1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095 |
- /*
- * Elliptic curves over GF(p): generic functions
- *
- * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
- * SPDX-License-Identifier: GPL-2.0
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License along
- * with this program; if not, write to the Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * This file is part of mbed TLS (https://tls.mbed.org)
- */
- /*
- * References:
- *
- * SEC1 http://www.secg.org/index.php?action=secg,docs_secg
- * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
- * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
- * RFC 4492 for the related TLS structures and constants
- *
- * [Curve25519] http://cr.yp.to/ecdh/curve25519-20060209.pdf
- *
- * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
- * for elliptic curve cryptosystems. In : Cryptographic Hardware and
- * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
- * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
- *
- * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
- * render ECC resistant against Side Channel Attacks. IACR Cryptology
- * ePrint Archive, 2004, vol. 2004, p. 342.
- * <http://eprint.iacr.org/2004/342.pdf>
- */
- #if !defined(MBEDTLS_CONFIG_FILE)
- #include "mbedtls/config.h"
- #else
- #include MBEDTLS_CONFIG_FILE
- #endif
- #if defined(MBEDTLS_ECP_C)
- #include "mbedtls/ecp.h"
- #include <string.h>
- #if defined(MBEDTLS_PLATFORM_C)
- #include "mbedtls/platform.h"
- #else
- #include <stdlib.h>
- #include <stdio.h>
- #define mbedtls_printf printf
- #define mbedtls_calloc calloc
- #define mbedtls_free free
- #endif
- #if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \
- !defined(inline) && !defined(__cplusplus)
- #define inline __inline
- #endif
- /* Implementation that should never be optimized out by the compiler */
- static void mbedtls_zeroize( void *v, size_t n ) {
- volatile unsigned char *p = v; while( n-- ) *p++ = 0;
- }
- #if defined(MBEDTLS_SELF_TEST)
- /*
- * Counts of point addition and doubling, and field multiplications.
- * Used to test resistance of point multiplication to simple timing attacks.
- */
- static unsigned long add_count, dbl_count, mul_count;
- #endif
- #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) || \
- defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) || \
- defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || \
- defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) || \
- defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) || \
- defined(MBEDTLS_ECP_DP_BP256R1_ENABLED) || \
- defined(MBEDTLS_ECP_DP_BP384R1_ENABLED) || \
- defined(MBEDTLS_ECP_DP_BP512R1_ENABLED) || \
- defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) || \
- defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) || \
- defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
- #define ECP_SHORTWEIERSTRASS
- #endif
- #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
- #define ECP_MONTGOMERY
- #endif
- /*
- * Curve types: internal for now, might be exposed later
- */
- typedef enum
- {
- ECP_TYPE_NONE = 0,
- ECP_TYPE_SHORT_WEIERSTRASS, /* y^2 = x^3 + a x + b */
- ECP_TYPE_MONTGOMERY, /* y^2 = x^3 + a x^2 + x */
- } ecp_curve_type;
- /*
- * List of supported curves:
- * - internal ID
- * - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2)
- * - size in bits
- * - readable name
- *
- * Curves are listed in order: largest curves first, and for a given size,
- * fastest curves first. This provides the default order for the SSL module.
- *
- * Reminder: update profiles in x509_crt.c when adding a new curves!
- */
- static const mbedtls_ecp_curve_info ecp_supported_curves[] =
- {
- #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
- { MBEDTLS_ECP_DP_SECP521R1, 25, 521, "secp521r1" },
- #endif
- #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
- { MBEDTLS_ECP_DP_BP512R1, 28, 512, "brainpoolP512r1" },
- #endif
- #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
- { MBEDTLS_ECP_DP_SECP384R1, 24, 384, "secp384r1" },
- #endif
- #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
- { MBEDTLS_ECP_DP_BP384R1, 27, 384, "brainpoolP384r1" },
- #endif
- #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
- { MBEDTLS_ECP_DP_SECP256R1, 23, 256, "secp256r1" },
- #endif
- #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
- { MBEDTLS_ECP_DP_SECP256K1, 22, 256, "secp256k1" },
- #endif
- #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
- { MBEDTLS_ECP_DP_BP256R1, 26, 256, "brainpoolP256r1" },
- #endif
- #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
- { MBEDTLS_ECP_DP_SECP224R1, 21, 224, "secp224r1" },
- #endif
- #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
- { MBEDTLS_ECP_DP_SECP224K1, 20, 224, "secp224k1" },
- #endif
- #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
- { MBEDTLS_ECP_DP_SECP192R1, 19, 192, "secp192r1" },
- #endif
- #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
- { MBEDTLS_ECP_DP_SECP192K1, 18, 192, "secp192k1" },
- #endif
- { MBEDTLS_ECP_DP_NONE, 0, 0, NULL },
- };
- #define ECP_NB_CURVES sizeof( ecp_supported_curves ) / \
- sizeof( ecp_supported_curves[0] )
- static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
- /*
- * List of supported curves and associated info
- */
- const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list( void )
- {
- return( ecp_supported_curves );
- }
- /*
- * List of supported curves, group ID only
- */
- const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list( void )
- {
- static int init_done = 0;
- if( ! init_done )
- {
- size_t i = 0;
- const mbedtls_ecp_curve_info *curve_info;
- for( curve_info = mbedtls_ecp_curve_list();
- curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
- curve_info++ )
- {
- ecp_supported_grp_id[i++] = curve_info->grp_id;
- }
- ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
- init_done = 1;
- }
- return( ecp_supported_grp_id );
- }
- /*
- * Get the curve info for the internal identifier
- */
- const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id( mbedtls_ecp_group_id grp_id )
- {
- const mbedtls_ecp_curve_info *curve_info;
- for( curve_info = mbedtls_ecp_curve_list();
- curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
- curve_info++ )
- {
- if( curve_info->grp_id == grp_id )
- return( curve_info );
- }
- return( NULL );
- }
- /*
- * Get the curve info from the TLS identifier
- */
- const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id( uint16_t tls_id )
- {
- const mbedtls_ecp_curve_info *curve_info;
- for( curve_info = mbedtls_ecp_curve_list();
- curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
- curve_info++ )
- {
- if( curve_info->tls_id == tls_id )
- return( curve_info );
- }
- return( NULL );
- }
- /*
- * Get the curve info from the name
- */
- const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name( const char *name )
- {
- const mbedtls_ecp_curve_info *curve_info;
- for( curve_info = mbedtls_ecp_curve_list();
- curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
- curve_info++ )
- {
- if( strcmp( curve_info->name, name ) == 0 )
- return( curve_info );
- }
- return( NULL );
- }
- /*
- * Get the type of a curve
- */
- static inline ecp_curve_type ecp_get_type( const mbedtls_ecp_group *grp )
- {
- if( grp->G.X.p == NULL )
- return( ECP_TYPE_NONE );
- if( grp->G.Y.p == NULL )
- return( ECP_TYPE_MONTGOMERY );
- else
- return( ECP_TYPE_SHORT_WEIERSTRASS );
- }
- /*
- * Initialize (the components of) a point
- */
- void mbedtls_ecp_point_init( mbedtls_ecp_point *pt )
- {
- if( pt == NULL )
- return;
- mbedtls_mpi_init( &pt->X );
- mbedtls_mpi_init( &pt->Y );
- mbedtls_mpi_init( &pt->Z );
- }
- /*
- * Initialize (the components of) a group
- */
- void mbedtls_ecp_group_init( mbedtls_ecp_group *grp )
- {
- if( grp == NULL )
- return;
- memset( grp, 0, sizeof( mbedtls_ecp_group ) );
- }
- /*
- * Initialize (the components of) a key pair
- */
- void mbedtls_ecp_keypair_init( mbedtls_ecp_keypair *key )
- {
- if( key == NULL )
- return;
- mbedtls_ecp_group_init( &key->grp );
- mbedtls_mpi_init( &key->d );
- mbedtls_ecp_point_init( &key->Q );
- }
- /*
- * Unallocate (the components of) a point
- */
- void mbedtls_ecp_point_free( mbedtls_ecp_point *pt )
- {
- if( pt == NULL )
- return;
- mbedtls_mpi_free( &( pt->X ) );
- mbedtls_mpi_free( &( pt->Y ) );
- mbedtls_mpi_free( &( pt->Z ) );
- }
- /*
- * Unallocate (the components of) a group
- */
- void mbedtls_ecp_group_free( mbedtls_ecp_group *grp )
- {
- size_t i;
- if( grp == NULL )
- return;
- if( grp->h != 1 )
- {
- mbedtls_mpi_free( &grp->P );
- mbedtls_mpi_free( &grp->A );
- mbedtls_mpi_free( &grp->B );
- mbedtls_ecp_point_free( &grp->G );
- mbedtls_mpi_free( &grp->N );
- }
- if( grp->T != NULL )
- {
- for( i = 0; i < grp->T_size; i++ )
- mbedtls_ecp_point_free( &grp->T[i] );
- mbedtls_free( grp->T );
- }
- mbedtls_zeroize( grp, sizeof( mbedtls_ecp_group ) );
- }
- /*
- * Unallocate (the components of) a key pair
- */
- void mbedtls_ecp_keypair_free( mbedtls_ecp_keypair *key )
- {
- if( key == NULL )
- return;
- mbedtls_ecp_group_free( &key->grp );
- mbedtls_mpi_free( &key->d );
- mbedtls_ecp_point_free( &key->Q );
- }
- /*
- * Copy the contents of a point
- */
- int mbedtls_ecp_copy( mbedtls_ecp_point *P, const mbedtls_ecp_point *Q )
- {
- int ret;
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->X, &Q->X ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Y, &Q->Y ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Z, &Q->Z ) );
- cleanup:
- return( ret );
- }
- /*
- * Copy the contents of a group object
- */
- int mbedtls_ecp_group_copy( mbedtls_ecp_group *dst, const mbedtls_ecp_group *src )
- {
- return mbedtls_ecp_group_load( dst, src->id );
- }
- /*
- * Set point to zero
- */
- int mbedtls_ecp_set_zero( mbedtls_ecp_point *pt )
- {
- int ret;
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->X , 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Y , 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z , 0 ) );
- cleanup:
- return( ret );
- }
- /*
- * Tell if a point is zero
- */
- int mbedtls_ecp_is_zero( mbedtls_ecp_point *pt )
- {
- return( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 );
- }
- /*
- * Compare two points lazyly
- */
- int mbedtls_ecp_point_cmp( const mbedtls_ecp_point *P,
- const mbedtls_ecp_point *Q )
- {
- if( mbedtls_mpi_cmp_mpi( &P->X, &Q->X ) == 0 &&
- mbedtls_mpi_cmp_mpi( &P->Y, &Q->Y ) == 0 &&
- mbedtls_mpi_cmp_mpi( &P->Z, &Q->Z ) == 0 )
- {
- return( 0 );
- }
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- }
- /*
- * Import a non-zero point from ASCII strings
- */
- int mbedtls_ecp_point_read_string( mbedtls_ecp_point *P, int radix,
- const char *x, const char *y )
- {
- int ret;
- MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->X, radix, x ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->Y, radix, y ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) );
- cleanup:
- return( ret );
- }
- /*
- * Export a point into unsigned binary data (SEC1 2.3.3)
- */
- int mbedtls_ecp_point_write_binary( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *P,
- int format, size_t *olen,
- unsigned char *buf, size_t buflen )
- {
- int ret = 0;
- size_t plen;
- if( format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
- format != MBEDTLS_ECP_PF_COMPRESSED )
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- /*
- * Common case: P == 0
- */
- if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 )
- {
- if( buflen < 1 )
- return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
- buf[0] = 0x00;
- *olen = 1;
- return( 0 );
- }
- plen = mbedtls_mpi_size( &grp->P );
- if( format == MBEDTLS_ECP_PF_UNCOMPRESSED )
- {
- *olen = 2 * plen + 1;
- if( buflen < *olen )
- return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
- buf[0] = 0x04;
- MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->Y, buf + 1 + plen, plen ) );
- }
- else if( format == MBEDTLS_ECP_PF_COMPRESSED )
- {
- *olen = plen + 1;
- if( buflen < *olen )
- return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
- buf[0] = 0x02 + mbedtls_mpi_get_bit( &P->Y, 0 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) );
- }
- cleanup:
- return( ret );
- }
- /*
- * Import a point from unsigned binary data (SEC1 2.3.4)
- */
- int mbedtls_ecp_point_read_binary( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
- const unsigned char *buf, size_t ilen )
- {
- int ret;
- size_t plen;
- if( ilen < 1 )
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- if( buf[0] == 0x00 )
- {
- if( ilen == 1 )
- return( mbedtls_ecp_set_zero( pt ) );
- else
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- }
- plen = mbedtls_mpi_size( &grp->P );
- if( buf[0] != 0x04 )
- return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
- if( ilen != 2 * plen + 1 )
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->X, buf + 1, plen ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->Y, buf + 1 + plen, plen ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );
- cleanup:
- return( ret );
- }
- /*
- * Import a point from a TLS ECPoint record (RFC 4492)
- * struct {
- * opaque point <1..2^8-1>;
- * } ECPoint;
- */
- int mbedtls_ecp_tls_read_point( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
- const unsigned char **buf, size_t buf_len )
- {
- unsigned char data_len;
- const unsigned char *buf_start;
- /*
- * We must have at least two bytes (1 for length, at least one for data)
- */
- if( buf_len < 2 )
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- data_len = *(*buf)++;
- if( data_len < 1 || data_len > buf_len - 1 )
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- /*
- * Save buffer start for read_binary and update buf
- */
- buf_start = *buf;
- *buf += data_len;
- return mbedtls_ecp_point_read_binary( grp, pt, buf_start, data_len );
- }
- /*
- * Export a point as a TLS ECPoint record (RFC 4492)
- * struct {
- * opaque point <1..2^8-1>;
- * } ECPoint;
- */
- int mbedtls_ecp_tls_write_point( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
- int format, size_t *olen,
- unsigned char *buf, size_t blen )
- {
- int ret;
- /*
- * buffer length must be at least one, for our length byte
- */
- if( blen < 1 )
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- if( ( ret = mbedtls_ecp_point_write_binary( grp, pt, format,
- olen, buf + 1, blen - 1) ) != 0 )
- return( ret );
- /*
- * write length to the first byte and update total length
- */
- buf[0] = (unsigned char) *olen;
- ++*olen;
- return( 0 );
- }
- /*
- * Set a group from an ECParameters record (RFC 4492)
- */
- int mbedtls_ecp_tls_read_group( mbedtls_ecp_group *grp, const unsigned char **buf, size_t len )
- {
- uint16_t tls_id;
- const mbedtls_ecp_curve_info *curve_info;
- /*
- * We expect at least three bytes (see below)
- */
- if( len < 3 )
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- /*
- * First byte is curve_type; only named_curve is handled
- */
- if( *(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE )
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- /*
- * Next two bytes are the namedcurve value
- */
- tls_id = *(*buf)++;
- tls_id <<= 8;
- tls_id |= *(*buf)++;
- if( ( curve_info = mbedtls_ecp_curve_info_from_tls_id( tls_id ) ) == NULL )
- return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
- return mbedtls_ecp_group_load( grp, curve_info->grp_id );
- }
- /*
- * Write the ECParameters record corresponding to a group (RFC 4492)
- */
- int mbedtls_ecp_tls_write_group( const mbedtls_ecp_group *grp, size_t *olen,
- unsigned char *buf, size_t blen )
- {
- const mbedtls_ecp_curve_info *curve_info;
- if( ( curve_info = mbedtls_ecp_curve_info_from_grp_id( grp->id ) ) == NULL )
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- /*
- * We are going to write 3 bytes (see below)
- */
- *olen = 3;
- if( blen < *olen )
- return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
- /*
- * First byte is curve_type, always named_curve
- */
- *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
- /*
- * Next two bytes are the namedcurve value
- */
- buf[0] = curve_info->tls_id >> 8;
- buf[1] = curve_info->tls_id & 0xFF;
- return( 0 );
- }
- /*
- * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
- * See the documentation of struct mbedtls_ecp_group.
- *
- * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
- */
- static int ecp_modp( mbedtls_mpi *N, const mbedtls_ecp_group *grp )
- {
- int ret;
- if( grp->modp == NULL )
- return( mbedtls_mpi_mod_mpi( N, N, &grp->P ) );
- /* N->s < 0 is a much faster test, which fails only if N is 0 */
- if( ( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 ) ||
- mbedtls_mpi_bitlen( N ) > 2 * grp->pbits )
- {
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- }
- MBEDTLS_MPI_CHK( grp->modp( N ) );
- /* N->s < 0 is a much faster test, which fails only if N is 0 */
- while( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 )
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &grp->P ) );
- while( mbedtls_mpi_cmp_mpi( N, &grp->P ) >= 0 )
- /* we known P, N and the result are positive */
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, N, &grp->P ) );
- cleanup:
- return( ret );
- }
- /*
- * Fast mod-p functions expect their argument to be in the 0..p^2 range.
- *
- * In order to guarantee that, we need to ensure that operands of
- * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
- * bring the result back to this range.
- *
- * The following macros are shortcuts for doing that.
- */
- /*
- * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
- */
- #if defined(MBEDTLS_SELF_TEST)
- #define INC_MUL_COUNT mul_count++;
- #else
- #define INC_MUL_COUNT
- #endif
- #define MOD_MUL( N ) do { MBEDTLS_MPI_CHK( ecp_modp( &N, grp ) ); INC_MUL_COUNT } \
- while( 0 )
- /*
- * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
- * N->s < 0 is a very fast test, which fails only if N is 0
- */
- #define MOD_SUB( N ) \
- while( N.s < 0 && mbedtls_mpi_cmp_int( &N, 0 ) != 0 ) \
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &N, &N, &grp->P ) )
- /*
- * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
- * We known P, N and the result are positive, so sub_abs is correct, and
- * a bit faster.
- */
- #define MOD_ADD( N ) \
- while( mbedtls_mpi_cmp_mpi( &N, &grp->P ) >= 0 ) \
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &N, &N, &grp->P ) )
- #if defined(ECP_SHORTWEIERSTRASS)
- /*
- * For curves in short Weierstrass form, we do all the internal operations in
- * Jacobian coordinates.
- *
- * For multiplication, we'll use a comb method with coutermeasueres against
- * SPA, hence timing attacks.
- */
- /*
- * Normalize jacobian coordinates so that Z == 0 || Z == 1 (GECC 3.2.1)
- * Cost: 1N := 1I + 3M + 1S
- */
- static int ecp_normalize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt )
- {
- int ret;
- mbedtls_mpi Zi, ZZi;
- if( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 )
- return( 0 );
- mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi );
- /*
- * X = X / Z^2 mod p
- */
- MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &Zi, &pt->Z, &grp->P ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ZZi, &Zi, &Zi ) ); MOD_MUL( ZZi );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->X, &pt->X, &ZZi ) ); MOD_MUL( pt->X );
- /*
- * Y = Y / Z^3 mod p
- */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y, &pt->Y, &ZZi ) ); MOD_MUL( pt->Y );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y, &pt->Y, &Zi ) ); MOD_MUL( pt->Y );
- /*
- * Z = 1
- */
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );
- cleanup:
- mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi );
- return( ret );
- }
- /*
- * Normalize jacobian coordinates of an array of (pointers to) points,
- * using Montgomery's trick to perform only one inversion mod P.
- * (See for example Cohen's "A Course in Computational Algebraic Number
- * Theory", Algorithm 10.3.4.)
- *
- * Warning: fails (returning an error) if one of the points is zero!
- * This should never happen, see choice of w in ecp_mul_comb().
- *
- * Cost: 1N(t) := 1I + (6t - 3)M + 1S
- */
- static int ecp_normalize_jac_many( const mbedtls_ecp_group *grp,
- mbedtls_ecp_point *T[], size_t t_len )
- {
- int ret;
- size_t i;
- mbedtls_mpi *c, u, Zi, ZZi;
- if( t_len < 2 )
- return( ecp_normalize_jac( grp, *T ) );
- if( ( c = mbedtls_calloc( t_len, sizeof( mbedtls_mpi ) ) ) == NULL )
- return( MBEDTLS_ERR_ECP_ALLOC_FAILED );
- mbedtls_mpi_init( &u ); mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi );
- /*
- * c[i] = Z_0 * ... * Z_i
- */
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &c[0], &T[0]->Z ) );
- for( i = 1; i < t_len; i++ )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &c[i], &c[i-1], &T[i]->Z ) );
- MOD_MUL( c[i] );
- }
- /*
- * u = 1 / (Z_0 * ... * Z_n) mod P
- */
- MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &u, &c[t_len-1], &grp->P ) );
- for( i = t_len - 1; ; i-- )
- {
- /*
- * Zi = 1 / Z_i mod p
- * u = 1 / (Z_0 * ... * Z_i) mod P
- */
- if( i == 0 ) {
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Zi, &u ) );
- }
- else
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &Zi, &u, &c[i-1] ) ); MOD_MUL( Zi );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &u, &u, &T[i]->Z ) ); MOD_MUL( u );
- }
- /*
- * proceed as in normalize()
- */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ZZi, &Zi, &Zi ) ); MOD_MUL( ZZi );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->X, &T[i]->X, &ZZi ) ); MOD_MUL( T[i]->X );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &ZZi ) ); MOD_MUL( T[i]->Y );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &Zi ) ); MOD_MUL( T[i]->Y );
- /*
- * Post-precessing: reclaim some memory by shrinking coordinates
- * - not storing Z (always 1)
- * - shrinking other coordinates, but still keeping the same number of
- * limbs as P, as otherwise it will too likely be regrown too fast.
- */
- MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->X, grp->P.n ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->Y, grp->P.n ) );
- mbedtls_mpi_free( &T[i]->Z );
- if( i == 0 )
- break;
- }
- cleanup:
- mbedtls_mpi_free( &u ); mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi );
- for( i = 0; i < t_len; i++ )
- mbedtls_mpi_free( &c[i] );
- mbedtls_free( c );
- return( ret );
- }
- /*
- * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
- * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
- */
- static int ecp_safe_invert_jac( const mbedtls_ecp_group *grp,
- mbedtls_ecp_point *Q,
- unsigned char inv )
- {
- int ret;
- unsigned char nonzero;
- mbedtls_mpi mQY;
- mbedtls_mpi_init( &mQY );
- /* Use the fact that -Q.Y mod P = P - Q.Y unless Q.Y == 0 */
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mQY, &grp->P, &Q->Y ) );
- nonzero = mbedtls_mpi_cmp_int( &Q->Y, 0 ) != 0;
- MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &Q->Y, &mQY, inv & nonzero ) );
- cleanup:
- mbedtls_mpi_free( &mQY );
- return( ret );
- }
- /*
- * Point doubling R = 2 P, Jacobian coordinates
- *
- * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
- *
- * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
- * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
- *
- * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
- *
- * Cost: 1D := 3M + 4S (A == 0)
- * 4M + 4S (A == -3)
- * 3M + 6S + 1a otherwise
- */
- static int ecp_double_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
- const mbedtls_ecp_point *P )
- {
- int ret;
- mbedtls_mpi M, S, T, U;
- #if defined(MBEDTLS_SELF_TEST)
- dbl_count++;
- #endif
- mbedtls_mpi_init( &M ); mbedtls_mpi_init( &S ); mbedtls_mpi_init( &T ); mbedtls_mpi_init( &U );
- /* Special case for A = -3 */
- if( grp->A.p == NULL )
- {
- /* M = 3(X + Z^2)(X - Z^2) */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &P->Z, &P->Z ) ); MOD_MUL( S );
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &T, &P->X, &S ) ); MOD_ADD( T );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U, &P->X, &S ) ); MOD_SUB( U );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &T, &U ) ); MOD_MUL( S );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &S, 3 ) ); MOD_ADD( M );
- }
- else
- {
- /* M = 3.X^2 */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &P->X, &P->X ) ); MOD_MUL( S );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M, &S, 3 ) ); MOD_ADD( M );
- /* Optimize away for "koblitz" curves with A = 0 */
- if( mbedtls_mpi_cmp_int( &grp->A, 0 ) != 0 )
- {
- /* M += A.Z^4 */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &P->Z, &P->Z ) ); MOD_MUL( S );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &S, &S ) ); MOD_MUL( T );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &T, &grp->A ) ); MOD_MUL( S );
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &M, &M, &S ) ); MOD_ADD( M );
- }
- }
- /* S = 4.X.Y^2 */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &P->Y, &P->Y ) ); MOD_MUL( T );
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T, 1 ) ); MOD_ADD( T );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &P->X, &T ) ); MOD_MUL( S );
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &S, 1 ) ); MOD_ADD( S );
- /* U = 8.Y^4 */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &U, &T, &T ) ); MOD_MUL( U );
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &U, 1 ) ); MOD_ADD( U );
- /* T = M^2 - 2.S */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &M, &M ) ); MOD_MUL( T );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T, &T, &S ) ); MOD_SUB( T );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T, &T, &S ) ); MOD_SUB( T );
- /* S = M(S - T) - U */
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S, &S, &T ) ); MOD_SUB( S );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S, &S, &M ) ); MOD_MUL( S );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S, &S, &U ) ); MOD_SUB( S );
- /* U = 2.Y.Z */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &U, &P->Y, &P->Z ) ); MOD_MUL( U );
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &U, 1 ) ); MOD_ADD( U );
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &T ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &S ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &U ) );
- cleanup:
- mbedtls_mpi_free( &M ); mbedtls_mpi_free( &S ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &U );
- return( ret );
- }
- /*
- * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
- *
- * The coordinates of Q must be normalized (= affine),
- * but those of P don't need to. R is not normalized.
- *
- * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
- * None of these cases can happen as intermediate step in ecp_mul_comb():
- * - at each step, P, Q and R are multiples of the base point, the factor
- * being less than its order, so none of them is zero;
- * - Q is an odd multiple of the base point, P an even multiple,
- * due to the choice of precomputed points in the modified comb method.
- * So branches for these cases do not leak secret information.
- *
- * We accept Q->Z being unset (saving memory in tables) as meaning 1.
- *
- * Cost: 1A := 8M + 3S
- */
- static int ecp_add_mixed( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
- const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q )
- {
- int ret;
- mbedtls_mpi T1, T2, T3, T4, X, Y, Z;
- #if defined(MBEDTLS_SELF_TEST)
- add_count++;
- #endif
- /*
- * Trivial cases: P == 0 or Q == 0 (case 1)
- */
- if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 )
- return( mbedtls_ecp_copy( R, Q ) );
- if( Q->Z.p != NULL && mbedtls_mpi_cmp_int( &Q->Z, 0 ) == 0 )
- return( mbedtls_ecp_copy( R, P ) );
- /*
- * Make sure Q coordinates are normalized
- */
- if( Q->Z.p != NULL && mbedtls_mpi_cmp_int( &Q->Z, 1 ) != 0 )
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- mbedtls_mpi_init( &T1 ); mbedtls_mpi_init( &T2 ); mbedtls_mpi_init( &T3 ); mbedtls_mpi_init( &T4 );
- mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1, &P->Z, &P->Z ) ); MOD_MUL( T1 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T2, &T1, &P->Z ) ); MOD_MUL( T2 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1, &T1, &Q->X ) ); MOD_MUL( T1 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T2, &T2, &Q->Y ) ); MOD_MUL( T2 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T1, &T1, &P->X ) ); MOD_SUB( T1 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T2, &T2, &P->Y ) ); MOD_SUB( T2 );
- /* Special cases (2) and (3) */
- if( mbedtls_mpi_cmp_int( &T1, 0 ) == 0 )
- {
- if( mbedtls_mpi_cmp_int( &T2, 0 ) == 0 )
- {
- ret = ecp_double_jac( grp, R, P );
- goto cleanup;
- }
- else
- {
- ret = mbedtls_ecp_set_zero( R );
- goto cleanup;
- }
- }
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &Z, &P->Z, &T1 ) ); MOD_MUL( Z );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3, &T1, &T1 ) ); MOD_MUL( T3 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T4, &T3, &T1 ) ); MOD_MUL( T4 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3, &T3, &P->X ) ); MOD_MUL( T3 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &T3, 2 ) ); MOD_ADD( T1 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X, &T2, &T2 ) ); MOD_MUL( X );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T1 ) ); MOD_SUB( X );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T4 ) ); MOD_SUB( X );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T3, &T3, &X ) ); MOD_SUB( T3 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3, &T3, &T2 ) ); MOD_MUL( T3 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T4, &T4, &P->Y ) ); MOD_MUL( T4 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &Y, &T3, &T4 ) ); MOD_SUB( Y );
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &X ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &Y ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &Z ) );
- cleanup:
- mbedtls_mpi_free( &T1 ); mbedtls_mpi_free( &T2 ); mbedtls_mpi_free( &T3 ); mbedtls_mpi_free( &T4 );
- mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
- return( ret );
- }
- /*
- * Randomize jacobian coordinates:
- * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
- * This is sort of the reverse operation of ecp_normalize_jac().
- *
- * This countermeasure was first suggested in [2].
- */
- static int ecp_randomize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
- int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
- {
- int ret;
- mbedtls_mpi l, ll;
- size_t p_size = ( grp->pbits + 7 ) / 8;
- int count = 0;
- mbedtls_mpi_init( &l ); mbedtls_mpi_init( &ll );
- /* Generate l such that 1 < l < p */
- do
- {
- mbedtls_mpi_fill_random( &l, p_size, f_rng, p_rng );
- while( mbedtls_mpi_cmp_mpi( &l, &grp->P ) >= 0 )
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l, 1 ) );
- if( count++ > 10 )
- return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
- }
- while( mbedtls_mpi_cmp_int( &l, 1 ) <= 0 );
- /* Z = l * Z */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Z, &pt->Z, &l ) ); MOD_MUL( pt->Z );
- /* X = l^2 * X */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ll, &l, &l ) ); MOD_MUL( ll );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->X, &pt->X, &ll ) ); MOD_MUL( pt->X );
- /* Y = l^3 * Y */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ll, &ll, &l ) ); MOD_MUL( ll );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y, &pt->Y, &ll ) ); MOD_MUL( pt->Y );
- cleanup:
- mbedtls_mpi_free( &l ); mbedtls_mpi_free( &ll );
- return( ret );
- }
- /*
- * Check and define parameters used by the comb method (see below for details)
- */
- #if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
- #error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
- #endif
- /* d = ceil( n / w ) */
- #define COMB_MAX_D ( MBEDTLS_ECP_MAX_BITS + 1 ) / 2
- /* number of precomputed points */
- #define COMB_MAX_PRE ( 1 << ( MBEDTLS_ECP_WINDOW_SIZE - 1 ) )
- /*
- * Compute the representation of m that will be used with our comb method.
- *
- * The basic comb method is described in GECC 3.44 for example. We use a
- * modified version that provides resistance to SPA by avoiding zero
- * digits in the representation as in [3]. We modify the method further by
- * requiring that all K_i be odd, which has the small cost that our
- * representation uses one more K_i, due to carries.
- *
- * Also, for the sake of compactness, only the seven low-order bits of x[i]
- * are used to represent K_i, and the msb of x[i] encodes the the sign (s_i in
- * the paper): it is set if and only if if s_i == -1;
- *
- * Calling conventions:
- * - x is an array of size d + 1
- * - w is the size, ie number of teeth, of the comb, and must be between
- * 2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
- * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
- * (the result will be incorrect if these assumptions are not satisfied)
- */
- static void ecp_comb_fixed( unsigned char x[], size_t d,
- unsigned char w, const mbedtls_mpi *m )
- {
- size_t i, j;
- unsigned char c, cc, adjust;
- memset( x, 0, d+1 );
- /* First get the classical comb values (except for x_d = 0) */
- for( i = 0; i < d; i++ )
- for( j = 0; j < w; j++ )
- x[i] |= mbedtls_mpi_get_bit( m, i + d * j ) << j;
- /* Now make sure x_1 .. x_d are odd */
- c = 0;
- for( i = 1; i <= d; i++ )
- {
- /* Add carry and update it */
- cc = x[i] & c;
- x[i] = x[i] ^ c;
- c = cc;
- /* Adjust if needed, avoiding branches */
- adjust = 1 - ( x[i] & 0x01 );
- c |= x[i] & ( x[i-1] * adjust );
- x[i] = x[i] ^ ( x[i-1] * adjust );
- x[i-1] |= adjust << 7;
- }
- }
- /*
- * Precompute points for the comb method
- *
- * If i = i_{w-1} ... i_1 is the binary representation of i, then
- * T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P
- *
- * T must be able to hold 2^{w - 1} elements
- *
- * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
- */
- static int ecp_precompute_comb( const mbedtls_ecp_group *grp,
- mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
- unsigned char w, size_t d )
- {
- int ret;
- unsigned char i, k;
- size_t j;
- mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1];
- /*
- * Set T[0] = P and
- * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
- */
- MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &T[0], P ) );
- k = 0;
- for( i = 1; i < ( 1U << ( w - 1 ) ); i <<= 1 )
- {
- cur = T + i;
- MBEDTLS_MPI_CHK( mbedtls_ecp_copy( cur, T + ( i >> 1 ) ) );
- for( j = 0; j < d; j++ )
- MBEDTLS_MPI_CHK( ecp_double_jac( grp, cur, cur ) );
- TT[k++] = cur;
- }
- MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, k ) );
- /*
- * Compute the remaining ones using the minimal number of additions
- * Be careful to update T[2^l] only after using it!
- */
- k = 0;
- for( i = 1; i < ( 1U << ( w - 1 ) ); i <<= 1 )
- {
- j = i;
- while( j-- )
- {
- MBEDTLS_MPI_CHK( ecp_add_mixed( grp, &T[i + j], &T[j], &T[i] ) );
- TT[k++] = &T[i + j];
- }
- }
- MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, k ) );
- cleanup:
- return( ret );
- }
- /*
- * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
- */
- static int ecp_select_comb( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
- const mbedtls_ecp_point T[], unsigned char t_len,
- unsigned char i )
- {
- int ret;
- unsigned char ii, j;
- /* Ignore the "sign" bit and scale down */
- ii = ( i & 0x7Fu ) >> 1;
- /* Read the whole table to thwart cache-based timing attacks */
- for( j = 0; j < t_len; j++ )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->X, &T[j].X, j == ii ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->Y, &T[j].Y, j == ii ) );
- }
- /* Safely invert result if i is "negative" */
- MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, R, i >> 7 ) );
- cleanup:
- return( ret );
- }
- /*
- * Core multiplication algorithm for the (modified) comb method.
- * This part is actually common with the basic comb method (GECC 3.44)
- *
- * Cost: d A + d D + 1 R
- */
- static int ecp_mul_comb_core( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
- const mbedtls_ecp_point T[], unsigned char t_len,
- const unsigned char x[], size_t d,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng )
- {
- int ret;
- mbedtls_ecp_point Txi;
- size_t i;
- mbedtls_ecp_point_init( &Txi );
- /* Start with a non-zero point and randomize its coordinates */
- i = d;
- MBEDTLS_MPI_CHK( ecp_select_comb( grp, R, T, t_len, x[i] ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z, 1 ) );
- if( f_rng != 0 )
- MBEDTLS_MPI_CHK( ecp_randomize_jac( grp, R, f_rng, p_rng ) );
- while( i-- != 0 )
- {
- MBEDTLS_MPI_CHK( ecp_double_jac( grp, R, R ) );
- MBEDTLS_MPI_CHK( ecp_select_comb( grp, &Txi, T, t_len, x[i] ) );
- MBEDTLS_MPI_CHK( ecp_add_mixed( grp, R, R, &Txi ) );
- }
- cleanup:
- mbedtls_ecp_point_free( &Txi );
- return( ret );
- }
- /*
- * Multiplication using the comb method,
- * for curves in short Weierstrass form
- */
- static int ecp_mul_comb( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
- const mbedtls_mpi *m, const mbedtls_ecp_point *P,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng )
- {
- int ret;
- unsigned char w, m_is_odd, p_eq_g, pre_len, i;
- size_t d;
- unsigned char k[COMB_MAX_D + 1];
- mbedtls_ecp_point *T;
- mbedtls_mpi M, mm;
- mbedtls_mpi_init( &M );
- mbedtls_mpi_init( &mm );
- /* we need N to be odd to trnaform m in an odd number, check now */
- if( mbedtls_mpi_get_bit( &grp->N, 0 ) != 1 )
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- /*
- * Minimize the number of multiplications, that is minimize
- * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
- * (see costs of the various parts, with 1S = 1M)
- */
- w = grp->nbits >= 384 ? 5 : 4;
- /*
- * If P == G, pre-compute a bit more, since this may be re-used later.
- * Just adding one avoids upping the cost of the first mul too much,
- * and the memory cost too.
- */
- #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
- p_eq_g = ( mbedtls_mpi_cmp_mpi( &P->Y, &grp->G.Y ) == 0 &&
- mbedtls_mpi_cmp_mpi( &P->X, &grp->G.X ) == 0 );
- if( p_eq_g )
- w++;
- #else
- p_eq_g = 0;
- #endif
- /*
- * Make sure w is within bounds.
- * (The last test is useful only for very small curves in the test suite.)
- */
- if( w > MBEDTLS_ECP_WINDOW_SIZE )
- w = MBEDTLS_ECP_WINDOW_SIZE;
- if( w >= grp->nbits )
- w = 2;
- /* Other sizes that depend on w */
- pre_len = 1U << ( w - 1 );
- d = ( grp->nbits + w - 1 ) / w;
- /*
- * Prepare precomputed points: if P == G we want to
- * use grp->T if already initialized, or initialize it.
- */
- T = p_eq_g ? grp->T : NULL;
- if( T == NULL )
- {
- T = mbedtls_calloc( pre_len, sizeof( mbedtls_ecp_point ) );
- if( T == NULL )
- {
- ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
- goto cleanup;
- }
- MBEDTLS_MPI_CHK( ecp_precompute_comb( grp, T, P, w, d ) );
- if( p_eq_g )
- {
- grp->T = T;
- grp->T_size = pre_len;
- }
- }
- /*
- * Make sure M is odd (M = m or M = N - m, since N is odd)
- * using the fact that m * P = - (N - m) * P
- */
- m_is_odd = ( mbedtls_mpi_get_bit( m, 0 ) == 1 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &M, m ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mm, &grp->N, m ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &M, &mm, ! m_is_odd ) );
- /*
- * Go for comb multiplication, R = M * P
- */
- ecp_comb_fixed( k, d, w, &M );
- MBEDTLS_MPI_CHK( ecp_mul_comb_core( grp, R, T, pre_len, k, d, f_rng, p_rng ) );
- /*
- * Now get m * P from M * P and normalize it
- */
- MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, R, ! m_is_odd ) );
- MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, R ) );
- cleanup:
- if( T != NULL && ! p_eq_g )
- {
- for( i = 0; i < pre_len; i++ )
- mbedtls_ecp_point_free( &T[i] );
- mbedtls_free( T );
- }
- mbedtls_mpi_free( &M );
- mbedtls_mpi_free( &mm );
- if( ret != 0 )
- mbedtls_ecp_point_free( R );
- return( ret );
- }
- #endif /* ECP_SHORTWEIERSTRASS */
- #if defined(ECP_MONTGOMERY)
- /*
- * For Montgomery curves, we do all the internal arithmetic in projective
- * coordinates. Import/export of points uses only the x coordinates, which is
- * internaly represented as X / Z.
- *
- * For scalar multiplication, we'll use a Montgomery ladder.
- */
- /*
- * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
- * Cost: 1M + 1I
- */
- static int ecp_normalize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P )
- {
- int ret;
- MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &P->Z, &P->Z, &grp->P ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->X, &P->X, &P->Z ) ); MOD_MUL( P->X );
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) );
- cleanup:
- return( ret );
- }
- /*
- * Randomize projective x/z coordinates:
- * (X, Z) -> (l X, l Z) for random l
- * This is sort of the reverse operation of ecp_normalize_mxz().
- *
- * This countermeasure was first suggested in [2].
- * Cost: 2M
- */
- static int ecp_randomize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
- int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
- {
- int ret;
- mbedtls_mpi l;
- size_t p_size = ( grp->pbits + 7 ) / 8;
- int count = 0;
- mbedtls_mpi_init( &l );
- /* Generate l such that 1 < l < p */
- do
- {
- mbedtls_mpi_fill_random( &l, p_size, f_rng, p_rng );
- while( mbedtls_mpi_cmp_mpi( &l, &grp->P ) >= 0 )
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l, 1 ) );
- if( count++ > 10 )
- return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
- }
- while( mbedtls_mpi_cmp_int( &l, 1 ) <= 0 );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->X, &P->X, &l ) ); MOD_MUL( P->X );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->Z, &P->Z, &l ) ); MOD_MUL( P->Z );
- cleanup:
- mbedtls_mpi_free( &l );
- return( ret );
- }
- /*
- * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
- * for Montgomery curves in x/z coordinates.
- *
- * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
- * with
- * d = X1
- * P = (X2, Z2)
- * Q = (X3, Z3)
- * R = (X4, Z4)
- * S = (X5, Z5)
- * and eliminating temporary variables tO, ..., t4.
- *
- * Cost: 5M + 4S
- */
- static int ecp_double_add_mxz( const mbedtls_ecp_group *grp,
- mbedtls_ecp_point *R, mbedtls_ecp_point *S,
- const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
- const mbedtls_mpi *d )
- {
- int ret;
- mbedtls_mpi A, AA, B, BB, E, C, D, DA, CB;
- mbedtls_mpi_init( &A ); mbedtls_mpi_init( &AA ); mbedtls_mpi_init( &B );
- mbedtls_mpi_init( &BB ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &C );
- mbedtls_mpi_init( &D ); mbedtls_mpi_init( &DA ); mbedtls_mpi_init( &CB );
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &A, &P->X, &P->Z ) ); MOD_ADD( A );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &AA, &A, &A ) ); MOD_MUL( AA );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &B, &P->X, &P->Z ) ); MOD_SUB( B );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &BB, &B, &B ) ); MOD_MUL( BB );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &E, &AA, &BB ) ); MOD_SUB( E );
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &C, &Q->X, &Q->Z ) ); MOD_ADD( C );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &D, &Q->X, &Q->Z ) ); MOD_SUB( D );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DA, &D, &A ) ); MOD_MUL( DA );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &CB, &C, &B ) ); MOD_MUL( CB );
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &S->X, &DA, &CB ) ); MOD_MUL( S->X );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->X, &S->X, &S->X ) ); MOD_MUL( S->X );
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S->Z, &DA, &CB ) ); MOD_SUB( S->Z );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->Z, &S->Z, &S->Z ) ); MOD_MUL( S->Z );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->Z, d, &S->Z ) ); MOD_MUL( S->Z );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->X, &AA, &BB ) ); MOD_MUL( R->X );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->Z, &grp->A, &E ) ); MOD_MUL( R->Z );
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &R->Z, &BB, &R->Z ) ); MOD_ADD( R->Z );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->Z, &E, &R->Z ) ); MOD_MUL( R->Z );
- cleanup:
- mbedtls_mpi_free( &A ); mbedtls_mpi_free( &AA ); mbedtls_mpi_free( &B );
- mbedtls_mpi_free( &BB ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &C );
- mbedtls_mpi_free( &D ); mbedtls_mpi_free( &DA ); mbedtls_mpi_free( &CB );
- return( ret );
- }
- /*
- * Multiplication with Montgomery ladder in x/z coordinates,
- * for curves in Montgomery form
- */
- static int ecp_mul_mxz( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
- const mbedtls_mpi *m, const mbedtls_ecp_point *P,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng )
- {
- int ret;
- size_t i;
- unsigned char b;
- mbedtls_ecp_point RP;
- mbedtls_mpi PX;
- mbedtls_ecp_point_init( &RP ); mbedtls_mpi_init( &PX );
- /* Save PX and read from P before writing to R, in case P == R */
- MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &PX, &P->X ) );
- MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &RP, P ) );
- /* Set R to zero in modified x/z coordinates */
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->X, 1 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z, 0 ) );
- mbedtls_mpi_free( &R->Y );
- /* RP.X might be sligtly larger than P, so reduce it */
- MOD_ADD( RP.X );
- /* Randomize coordinates of the starting point */
- if( f_rng != NULL )
- MBEDTLS_MPI_CHK( ecp_randomize_mxz( grp, &RP, f_rng, p_rng ) );
- /* Loop invariant: R = result so far, RP = R + P */
- i = mbedtls_mpi_bitlen( m ); /* one past the (zero-based) most significant bit */
- while( i-- > 0 )
- {
- b = mbedtls_mpi_get_bit( m, i );
- /*
- * if (b) R = 2R + P else R = 2R,
- * which is:
- * if (b) double_add( RP, R, RP, R )
- * else double_add( R, RP, R, RP )
- * but using safe conditional swaps to avoid leaks
- */
- MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X, &RP.X, b ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
- MBEDTLS_MPI_CHK( ecp_double_add_mxz( grp, R, &RP, R, &RP, &PX ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X, &RP.X, b ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );
- }
- MBEDTLS_MPI_CHK( ecp_normalize_mxz( grp, R ) );
- cleanup:
- mbedtls_ecp_point_free( &RP ); mbedtls_mpi_free( &PX );
- return( ret );
- }
- #endif /* ECP_MONTGOMERY */
- /*
- * Multiplication R = m * P
- */
- int mbedtls_ecp_mul( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
- const mbedtls_mpi *m, const mbedtls_ecp_point *P,
- int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
- {
- int ret;
- /* Common sanity checks */
- if( mbedtls_mpi_cmp_int( &P->Z, 1 ) != 0 )
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- if( ( ret = mbedtls_ecp_check_privkey( grp, m ) ) != 0 ||
- ( ret = mbedtls_ecp_check_pubkey( grp, P ) ) != 0 )
- return( ret );
- #if defined(ECP_MONTGOMERY)
- if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
- return( ecp_mul_mxz( grp, R, m, P, f_rng, p_rng ) );
- #endif
- #if defined(ECP_SHORTWEIERSTRASS)
- if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
- return( ecp_mul_comb( grp, R, m, P, f_rng, p_rng ) );
- #endif
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- }
- #if defined(ECP_SHORTWEIERSTRASS)
- /*
- * Check that an affine point is valid as a public key,
- * short weierstrass curves (SEC1 3.2.3.1)
- */
- static int ecp_check_pubkey_sw( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
- {
- int ret;
- mbedtls_mpi YY, RHS;
- /* pt coordinates must be normalized for our checks */
- if( mbedtls_mpi_cmp_int( &pt->X, 0 ) < 0 ||
- mbedtls_mpi_cmp_int( &pt->Y, 0 ) < 0 ||
- mbedtls_mpi_cmp_mpi( &pt->X, &grp->P ) >= 0 ||
- mbedtls_mpi_cmp_mpi( &pt->Y, &grp->P ) >= 0 )
- return( MBEDTLS_ERR_ECP_INVALID_KEY );
- mbedtls_mpi_init( &YY ); mbedtls_mpi_init( &RHS );
- /*
- * YY = Y^2
- * RHS = X (X^2 + A) + B = X^3 + A X + B
- */
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &YY, &pt->Y, &pt->Y ) ); MOD_MUL( YY );
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &RHS, &pt->X, &pt->X ) ); MOD_MUL( RHS );
- /* Special case for A = -3 */
- if( grp->A.p == NULL )
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &RHS, &RHS, 3 ) ); MOD_SUB( RHS );
- }
- else
- {
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &RHS, &RHS, &grp->A ) ); MOD_ADD( RHS );
- }
- MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &RHS, &RHS, &pt->X ) ); MOD_MUL( RHS );
- MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &RHS, &RHS, &grp->B ) ); MOD_ADD( RHS );
- if( mbedtls_mpi_cmp_mpi( &YY, &RHS ) != 0 )
- ret = MBEDTLS_ERR_ECP_INVALID_KEY;
- cleanup:
- mbedtls_mpi_free( &YY ); mbedtls_mpi_free( &RHS );
- return( ret );
- }
- #endif /* ECP_SHORTWEIERSTRASS */
- /*
- * R = m * P with shortcuts for m == 1 and m == -1
- * NOT constant-time - ONLY for short Weierstrass!
- */
- static int mbedtls_ecp_mul_shortcuts( mbedtls_ecp_group *grp,
- mbedtls_ecp_point *R,
- const mbedtls_mpi *m,
- const mbedtls_ecp_point *P )
- {
- int ret;
- if( mbedtls_mpi_cmp_int( m, 1 ) == 0 )
- {
- MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );
- }
- else if( mbedtls_mpi_cmp_int( m, -1 ) == 0 )
- {
- MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );
- if( mbedtls_mpi_cmp_int( &R->Y, 0 ) != 0 )
- MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &R->Y, &grp->P, &R->Y ) );
- }
- else
- {
- MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, R, m, P, NULL, NULL ) );
- }
- cleanup:
- return( ret );
- }
- /*
- * Linear combination
- * NOT constant-time
- */
- int mbedtls_ecp_muladd( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
- const mbedtls_mpi *m, const mbedtls_ecp_point *P,
- const mbedtls_mpi *n, const mbedtls_ecp_point *Q )
- {
- int ret;
- mbedtls_ecp_point mP;
- if( ecp_get_type( grp ) != ECP_TYPE_SHORT_WEIERSTRASS )
- return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );
- mbedtls_ecp_point_init( &mP );
- MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, &mP, m, P ) );
- MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, R, n, Q ) );
- MBEDTLS_MPI_CHK( ecp_add_mixed( grp, R, &mP, R ) );
- MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, R ) );
- cleanup:
- mbedtls_ecp_point_free( &mP );
- return( ret );
- }
- #if defined(ECP_MONTGOMERY)
- /*
- * Check validity of a public key for Montgomery curves with x-only schemes
- */
- static int ecp_check_pubkey_mx( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
- {
- /* [Curve25519 p. 5] Just check X is the correct number of bytes */
- if( mbedtls_mpi_size( &pt->X ) > ( grp->nbits + 7 ) / 8 )
- return( MBEDTLS_ERR_ECP_INVALID_KEY );
- return( 0 );
- }
- #endif /* ECP_MONTGOMERY */
- /*
- * Check that a point is valid as a public key
- */
- int mbedtls_ecp_check_pubkey( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt )
- {
- /* Must use affine coordinates */
- if( mbedtls_mpi_cmp_int( &pt->Z, 1 ) != 0 )
- return( MBEDTLS_ERR_ECP_INVALID_KEY );
- #if defined(ECP_MONTGOMERY)
- if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
- return( ecp_check_pubkey_mx( grp, pt ) );
- #endif
- #if defined(ECP_SHORTWEIERSTRASS)
- if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
- return( ecp_check_pubkey_sw( grp, pt ) );
- #endif
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- }
- /*
- * Check that an mbedtls_mpi is valid as a private key
- */
- int mbedtls_ecp_check_privkey( const mbedtls_ecp_group *grp, const mbedtls_mpi *d )
- {
- #if defined(ECP_MONTGOMERY)
- if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
- {
- /* see [Curve25519] page 5 */
- if( mbedtls_mpi_get_bit( d, 0 ) != 0 ||
- mbedtls_mpi_get_bit( d, 1 ) != 0 ||
- mbedtls_mpi_get_bit( d, 2 ) != 0 ||
- mbedtls_mpi_bitlen( d ) - 1 != grp->nbits ) /* mbedtls_mpi_bitlen is one-based! */
- return( MBEDTLS_ERR_ECP_INVALID_KEY );
- else
- return( 0 );
- }
- #endif /* ECP_MONTGOMERY */
- #if defined(ECP_SHORTWEIERSTRASS)
- if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
- {
- /* see SEC1 3.2 */
- if( mbedtls_mpi_cmp_int( d, 1 ) < 0 ||
- mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 )
- return( MBEDTLS_ERR_ECP_INVALID_KEY );
- else
- return( 0 );
- }
- #endif /* ECP_SHORTWEIERSTRASS */
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- }
- /*
- * Generate a keypair with configurable base point
- */
- int mbedtls_ecp_gen_keypair_base( mbedtls_ecp_group *grp,
- const mbedtls_ecp_point *G,
- mbedtls_mpi *d, mbedtls_ecp_point *Q,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng )
- {
- int ret;
- size_t n_size = ( grp->nbits + 7 ) / 8;
- #if defined(ECP_MONTGOMERY)
- if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )
- {
- /* [M225] page 5 */
- size_t b;
- do {
- MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d, n_size, f_rng, p_rng ) );
- } while( mbedtls_mpi_bitlen( d ) == 0);
- /* Make sure the most significant bit is nbits */
- b = mbedtls_mpi_bitlen( d ) - 1; /* mbedtls_mpi_bitlen is one-based */
- if( b > grp->nbits )
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, b - grp->nbits ) );
- else
- MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, grp->nbits, 1 ) );
- /* Make sure the last three bits are unset */
- MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 0, 0 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 1, 0 ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 2, 0 ) );
- }
- else
- #endif /* ECP_MONTGOMERY */
- #if defined(ECP_SHORTWEIERSTRASS)
- if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )
- {
- /* SEC1 3.2.1: Generate d such that 1 <= n < N */
- int count = 0;
- unsigned char rnd[MBEDTLS_ECP_MAX_BYTES];
- /*
- * Match the procedure given in RFC 6979 (deterministic ECDSA):
- * - use the same byte ordering;
- * - keep the leftmost nbits bits of the generated octet string;
- * - try until result is in the desired range.
- * This also avoids any biais, which is especially important for ECDSA.
- */
- do
- {
- MBEDTLS_MPI_CHK( f_rng( p_rng, rnd, n_size ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( d, rnd, n_size ) );
- MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, 8 * n_size - grp->nbits ) );
- /*
- * Each try has at worst a probability 1/2 of failing (the msb has
- * a probability 1/2 of being 0, and then the result will be < N),
- * so after 30 tries failure probability is a most 2**(-30).
- *
- * For most curves, 1 try is enough with overwhelming probability,
- * since N starts with a lot of 1s in binary, but some curves
- * such as secp224k1 are actually very close to the worst case.
- */
- if( ++count > 30 )
- return( MBEDTLS_ERR_ECP_RANDOM_FAILED );
- }
- while( mbedtls_mpi_cmp_int( d, 1 ) < 0 ||
- mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 );
- }
- else
- #endif /* ECP_SHORTWEIERSTRASS */
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- cleanup:
- if( ret != 0 )
- return( ret );
- return( mbedtls_ecp_mul( grp, Q, d, G, f_rng, p_rng ) );
- }
- /*
- * Generate key pair, wrapper for conventional base point
- */
- int mbedtls_ecp_gen_keypair( mbedtls_ecp_group *grp,
- mbedtls_mpi *d, mbedtls_ecp_point *Q,
- int (*f_rng)(void *, unsigned char *, size_t),
- void *p_rng )
- {
- return( mbedtls_ecp_gen_keypair_base( grp, &grp->G, d, Q, f_rng, p_rng ) );
- }
- /*
- * Generate a keypair, prettier wrapper
- */
- int mbedtls_ecp_gen_key( mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
- int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
- {
- int ret;
- if( ( ret = mbedtls_ecp_group_load( &key->grp, grp_id ) ) != 0 )
- return( ret );
- return( mbedtls_ecp_gen_keypair( &key->grp, &key->d, &key->Q, f_rng, p_rng ) );
- }
- /*
- * Check a public-private key pair
- */
- int mbedtls_ecp_check_pub_priv( const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv )
- {
- int ret;
- mbedtls_ecp_point Q;
- mbedtls_ecp_group grp;
- if( pub->grp.id == MBEDTLS_ECP_DP_NONE ||
- pub->grp.id != prv->grp.id ||
- mbedtls_mpi_cmp_mpi( &pub->Q.X, &prv->Q.X ) ||
- mbedtls_mpi_cmp_mpi( &pub->Q.Y, &prv->Q.Y ) ||
- mbedtls_mpi_cmp_mpi( &pub->Q.Z, &prv->Q.Z ) )
- {
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- }
- mbedtls_ecp_point_init( &Q );
- mbedtls_ecp_group_init( &grp );
- /* mbedtls_ecp_mul() needs a non-const group... */
- mbedtls_ecp_group_copy( &grp, &prv->grp );
- /* Also checks d is valid */
- MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &Q, &prv->d, &prv->grp.G, NULL, NULL ) );
- if( mbedtls_mpi_cmp_mpi( &Q.X, &prv->Q.X ) ||
- mbedtls_mpi_cmp_mpi( &Q.Y, &prv->Q.Y ) ||
- mbedtls_mpi_cmp_mpi( &Q.Z, &prv->Q.Z ) )
- {
- ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
- goto cleanup;
- }
- cleanup:
- mbedtls_ecp_point_free( &Q );
- mbedtls_ecp_group_free( &grp );
- return( ret );
- }
- #if defined(MBEDTLS_SELF_TEST)
- /*
- * Checkup routine
- */
- int mbedtls_ecp_self_test( int verbose )
- {
- int ret;
- size_t i;
- mbedtls_ecp_group grp;
- mbedtls_ecp_point R, P;
- mbedtls_mpi m;
- unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
- /* exponents especially adapted for secp192r1 */
- const char *exponents[] =
- {
- "000000000000000000000000000000000000000000000001", /* one */
- "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22830", /* N - 1 */
- "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
- "400000000000000000000000000000000000000000000000", /* one and zeros */
- "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
- "555555555555555555555555555555555555555555555555", /* 101010... */
- };
- mbedtls_ecp_group_init( &grp );
- mbedtls_ecp_point_init( &R );
- mbedtls_ecp_point_init( &P );
- mbedtls_mpi_init( &m );
- /* Use secp192r1 if available, or any available curve */
- #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
- MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, MBEDTLS_ECP_DP_SECP192R1 ) );
- #else
- MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, mbedtls_ecp_curve_list()->grp_id ) );
- #endif
- if( verbose != 0 )
- mbedtls_printf( " ECP test #1 (constant op_count, base point G): " );
- /* Do a dummy multiplication first to trigger precomputation */
- MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &m, 2 ) );
- MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &P, &m, &grp.G, NULL, NULL ) );
- add_count = 0;
- dbl_count = 0;
- mul_count = 0;
- MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[0] ) );
- MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
- for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
- {
- add_c_prev = add_count;
- dbl_c_prev = dbl_count;
- mul_c_prev = mul_count;
- add_count = 0;
- dbl_count = 0;
- mul_count = 0;
- MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[i] ) );
- MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );
- if( add_count != add_c_prev ||
- dbl_count != dbl_c_prev ||
- mul_count != mul_c_prev )
- {
- if( verbose != 0 )
- mbedtls_printf( "failed (%u)\n", (unsigned int) i );
- ret = 1;
- goto cleanup;
- }
- }
- if( verbose != 0 )
- mbedtls_printf( "passed\n" );
- if( verbose != 0 )
- mbedtls_printf( " ECP test #2 (constant op_count, other point): " );
- /* We computed P = 2G last time, use it */
- add_count = 0;
- dbl_count = 0;
- mul_count = 0;
- MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[0] ) );
- MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
- for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )
- {
- add_c_prev = add_count;
- dbl_c_prev = dbl_count;
- mul_c_prev = mul_count;
- add_count = 0;
- dbl_count = 0;
- mul_count = 0;
- MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[i] ) );
- MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );
- if( add_count != add_c_prev ||
- dbl_count != dbl_c_prev ||
- mul_count != mul_c_prev )
- {
- if( verbose != 0 )
- mbedtls_printf( "failed (%u)\n", (unsigned int) i );
- ret = 1;
- goto cleanup;
- }
- }
- if( verbose != 0 )
- mbedtls_printf( "passed\n" );
- cleanup:
- if( ret < 0 && verbose != 0 )
- mbedtls_printf( "Unexpected error, return code = %08X\n", ret );
- mbedtls_ecp_group_free( &grp );
- mbedtls_ecp_point_free( &R );
- mbedtls_ecp_point_free( &P );
- mbedtls_mpi_free( &m );
- if( verbose != 0 )
- mbedtls_printf( "\n" );
- return( ret );
- }
- #endif /* MBEDTLS_SELF_TEST */
- #endif /* MBEDTLS_ECP_C */
|