Welcome to the G4F Client API, a cutting-edge tool for seamlessly integrating advanced AI capabilities into your Python applications. This guide is designed to facilitate your transition from using the OpenAI client to the G4F Client, offering enhanced features while maintaining compatibility with the existing OpenAI API.
Switching to G4F Client:
To begin using the G4F Client, simply update your import statement in your Python code:
Old Import:
from openai import OpenAI
New Import:
from g4f.client import Client as OpenAI
The G4F Client preserves the same familiar API interface as OpenAI, ensuring a smooth transition process.
To utilize the G4F Client, create an new instance. Below is an example showcasing custom providers:
from g4f.client import Client
from g4f.Provider import BingCreateImages, OpenaiChat, Gemini
client = Client(
provider=OpenaiChat,
image_provider=Gemini,
...
)
You can set an "api_key" for your provider in the client. And you also have the option to define a proxy for all outgoing requests:
from g4f.client import Client
client = Client(
api_key="...",
proxies="http://user:pass@host",
...
)
Text Completions:
You can use the ChatCompletions
endpoint to generate text completions as follows:
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Say this is a test"}],
...
)
print(response.choices[0].message.content)
Also streaming are supported:
stream = client.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": "Say this is a test"}],
stream=True,
...
)
for chunk in stream:
if chunk.choices[0].delta.content:
print(chunk.choices[0].delta.content or "", end="")
Image Generation:
Generate images using a specified prompt:
response = client.images.generate(
model="dall-e-3",
prompt="a white siamese cat",
...
)
image_url = response.data[0].url
Creating Image Variations:
Create variations of an existing image:
response = client.images.create_variation(
image=open("cat.jpg", "rb"),
model="bing",
...
)
image_url = response.data[0].url
Original / Variant:
from g4f.client import Client
from g4f.Provider import RetryProvider, Phind, FreeChatgpt, Liaobots
import g4f.debug
g4f.debug.logging = True
client = Client(
provider=RetryProvider([Phind, FreeChatgpt, Liaobots], shuffle=False)
)
response = client.chat.completions.create(
model="",
messages=[{"role": "user", "content": "Hello"}],
)
print(response.choices[0].message.content)
Using RetryProvider provider
Using Phind provider
How can I assist you today?
from g4f.client import Client
from g4f.Provider.GeminiPro import GeminiPro
client = Client(
api_key="...",
provider=GeminiPro
)
response = client.chat.completions.create(
model="gemini-pro-vision",
messages=[{"role": "user", "content": "What are on this image?"}],
image=open("docs/waterfall.jpeg", "rb")
)
print(response.choices[0].message.content)
User: What are on this image?
Bot: There is a waterfall in the middle of a jungle. There is a rainbow over...