provided by LSET-DIFF+INTERSECTION,
- ;; LSET-DIFFERENCE & APPEND to provide constant-time short
- ;; cuts for the cases A = (), B = (), and A eq? B. It takes
- ;; a careful case analysis to see it, but it's carefully
- ;; built in.
- ;; Compute a-b and a^b, then compute b-(a^b) and
- ;; cons it onto the front of a-b.
- (receive (a-b a-int-b) (lset-diff+intersection = a b)
- (cond ((null? a-b) (lset-difference = b a))
- ((null? a-int-b) (append b a))
- (else (fold (lambda (xb ans)
- (if (member xb a-int-b =) ans (cons xb ans)))
- a-b
- b)))))
- '() lists))
- (define (lset-xor! = . lists)
- (check-arg procedure? = lset-xor!)
- (reduce (lambda (b a) ; Compute A xor B:
- ;; Note that this code relies on the constant-time
- ;; short-cuts provided by LSET-DIFF+INTERSECTION,
- ;; LSET-DIFFERENCE & APPEND to provide constant-time short
- ;; cuts for the cases A = (), B = (), and A eq? B. It takes
- ;; a careful case analysis to see it, but it's carefully
- ;; built in.
- ;; Compute a-b and a^b, then compute b-(a^b) and
- ;; cons it onto the front of a-b.
- (receive (a-b a-int-b) (lset-diff+intersection! = a b)
- (cond ((null? a-b) (lset-difference! = b a))
- ((null? a-int-b) (append! b a))
- (else (pair-fold (lambda (b-pair ans)
- (if (member (car b-pair) a-int-b =) ans
- (begin (set-cdr! b-pair ans) b-pair)))
- a-b
- b)))))
- '() lists))
- (define (lset-diff+intersection = lis1 . lists)
- (check-arg procedure? = lset-diff+intersection)
- (cond ((every null-list? lists) (values lis1 '())) ; Short cut
- ((memq lis1 lists) (values '() lis1)) ; Short cut
- (else (partition (lambda (elt)
- (not (any (lambda (lis) (member elt lis =))
- lists)))
- lis1))))
- (define (lset-diff+intersection! = lis1 . lists)
- (check-arg procedure? = lset-diff+intersection!)
- (cond ((every null-list? lists) (values lis1 '())) ; Short cut
- ((memq lis1 lists) (values '() lis1)) ; Short cut
- (else (partition! (lambda (elt)
- (not (any (lambda (lis) (member elt lis =))
- lists)))
- lis1))))
|