sha256.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411
  1. /*-
  2. * Copyright 2005,2007,2009 Colin Percival
  3. * All rights reserved.
  4. *
  5. * Redistribution and use in source and binary forms, with or without
  6. * modification, are permitted provided that the following conditions
  7. * are met:
  8. * 1. Redistributions of source code must retain the above copyright
  9. * notice, this list of conditions and the following disclaimer.
  10. * 2. Redistributions in binary form must reproduce the above copyright
  11. * notice, this list of conditions and the following disclaimer in the
  12. * documentation and/or other materials provided with the distribution.
  13. *
  14. * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
  15. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  16. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  17. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  18. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  19. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  20. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  21. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  22. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  23. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  24. * SUCH DAMAGE.
  25. */
  26. #include <sys/types.h>
  27. #include <stdint.h>
  28. #include <string.h>
  29. #include "sysendian.h"
  30. #include "sha256.h"
  31. /*
  32. * Encode a length len/4 vector of (uint32_t) into a length len vector of
  33. * (unsigned char) in big-endian form. Assumes len is a multiple of 4.
  34. */
  35. static void
  36. be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len)
  37. {
  38. size_t i;
  39. for (i = 0; i < len / 4; i++)
  40. be32enc(dst + i * 4, src[i]);
  41. }
  42. /*
  43. * Decode a big-endian length len vector of (unsigned char) into a length
  44. * len/4 vector of (uint32_t). Assumes len is a multiple of 4.
  45. */
  46. static void
  47. be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len)
  48. {
  49. size_t i;
  50. for (i = 0; i < len / 4; i++)
  51. dst[i] = be32dec(src + i * 4);
  52. }
  53. /* Elementary functions used by SHA256 */
  54. #define Ch(x, y, z) ((x & (y ^ z)) ^ z)
  55. #define Maj(x, y, z) ((x & (y | z)) | (y & z))
  56. #define SHR(x, n) (x >> n)
  57. #define ROTR(x, n) ((x >> n) | (x << (32 - n)))
  58. #define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
  59. #define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
  60. #define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
  61. #define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
  62. /* SHA256 round function */
  63. #define RND(a, b, c, d, e, f, g, h, k) \
  64. t0 = h + S1(e) + Ch(e, f, g) + k; \
  65. t1 = S0(a) + Maj(a, b, c); \
  66. d += t0; \
  67. h = t0 + t1;
  68. /* Adjusted round function for rotating state */
  69. #define RNDr(S, W, i, k) \
  70. RND(S[(64 - i) % 8], S[(65 - i) % 8], \
  71. S[(66 - i) % 8], S[(67 - i) % 8], \
  72. S[(68 - i) % 8], S[(69 - i) % 8], \
  73. S[(70 - i) % 8], S[(71 - i) % 8], \
  74. W[i] + k)
  75. /*
  76. * SHA256 block compression function. The 256-bit state is transformed via
  77. * the 512-bit input block to produce a new state.
  78. */
  79. static void
  80. SHA256_Transform(uint32_t * state, const unsigned char block[64])
  81. {
  82. uint32_t W[64];
  83. uint32_t S[8];
  84. uint32_t t0, t1;
  85. int i;
  86. /* 1. Prepare message schedule W. */
  87. be32dec_vect(W, block, 64);
  88. for (i = 16; i < 64; i++)
  89. W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
  90. /* 2. Initialize working variables. */
  91. memcpy(S, state, 32);
  92. /* 3. Mix. */
  93. RNDr(S, W, 0, 0x428a2f98);
  94. RNDr(S, W, 1, 0x71374491);
  95. RNDr(S, W, 2, 0xb5c0fbcf);
  96. RNDr(S, W, 3, 0xe9b5dba5);
  97. RNDr(S, W, 4, 0x3956c25b);
  98. RNDr(S, W, 5, 0x59f111f1);
  99. RNDr(S, W, 6, 0x923f82a4);
  100. RNDr(S, W, 7, 0xab1c5ed5);
  101. RNDr(S, W, 8, 0xd807aa98);
  102. RNDr(S, W, 9, 0x12835b01);
  103. RNDr(S, W, 10, 0x243185be);
  104. RNDr(S, W, 11, 0x550c7dc3);
  105. RNDr(S, W, 12, 0x72be5d74);
  106. RNDr(S, W, 13, 0x80deb1fe);
  107. RNDr(S, W, 14, 0x9bdc06a7);
  108. RNDr(S, W, 15, 0xc19bf174);
  109. RNDr(S, W, 16, 0xe49b69c1);
  110. RNDr(S, W, 17, 0xefbe4786);
  111. RNDr(S, W, 18, 0x0fc19dc6);
  112. RNDr(S, W, 19, 0x240ca1cc);
  113. RNDr(S, W, 20, 0x2de92c6f);
  114. RNDr(S, W, 21, 0x4a7484aa);
  115. RNDr(S, W, 22, 0x5cb0a9dc);
  116. RNDr(S, W, 23, 0x76f988da);
  117. RNDr(S, W, 24, 0x983e5152);
  118. RNDr(S, W, 25, 0xa831c66d);
  119. RNDr(S, W, 26, 0xb00327c8);
  120. RNDr(S, W, 27, 0xbf597fc7);
  121. RNDr(S, W, 28, 0xc6e00bf3);
  122. RNDr(S, W, 29, 0xd5a79147);
  123. RNDr(S, W, 30, 0x06ca6351);
  124. RNDr(S, W, 31, 0x14292967);
  125. RNDr(S, W, 32, 0x27b70a85);
  126. RNDr(S, W, 33, 0x2e1b2138);
  127. RNDr(S, W, 34, 0x4d2c6dfc);
  128. RNDr(S, W, 35, 0x53380d13);
  129. RNDr(S, W, 36, 0x650a7354);
  130. RNDr(S, W, 37, 0x766a0abb);
  131. RNDr(S, W, 38, 0x81c2c92e);
  132. RNDr(S, W, 39, 0x92722c85);
  133. RNDr(S, W, 40, 0xa2bfe8a1);
  134. RNDr(S, W, 41, 0xa81a664b);
  135. RNDr(S, W, 42, 0xc24b8b70);
  136. RNDr(S, W, 43, 0xc76c51a3);
  137. RNDr(S, W, 44, 0xd192e819);
  138. RNDr(S, W, 45, 0xd6990624);
  139. RNDr(S, W, 46, 0xf40e3585);
  140. RNDr(S, W, 47, 0x106aa070);
  141. RNDr(S, W, 48, 0x19a4c116);
  142. RNDr(S, W, 49, 0x1e376c08);
  143. RNDr(S, W, 50, 0x2748774c);
  144. RNDr(S, W, 51, 0x34b0bcb5);
  145. RNDr(S, W, 52, 0x391c0cb3);
  146. RNDr(S, W, 53, 0x4ed8aa4a);
  147. RNDr(S, W, 54, 0x5b9cca4f);
  148. RNDr(S, W, 55, 0x682e6ff3);
  149. RNDr(S, W, 56, 0x748f82ee);
  150. RNDr(S, W, 57, 0x78a5636f);
  151. RNDr(S, W, 58, 0x84c87814);
  152. RNDr(S, W, 59, 0x8cc70208);
  153. RNDr(S, W, 60, 0x90befffa);
  154. RNDr(S, W, 61, 0xa4506ceb);
  155. RNDr(S, W, 62, 0xbef9a3f7);
  156. RNDr(S, W, 63, 0xc67178f2);
  157. /* 4. Mix local working variables into global state */
  158. for (i = 0; i < 8; i++)
  159. state[i] += S[i];
  160. /* Clean the stack. */
  161. memset(W, 0, 256);
  162. memset(S, 0, 32);
  163. t0 = t1 = 0;
  164. }
  165. static unsigned char PAD[64] = {
  166. 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  167. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  168. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  169. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
  170. };
  171. /* Add padding and terminating bit-count. */
  172. static void
  173. SHA256_Pad(SHA256_CTX * ctx)
  174. {
  175. unsigned char len[8];
  176. uint32_t r, plen;
  177. /*
  178. * Convert length to a vector of bytes -- we do this now rather
  179. * than later because the length will change after we pad.
  180. */
  181. be32enc_vect(len, ctx->count, 8);
  182. /* Add 1--64 bytes so that the resulting length is 56 mod 64 */
  183. r = (ctx->count[1] >> 3) & 0x3f;
  184. plen = (r < 56) ? (56 - r) : (120 - r);
  185. SHA256_Update(ctx, PAD, (size_t)plen);
  186. /* Add the terminating bit-count */
  187. SHA256_Update(ctx, len, 8);
  188. }
  189. /* SHA-256 initialization. Begins a SHA-256 operation. */
  190. void
  191. SHA256_Init(SHA256_CTX * ctx)
  192. {
  193. /* Zero bits processed so far */
  194. ctx->count[0] = ctx->count[1] = 0;
  195. /* Magic initialization constants */
  196. ctx->state[0] = 0x6A09E667;
  197. ctx->state[1] = 0xBB67AE85;
  198. ctx->state[2] = 0x3C6EF372;
  199. ctx->state[3] = 0xA54FF53A;
  200. ctx->state[4] = 0x510E527F;
  201. ctx->state[5] = 0x9B05688C;
  202. ctx->state[6] = 0x1F83D9AB;
  203. ctx->state[7] = 0x5BE0CD19;
  204. }
  205. /* Add bytes into the hash */
  206. void
  207. SHA256_Update(SHA256_CTX * ctx, const void *in, size_t len)
  208. {
  209. uint32_t bitlen[2];
  210. uint32_t r;
  211. const unsigned char *src = in;
  212. /* Number of bytes left in the buffer from previous updates */
  213. r = (ctx->count[1] >> 3) & 0x3f;
  214. /* Convert the length into a number of bits */
  215. bitlen[1] = ((uint32_t)len) << 3;
  216. bitlen[0] = (uint32_t)(len >> 29);
  217. /* Update number of bits */
  218. if ((ctx->count[1] += bitlen[1]) < bitlen[1])
  219. ctx->count[0]++;
  220. ctx->count[0] += bitlen[0];
  221. /* Handle the case where we don't need to perform any transforms */
  222. if (len < 64 - r) {
  223. memcpy(&ctx->buf[r], src, len);
  224. return;
  225. }
  226. /* Finish the current block */
  227. memcpy(&ctx->buf[r], src, 64 - r);
  228. SHA256_Transform(ctx->state, ctx->buf);
  229. src += 64 - r;
  230. len -= 64 - r;
  231. /* Perform complete blocks */
  232. while (len >= 64) {
  233. SHA256_Transform(ctx->state, src);
  234. src += 64;
  235. len -= 64;
  236. }
  237. /* Copy left over data into buffer */
  238. memcpy(ctx->buf, src, len);
  239. }
  240. /*
  241. * SHA-256 finalization. Pads the input data, exports the hash value,
  242. * and clears the context state.
  243. */
  244. void
  245. SHA256_Final(unsigned char digest[32], SHA256_CTX * ctx)
  246. {
  247. /* Add padding */
  248. SHA256_Pad(ctx);
  249. /* Write the hash */
  250. be32enc_vect(digest, ctx->state, 32);
  251. /* Clear the context state */
  252. memset((void *)ctx, 0, sizeof(*ctx));
  253. }
  254. /* Initialize an HMAC-SHA256 operation with the given key. */
  255. void
  256. HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen)
  257. {
  258. unsigned char pad[64];
  259. unsigned char khash[32];
  260. const unsigned char * K = _K;
  261. size_t i;
  262. /* If Klen > 64, the key is really SHA256(K). */
  263. if (Klen > 64) {
  264. SHA256_Init(&ctx->ictx);
  265. SHA256_Update(&ctx->ictx, K, Klen);
  266. SHA256_Final(khash, &ctx->ictx);
  267. K = khash;
  268. Klen = 32;
  269. }
  270. /* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
  271. SHA256_Init(&ctx->ictx);
  272. memset(pad, 0x36, 64);
  273. for (i = 0; i < Klen; i++)
  274. pad[i] ^= K[i];
  275. SHA256_Update(&ctx->ictx, pad, 64);
  276. /* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
  277. SHA256_Init(&ctx->octx);
  278. memset(pad, 0x5c, 64);
  279. for (i = 0; i < Klen; i++)
  280. pad[i] ^= K[i];
  281. SHA256_Update(&ctx->octx, pad, 64);
  282. /* Clean the stack. */
  283. memset(khash, 0, 32);
  284. }
  285. /* Add bytes to the HMAC-SHA256 operation. */
  286. void
  287. HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void *in, size_t len)
  288. {
  289. /* Feed data to the inner SHA256 operation. */
  290. SHA256_Update(&ctx->ictx, in, len);
  291. }
  292. /* Finish an HMAC-SHA256 operation. */
  293. void
  294. HMAC_SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX * ctx)
  295. {
  296. unsigned char ihash[32];
  297. /* Finish the inner SHA256 operation. */
  298. SHA256_Final(ihash, &ctx->ictx);
  299. /* Feed the inner hash to the outer SHA256 operation. */
  300. SHA256_Update(&ctx->octx, ihash, 32);
  301. /* Finish the outer SHA256 operation. */
  302. SHA256_Final(digest, &ctx->octx);
  303. /* Clean the stack. */
  304. memset(ihash, 0, 32);
  305. }
  306. /**
  307. * PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
  308. * Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
  309. * write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
  310. */
  311. void
  312. PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt,
  313. size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen)
  314. {
  315. HMAC_SHA256_CTX PShctx, hctx;
  316. size_t i;
  317. uint8_t ivec[4];
  318. uint8_t U[32];
  319. uint8_t T[32];
  320. uint64_t j;
  321. int k;
  322. size_t clen;
  323. /* Compute HMAC state after processing P and S. */
  324. HMAC_SHA256_Init(&PShctx, passwd, passwdlen);
  325. HMAC_SHA256_Update(&PShctx, salt, saltlen);
  326. /* Iterate through the blocks. */
  327. for (i = 0; i * 32 < dkLen; i++) {
  328. /* Generate INT(i + 1). */
  329. be32enc(ivec, (uint32_t)(i + 1));
  330. /* Compute U_1 = PRF(P, S || INT(i)). */
  331. memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX));
  332. HMAC_SHA256_Update(&hctx, ivec, 4);
  333. HMAC_SHA256_Final(U, &hctx);
  334. /* T_i = U_1 ... */
  335. memcpy(T, U, 32);
  336. for (j = 2; j <= c; j++) {
  337. /* Compute U_j. */
  338. HMAC_SHA256_Init(&hctx, passwd, passwdlen);
  339. HMAC_SHA256_Update(&hctx, U, 32);
  340. HMAC_SHA256_Final(U, &hctx);
  341. /* ... xor U_j ... */
  342. for (k = 0; k < 32; k++)
  343. T[k] ^= U[k];
  344. }
  345. /* Copy as many bytes as necessary into buf. */
  346. clen = dkLen - i * 32;
  347. if (clen > 32)
  348. clen = 32;
  349. memcpy(&buf[i * 32], T, clen);
  350. }
  351. /* Clean PShctx, since we never called _Final on it. */
  352. memset(&PShctx, 0, sizeof(HMAC_SHA256_CTX));
  353. }