HW /SW Codesign [LU] — WS2023

Get-To-Know Task

Florian Huemer, Dylan Baumann, Andreas Steininger
fhuemer@ecs.tuwien.ac.at
Department of Computer Engineering
TU Wien

Vienna, October 8, 2023

1 Assignment 1

1 Assignment

In this task you will implement a Nios IT [I] system and extend it with custom hardware components. This
shall help you to get familiar with the tool chain (especially the Platform Designer), the Altera Avalon
specification and the Nios IT Custom Instruction interface. The system’s purpose shall be to normalize 3D
vectors, i.e., compute a vector with the same direction as the original one but with length 1 (unit vector).
Given a vector v = (,y,z)T the associated unit vector v is given by

v 1 z

SR S—
/l‘2+y2+22

vl
All calculations are carried out with fixed point arithmetic in the Q16.16 format (i.e., 16 integer and
16 fractional bits). You don’t have to take care of overflows and rounding. The test data, which will be
provided, does not trigger overflows.

1.1 Platform Designer System

Your task is to implement a Nios II system using the Platform Designer (formerly Qsys) [0] as shown in
Figure More details on Avalon interfaces can be found in [4]. The marked blocks are custom hardware
modules that you will have to implement, the other blocks can be found in the IP library of the Platform
Designer.

On-Chip RAM Multiplier
JTAG UART (main_memory) (ci_mul)
S S Cl
M
Altera Avalon Switch Fabric M NIOS 2 CPU
S S Cl
SQRT Interval Timer Divider
(avalon_mm_sqrt) (sys_timer) (cidiv)
Cl ... Custom Instruction Interface
S ... Avalon Memory-Mapped Slave Interface
M ... Avalon Master Interface

Figure 1.1: System Overview

The system should be clocked with 100 MHz. To generate this clock out of the 50 MHz board clock you
will need to instantiate a PLL in the Platform Designer (not shown in the figure). Section walks you
through the steps necessary to do so.

Important: To avoid inconsistencies with Platform Designer related files, make sure to always save
your Platform Designer system before starting the Quartus synthesis.

Component Details

e Nios IT Processor
You can use the default settings for the processor. The data master port must be connected to all slave
interfaces, while the instruction master must only be connected to the slave interface of main memory.

e On-Chip RAM (main memory)
The main memory must have a size of at least 120 kB.

e Interval Timer (sys_timer)
The interval timer is used to measure the performance of your solution. You can also go with the
default settings here.

1 Assignment 2

To speed up the fixed point operations involved in normalizing vectors, the following modules must be
implemented.

Fixed Point Multiplication
Implement a (fixed length) multi-cycle custom instruction [7] that performs fixed point multiplication.

1 entity ci_mul is

2 port (

3 clk : in std_logic;
4 clk_en : in std_logic;
5 reset : in std_logic;

6
7 dataa : in std_logic_vector (31 downto 0);
8 datab : in std_logic_vector (31 downto 0);
9 result : out std_logic_vector (31 downto 0)
10)

11 end entity;

For the actual multiplication you can use the LPM_-MULT IP core [5]. Use an appropriate number of pipeline
stages to achieve the specified operation frequency. Remember to specify the number of stages when creating
the component in the Platform Designer for your multiplication core, such that the processor is able to stall
its pipeline for an appropriate number of cycles to wait for the result of the custom instruction.

Fixed Point Division

Note that when the multiplication instruction is executed, the processor pipeline is stalled until the calcula-
tion is completed. To overcome this drawback for the custom instruction for fixed point division, implement
two separate instructions (i.e. one extended custom instruction). The first instruction should issue the two
operands to the division pipeline (div_write), while the second one should read the result of a previous di-
vision (div_read). If no result is ready, div_read should stall the pipeline until one becomes available (delay
the done signal of the custom instruction). Beware that executing div_read before the associated div_write
deadlocks the processor pipeline. Use the LPM_DIVIDE IP core [5] to implement the division. To achieve the
desired operation frequency implement a 48 stage pipeline. The result values produced by the division core
should be collected in a FIFO. For this purpose we provide you with the alt_fwft_fifo, which is basically
an instance of an SCFIFQ IP core [3]. This FIFO has first word fall through behavior, which means that the
next word that can be read from the FIFO will imminently be presented at the output (see [3], Figure 6:
Show-Ahead Mode Waveform). The rd input is then used to acknowledge that the last data has been read
(rather than requesting it).

The listing below shows the entity declaration of the extended (variable length) multi-cycle custom
instruction for division.

1 entity ci_div is

2 port (

3 clk : in std_logic;

A clk_en : in std_logic;

5 reset : in std_logic;

6

7 dataa : in std_logic_vector (31 downto 0);
8 datab : in std_logic_vector (31 downto 0);
9 result : out std_logic_vector (31 downto 0);
10

11 start : in std_logic;

12 done : out std_logic;

13
14 n : in std_logic_vector (0 downto 0)

15)

16 end entity;

Hint: When executing div_write or div_read with valid data already present at the FIFO’s output, the
done signal can be generated from the start signal in a purely combinational way.

Assume that div_write and div_read have custom instruction opcodes 0 and 1, respectively. Then the
following assembly code divides rl by r2, r3 by r4 and r5 by r6 and stores the results in rl, r2 and r3. Since
the calculation takes several clock cycles, the result of the first division will not be available when the first
div_read instruction is executed. Hence, the pipeline is stalled until the division is completed.

1 custom O, r0, r1l, r2 // div_write: start calculation of rl1/r2

2 custom O, r0O, r3, r4d // div_write: start calculation of r3/r4

3 custom 0, rO, r5, r6 // div_write: start calculation of r5/r6

4 custom 1, rl, r0, rO // div_read: get result of first div_read
5 custom 1, r2, r0, r0 // div_read: get result of second div_read
6 custom 1, r3, r0, r0 // div_read: get result of third div_read

1 Assignment 3

Note that the destination register of the div_write and the source registers of div_read are unused. We
used register 0 to indicate this fact (this register always reads zero and writing to it has no effect). Custom
instructions can of course also be called by C programs, see [7] for details. For that purpose the toolchain
automatically generates suitable macros, which are placed in the system.h file in the bsp directory.

Fixed Point Square Root

The module for the fixed point square root must be implemented as a memory mapped slave component. It
has two 32 bit memory locations. Writing to address 0 issues a new value to the module. Reading address 1
should yield the result of previous SQRT operations. Again a FIFO should be used to buffer the results. The
square root operation itself should be implemented using the ALTSQRT IP core [] (use 16 pipeline stages).

In contrast to the division instruction, reading a result although none is currently available, should not
stall the memory access (with the interface specification shown in the listing below, this would not be possible
anyway). The result is simply undefined. To determine whether data is available to be read from the core,
reading address 0 should return the empty flag of the FIFO, i.e. if reading address 0 returns 0 then data can
be read from address 1.

1 entity avalon_mm_sqrt is

2 port (

3 clk : in std_logic;

4 res_n : in std_logic;

5

6 -- memory mapped slave

7 address : in std_logic_vector (0 downto 0);
8 write : in std_logic;

9 read : in std_logic;

10 writedata : in std_logic_vector (31 downto 0);
11 readdata : out std_logic_vector (31 downto 0)
12)8

13 end entity;

The following C code issues a new SQRT operation and waits until the result is available.

1 IOWR (AVALON_MM_SQRT_BASE, 0, temp);
2 while (IORD(AVALON_MM_SQRT_BASE, 0)); // Wait for sqrt result
3 sqrt_result = IORD(AVALON_MM_SQRT_BASE, 1);

The same can also be achieved using (inline) assembly. The listing below loads the base address for the
SQRT core (stored in the define AVALON_MM_SQRT_BASE) into register r15 and processes the value in r4.

1 #define QUAUX(X) #X
#define QU(X) QUAUX(X)

Coood

i asm volatile ("\

5 movhi ri15, %hi(" QU(CAVALON_MM_SQRT_BASE) "); /*load base address of SQRT core into ri5x/\

6 ori ri15, ri15, %lo(" QU(CAVALON_MM_SQRT_BASE) ");\

7 stwio r4, 0(ri15); /*write value stored in ré=*/\

8 1: ldwio r4, 0(r15); bne r0, r4, 1b; /*wait for SQRT optation to finish (poll busy flag) */\
9 ldwio r4, 4(r15); /*load SQRT result into rdx/\
i@ ") s

w N

The macros for the base addresses of all slave interfaces are defined in the system.h header file. Note that
the IOWR/IORD macros as well as the stwio/ldwio instructions bypass the processor cache.

1.2 Software

Basically, you only have to implement the function v3norm() in the file v3norm. c using the custom instruc-
tions and the memory mapped SQRT module from the previous section. Other modifications to the provided
source code are not necessary. During the exercise interview we will replace all files, except v3norm. [c|h]
and cfg.h with their unchanged versions.

1 void v3norm(fix16_t* a, uint32_t count);

e a: Pointer to a memory location where the vector data is located (a[3*i], a[3*i+1] and a[3*i+2] contain
the x,y and z coordinates of the i-th vector in the Q16.16 fixed point format). Note that this array
contains 3*count elements. The normalized vectors should be written to the same memory location.

e count: The number of 3D vectors stored in a. For your implementation you may assume that is value
is always greater or equal to 4 (and less than VEC3_BUFFER_SIZE).

1 Assignment 4

Your solution shall make use of the fact that some operations can be executed in parallel (e.g., meanwhile
a division is being calculated other instructions can be executed). In order to achieve the maximum number
of points for this exercise, your solution must

a) produce the correct numerical results and

b) complete the speed test (performed by our check script) in under 7000 cycles

You are not allowed to optimize your code for a specific value of the count parameter (i.e., the one used
in the speed test). We are going to rank all solutions based on a series of test cases. The best 3 solutions
(below 7000 cycles in the speed test) will be awarded with 4, 3 and 2 bonus points. The template contains a
Makefile target that calls a script to automatically check your solution (make check in the software directory).
Furthermore, the template also features a Makefile target (make remote_check), that automatically uploads
your solution to the TILab (both the Nios II software and the bitstream file for the FPGA), reserves a PC
slot using the rpa tool, programs the board, performs the test and checks the results. This is useful when
you are working locally on your own machine or with the provided VM. Since internally this feature uses
the rpa_shell command, make sure that this command works before using this make target.

In our reference solution, we were able to complete the speed test in approximately 3000 cycles, using
an optimized assembly function [2], ch. 8]. You don’t have to achieve this value with your solution, we have
just included it as a point of reference for what is possible.

Hint: After you created the basic system in the Platform Designer (at this point you don’t
need the SQRT module or the custom instructions yet), you can test the system by using the
USE_SOFTWARE_IMPLEMENTATION define in the cfg.h file to compile the Nios II software with a software
implementation of the v3norm function. The software implementation uses the fixmath library. While this
yields the correct values it is, however, obviously much too slow! Beware, that depending on your fixed point
hardware the results might be off a bit (usually one bit) when compared to the same operation of the library.

1.3 Adding a PLL

The simplest way to add a PLL to your system (and configure it), is to do so directly in the Platform
Designer. First, search for PLL in the IP catalog and add the ALTPLL Intel FPGA IP module to your
system. This will open a configuration wizard.

Figure to Figure show how to generate a PLL configuration sufficient for this assignment’s
system. All settings not highlighted on a screenshot shall remain at their default state. The central PLL
configurations are the frequency of the input clock, i.e., the external oscillator and the frequency of the PLL’s
output clock.

Once you are done with the configuration, hit “Finish”. This will add the module to your system.
Proceed by connecting the PLL’s in- and outputs to your system. Connect the Avalon memory mapped
slave interface to your Nios II's data master interface.

General
Which device speed grade will you be using? Any v
What is the frequency of the inclk0 input? 50 MHz ~

Figure 1.2: Creating a PLL - Step 1.

2 Build Environment 5

Optional Inputs

Create an 'areset’ input to asynchronously reset the PLL

Create an 'pfdena’ input to selectively enable the phase/frequency detector

Lock Output

Create 'locked’ output

Figure 1.3: Creating a PLL - Step 2.

= c0 - Core/External Output Clock
ALTPLL1696701528931404 Able to implement the requested PLL

v | Use this clock

Clock Tap Settings _ o b :
Reguested-Scttings ctual Settings
® Enter output clock frequency: 100.00000000 | MHz ~ 100.000000
Enter output ClocK Pardiieters: =
Clock multiplication factor
R << Copy

Clock division factor 1

Clock phase shift 0.00 v| |deg ~ 0.00

Figure 1.4: Creating a PLL - Step 3.

2 Build Environment

Software Build Process (Make): We provide you with a make based build environment to automate the
hardware synthesis and software compilation process. For details refer to the README file in the template
folder. Before you can build the software for the first time, you have to create the settings.bsp file. This
file is used by the Nios II build tools to automatically generate the board support package (BSP).

e Use the edit_bsp target of the software folder’s Makefile
e Configure the paths (see Figure and click OK:
— SOPC Information File Name: Select the *.sopcinfo file created by the Platform Designer, which
is located in the quartus directory (template/quartus/gettoknow.sopcinfo)
— BSP target directory: template/software/bsp
— BSP Settings File Name: template/software/settings.bsp
e Now you can make customizations to the BSP. For this assignment the default settings are sufficient.
However, be sure that the small C library is NOT enabled, because the software template will not work
otherwise. This is also the reason why you need at least 120 kB of main memory. Additionally, select

the reduced device drivers option (see Figure [2.2)). Furthermore, make sure that both sys_clk_timer
and timestamp_timer are set to “none”.

e To complete the process close the BSP editor.

e Use the Makefile in the software folder to start the build process

Testing: To test your solution use the check target in the software Makefile. For this target to work the
FPGA must already be programmed (make download in the quartus folder).

The test script creates a set of random vectors and sends them to the Nios II processor via the
nios2-terminal (JTAG UART). The data is also processed by the reference C implementation exe-
cuted on the PC. A final comparison between the outputs of both versions shows if there are errors in

2

Build Environment 6

Ao New BSP R R
Hardware

SOPC Information File name: |_!templatefquar‘tusfgettoknow.sopcinfo| | |

CPU name: |r:pu |v|

Software

Operating system: |AItEra HAL |v| Yersion: |default =
[| Use default locations
BSP target directory: | NG = p|ate/software/bsp| | ... |
BSP Settings File name: |_.|'template!sof‘tware!settings.bsp| | |
Enable Settings File relative paths

[| Enable Additional Tel script

Additional Tel script: l:l

I oK || Cancel |

Figure 2.1: Nios II BSP Editor: New BSP

= BsP Editor - | < plate/software/settings.bsp [T E
File Edit Tools Help
[Main |~ Software Packages [Drivers | Linker Script | Enable File Generation |” Target BSP Directory |
SOPC Information/quartus/gettoknow.sopcinfo
CPU name: cpu
Operating system: Altera HAL Wersion: :
BSP target directory: bsp
? Settings |=|:| hal B
¢ Common f sys_clk_timer: none
el ; [pone [z]
sys_clk_timer : timestamp_timer: =
timestamp_timer LE i =
X - rk ‘ jtag_uart
i : [teg vart[2]
| s ros.von <
stderr :
i stderr: tag_uart —
enable_small_c_library = =
enable_gprof : [[] enable_small_c_library
enable_reduced_device_drivers [enable_gprof
enable_sim_optimize :
-sim_op [W¥]lenable reduced device drivers
¢ linker ; - - -
enable_exception_stack <l [enable_sim_optimize
] T I T '|_ hal.linker =
f Information | Problems | Processing |
@ Tcl message: "The alt_load() facility is enabled.” =
(@ setting "hal.linker.enable_alt_load_copy_rwdata® set to "true”. =
(@ Tcl message: "The .rwdata section is copied into RAM by alt_load()." [«]
Generate || Exit

Figure 2.2: Nios II BSP Editor

your solution. Note that the software version of the normalization function (v3norm_sw) uses the macro
CALCULATION_METHOD to switch between two possible calculation methods (MUL and DIV), which yield differ-
ent results. Thus, set this macro (cfg.h) to match the style of your implementation in v3norm.

For the communication over the UART interface a simple text based protocol is used.

process n
vec [0] .x
vec [0].y
vec[0].z

vec[n-1].x
vec[n-1].y
vec[n-1].z
exit

References 7

L

A hexadecimal encoding is used for all numbers. The command process is followed by a value indicating the
number of 3D vectors that should be processed and the list of actual vectors. The program returns a list of
processed vectors in the same format. The special command exit is used to terminate the communication.
It instructs the Nios II processor to send a Ctrl-D command over the UART interface, which will effectively
terminate the nios2-terminal. Knowledge about the communication protocol format is not required to
complete the assignment. It is just included for the sake of completeness.

The Nios II program template also supports the check_speed command. This command is used to check
the performance of your solution and is also executed by the check script. It basically calls the process
function for a certain number of times and measures the (minimum) number of clock cycles required for the
operation using the interval timer (sys_timer).

Hence, the last three lines of the output of the check target of the Makefile should be

1 >>> value check PASSED <<<
2 runtime = [...] cycles
3 >>> speed check PASSED <<<

3 Submission

The deadline for this exercise is October 30, 23:59. Use the submission Makefile target to create an archive
that you then upload to TUWEL. Using the provided Makefile infrastructure, make sure that, when the
archive is extracted, the contained project can be compiled and executed in the lab environment. This is
what we will use when evaluating your solution. Finally also register for an exercise interview in TUWEL.

References

[1] Intel NIOS II Processor Support. https://www.intel.com/content/www/us/en/programmable/
products/processors/support.html, 2020.

[2] Intel. Nios II Processor Reference Guide. https://www.intel.com/content/dam/www/programmable/
us/en/pdfs/literature/hb/nios2/n2cpu-niibvigen2.pdf, August 2019. Version 2019.08.21.

[3] Intel. SCFIFO and DCFIFO IP Cores User Guide. https://www.intel.com/content/dam/www/
programmable/us/en/pdfs/literature/ug/ug_fifo.pdf, November 2019. Version 2019.11.21.

[4] Intel. Awalon Interface Specifications. https://www.intel.com/content/dam/www/programmable/us/
en/pdfs/literature/manual/mnl_avalon_spec.pdf, May 2020. Version 2020.05.26.

[5] Intel. Integer Arithmetic IP Cores User Guide. https://www.intel.com/content/dam/www/
programmable/us/en/pdfs/literature/ug/ug_lpm_alt_mfug.pdf, April 2020. Version 2020.04.26.

[6] Intel. Intel Quartus Prime Pro Edition User Guide: Platform Designer. https://www.intel.com/
content/dam/www/programmable/us/en/pdfs/literature/ug/ug-qpp-platform-designer.pdf),
July 2020. Version 2020.07.01.

[7] Intel. Nios II Custom Instruction User Guide. https://www.intel.com/content/dam/www/
programmable/us/en/pdfs/literature/ug/ug_nios2_custom_instruction.pdf, April 2020. Version
2020.04.27.

https://www.intel.com/content/www/us/en/programmable/products/processors/support.html
https://www.intel.com/content/www/us/en/programmable/products/processors/support.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/nios2/n2cpu-nii5v1gen2.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/nios2/n2cpu-nii5v1gen2.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_fifo.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_fifo.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_lpm_alt_mfug.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_lpm_alt_mfug.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-qpp-platform-designer.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-qpp-platform-designer.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_nios2_custom_instruction.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_nios2_custom_instruction.pdf

References

Revision History

Revision Date Author(s)
1.0 09.10.2023 FH, DB

Author Abbreviations:

FH Florian Huemer
DB Dylan Baumann

Description

Initial version

	Assignment
	Platform Designer System
	Software
	Adding a PLL

	Build Environment
	Submission
	References

