core.c 115 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101
  1. /*
  2. * Per core/cpu state
  3. *
  4. * Used to coordinate shared registers between HT threads or
  5. * among events on a single PMU.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/stddef.h>
  9. #include <linux/types.h>
  10. #include <linux/init.h>
  11. #include <linux/slab.h>
  12. #include <linux/export.h>
  13. #include <linux/nmi.h>
  14. #include <asm/cpufeature.h>
  15. #include <asm/hardirq.h>
  16. #include <asm/intel-family.h>
  17. #include <asm/apic.h>
  18. #include "../perf_event.h"
  19. /*
  20. * Intel PerfMon, used on Core and later.
  21. */
  22. static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
  23. {
  24. [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
  25. [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
  26. [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
  27. [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
  28. [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
  29. [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
  30. [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
  31. [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
  32. };
  33. static struct event_constraint intel_core_event_constraints[] __read_mostly =
  34. {
  35. INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  36. INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  37. INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  38. INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  39. INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  40. INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
  41. EVENT_CONSTRAINT_END
  42. };
  43. static struct event_constraint intel_core2_event_constraints[] __read_mostly =
  44. {
  45. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  46. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  47. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  48. INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
  49. INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
  50. INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
  51. INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
  52. INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
  53. INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
  54. INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
  55. INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
  56. INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
  57. INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
  58. EVENT_CONSTRAINT_END
  59. };
  60. static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
  61. {
  62. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  63. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  64. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  65. INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
  66. INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
  67. INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
  68. INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
  69. INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
  70. INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
  71. INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  72. INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  73. EVENT_CONSTRAINT_END
  74. };
  75. static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
  76. {
  77. /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
  78. INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
  79. INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
  80. EVENT_EXTRA_END
  81. };
  82. static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
  83. {
  84. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  85. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  86. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  87. INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
  88. INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
  89. INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
  90. INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
  91. EVENT_CONSTRAINT_END
  92. };
  93. static struct event_constraint intel_snb_event_constraints[] __read_mostly =
  94. {
  95. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  96. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  97. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  98. INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
  99. INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
  100. INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
  101. INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
  102. INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
  103. INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
  104. INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
  105. INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
  106. INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
  107. /*
  108. * When HT is off these events can only run on the bottom 4 counters
  109. * When HT is on, they are impacted by the HT bug and require EXCL access
  110. */
  111. INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
  112. INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
  113. INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
  114. INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
  115. EVENT_CONSTRAINT_END
  116. };
  117. static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
  118. {
  119. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  120. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  121. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  122. INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
  123. INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
  124. INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
  125. INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
  126. INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
  127. INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
  128. INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
  129. INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
  130. INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
  131. INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
  132. /*
  133. * When HT is off these events can only run on the bottom 4 counters
  134. * When HT is on, they are impacted by the HT bug and require EXCL access
  135. */
  136. INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
  137. INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
  138. INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
  139. INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
  140. EVENT_CONSTRAINT_END
  141. };
  142. static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
  143. {
  144. /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
  145. INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
  146. INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
  147. INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
  148. EVENT_EXTRA_END
  149. };
  150. static struct event_constraint intel_v1_event_constraints[] __read_mostly =
  151. {
  152. EVENT_CONSTRAINT_END
  153. };
  154. static struct event_constraint intel_gen_event_constraints[] __read_mostly =
  155. {
  156. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  157. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  158. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  159. EVENT_CONSTRAINT_END
  160. };
  161. static struct event_constraint intel_slm_event_constraints[] __read_mostly =
  162. {
  163. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  164. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  165. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
  166. EVENT_CONSTRAINT_END
  167. };
  168. static struct event_constraint intel_skl_event_constraints[] = {
  169. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  170. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  171. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  172. INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
  173. /*
  174. * when HT is off, these can only run on the bottom 4 counters
  175. */
  176. INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
  177. INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
  178. INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
  179. INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
  180. INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */
  181. EVENT_CONSTRAINT_END
  182. };
  183. static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
  184. INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
  185. INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
  186. EVENT_EXTRA_END
  187. };
  188. static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
  189. /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
  190. INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
  191. INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
  192. INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
  193. EVENT_EXTRA_END
  194. };
  195. static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
  196. /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
  197. INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
  198. INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
  199. INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
  200. EVENT_EXTRA_END
  201. };
  202. static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
  203. INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
  204. INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
  205. INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
  206. /*
  207. * Note the low 8 bits eventsel code is not a continuous field, containing
  208. * some #GPing bits. These are masked out.
  209. */
  210. INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
  211. EVENT_EXTRA_END
  212. };
  213. EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
  214. EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
  215. EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
  216. static struct attribute *nhm_events_attrs[] = {
  217. EVENT_PTR(mem_ld_nhm),
  218. NULL,
  219. };
  220. /*
  221. * topdown events for Intel Core CPUs.
  222. *
  223. * The events are all in slots, which is a free slot in a 4 wide
  224. * pipeline. Some events are already reported in slots, for cycle
  225. * events we multiply by the pipeline width (4).
  226. *
  227. * With Hyper Threading on, topdown metrics are either summed or averaged
  228. * between the threads of a core: (count_t0 + count_t1).
  229. *
  230. * For the average case the metric is always scaled to pipeline width,
  231. * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
  232. */
  233. EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
  234. "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */
  235. "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */
  236. EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
  237. EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
  238. "event=0xe,umask=0x1"); /* uops_issued.any */
  239. EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
  240. "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */
  241. EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
  242. "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */
  243. EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
  244. "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */
  245. "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */
  246. EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
  247. "4", "2");
  248. static struct attribute *snb_events_attrs[] = {
  249. EVENT_PTR(mem_ld_snb),
  250. EVENT_PTR(mem_st_snb),
  251. EVENT_PTR(td_slots_issued),
  252. EVENT_PTR(td_slots_retired),
  253. EVENT_PTR(td_fetch_bubbles),
  254. EVENT_PTR(td_total_slots),
  255. EVENT_PTR(td_total_slots_scale),
  256. EVENT_PTR(td_recovery_bubbles),
  257. EVENT_PTR(td_recovery_bubbles_scale),
  258. NULL,
  259. };
  260. static struct event_constraint intel_hsw_event_constraints[] = {
  261. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  262. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  263. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  264. INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
  265. INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
  266. INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
  267. /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
  268. INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
  269. /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
  270. INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
  271. /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
  272. INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
  273. /*
  274. * When HT is off these events can only run on the bottom 4 counters
  275. * When HT is on, they are impacted by the HT bug and require EXCL access
  276. */
  277. INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
  278. INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
  279. INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
  280. INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
  281. EVENT_CONSTRAINT_END
  282. };
  283. static struct event_constraint intel_bdw_event_constraints[] = {
  284. FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
  285. FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
  286. FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
  287. INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
  288. INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
  289. /*
  290. * when HT is off, these can only run on the bottom 4 counters
  291. */
  292. INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
  293. INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
  294. INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
  295. INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
  296. EVENT_CONSTRAINT_END
  297. };
  298. static u64 intel_pmu_event_map(int hw_event)
  299. {
  300. return intel_perfmon_event_map[hw_event];
  301. }
  302. /*
  303. * Notes on the events:
  304. * - data reads do not include code reads (comparable to earlier tables)
  305. * - data counts include speculative execution (except L1 write, dtlb, bpu)
  306. * - remote node access includes remote memory, remote cache, remote mmio.
  307. * - prefetches are not included in the counts.
  308. * - icache miss does not include decoded icache
  309. */
  310. #define SKL_DEMAND_DATA_RD BIT_ULL(0)
  311. #define SKL_DEMAND_RFO BIT_ULL(1)
  312. #define SKL_ANY_RESPONSE BIT_ULL(16)
  313. #define SKL_SUPPLIER_NONE BIT_ULL(17)
  314. #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
  315. #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
  316. #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
  317. #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
  318. #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
  319. SKL_L3_MISS_REMOTE_HOP0_DRAM| \
  320. SKL_L3_MISS_REMOTE_HOP1_DRAM| \
  321. SKL_L3_MISS_REMOTE_HOP2P_DRAM)
  322. #define SKL_SPL_HIT BIT_ULL(30)
  323. #define SKL_SNOOP_NONE BIT_ULL(31)
  324. #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
  325. #define SKL_SNOOP_MISS BIT_ULL(33)
  326. #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
  327. #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
  328. #define SKL_SNOOP_HITM BIT_ULL(36)
  329. #define SKL_SNOOP_NON_DRAM BIT_ULL(37)
  330. #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
  331. SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
  332. SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
  333. SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
  334. #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
  335. #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
  336. SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
  337. SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
  338. SKL_SNOOP_HITM|SKL_SPL_HIT)
  339. #define SKL_DEMAND_WRITE SKL_DEMAND_RFO
  340. #define SKL_LLC_ACCESS SKL_ANY_RESPONSE
  341. #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
  342. SKL_L3_MISS_REMOTE_HOP1_DRAM| \
  343. SKL_L3_MISS_REMOTE_HOP2P_DRAM)
  344. static __initconst const u64 skl_hw_cache_event_ids
  345. [PERF_COUNT_HW_CACHE_MAX]
  346. [PERF_COUNT_HW_CACHE_OP_MAX]
  347. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  348. {
  349. [ C(L1D ) ] = {
  350. [ C(OP_READ) ] = {
  351. [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
  352. [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
  353. },
  354. [ C(OP_WRITE) ] = {
  355. [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
  356. [ C(RESULT_MISS) ] = 0x0,
  357. },
  358. [ C(OP_PREFETCH) ] = {
  359. [ C(RESULT_ACCESS) ] = 0x0,
  360. [ C(RESULT_MISS) ] = 0x0,
  361. },
  362. },
  363. [ C(L1I ) ] = {
  364. [ C(OP_READ) ] = {
  365. [ C(RESULT_ACCESS) ] = 0x0,
  366. [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */
  367. },
  368. [ C(OP_WRITE) ] = {
  369. [ C(RESULT_ACCESS) ] = -1,
  370. [ C(RESULT_MISS) ] = -1,
  371. },
  372. [ C(OP_PREFETCH) ] = {
  373. [ C(RESULT_ACCESS) ] = 0x0,
  374. [ C(RESULT_MISS) ] = 0x0,
  375. },
  376. },
  377. [ C(LL ) ] = {
  378. [ C(OP_READ) ] = {
  379. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  380. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  381. },
  382. [ C(OP_WRITE) ] = {
  383. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  384. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  385. },
  386. [ C(OP_PREFETCH) ] = {
  387. [ C(RESULT_ACCESS) ] = 0x0,
  388. [ C(RESULT_MISS) ] = 0x0,
  389. },
  390. },
  391. [ C(DTLB) ] = {
  392. [ C(OP_READ) ] = {
  393. [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
  394. [ C(RESULT_MISS) ] = 0x608, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
  395. },
  396. [ C(OP_WRITE) ] = {
  397. [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
  398. [ C(RESULT_MISS) ] = 0x649, /* DTLB_STORE_MISSES.WALK_COMPLETED */
  399. },
  400. [ C(OP_PREFETCH) ] = {
  401. [ C(RESULT_ACCESS) ] = 0x0,
  402. [ C(RESULT_MISS) ] = 0x0,
  403. },
  404. },
  405. [ C(ITLB) ] = {
  406. [ C(OP_READ) ] = {
  407. [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
  408. [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
  409. },
  410. [ C(OP_WRITE) ] = {
  411. [ C(RESULT_ACCESS) ] = -1,
  412. [ C(RESULT_MISS) ] = -1,
  413. },
  414. [ C(OP_PREFETCH) ] = {
  415. [ C(RESULT_ACCESS) ] = -1,
  416. [ C(RESULT_MISS) ] = -1,
  417. },
  418. },
  419. [ C(BPU ) ] = {
  420. [ C(OP_READ) ] = {
  421. [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
  422. [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
  423. },
  424. [ C(OP_WRITE) ] = {
  425. [ C(RESULT_ACCESS) ] = -1,
  426. [ C(RESULT_MISS) ] = -1,
  427. },
  428. [ C(OP_PREFETCH) ] = {
  429. [ C(RESULT_ACCESS) ] = -1,
  430. [ C(RESULT_MISS) ] = -1,
  431. },
  432. },
  433. [ C(NODE) ] = {
  434. [ C(OP_READ) ] = {
  435. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  436. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  437. },
  438. [ C(OP_WRITE) ] = {
  439. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  440. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  441. },
  442. [ C(OP_PREFETCH) ] = {
  443. [ C(RESULT_ACCESS) ] = 0x0,
  444. [ C(RESULT_MISS) ] = 0x0,
  445. },
  446. },
  447. };
  448. static __initconst const u64 skl_hw_cache_extra_regs
  449. [PERF_COUNT_HW_CACHE_MAX]
  450. [PERF_COUNT_HW_CACHE_OP_MAX]
  451. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  452. {
  453. [ C(LL ) ] = {
  454. [ C(OP_READ) ] = {
  455. [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
  456. SKL_LLC_ACCESS|SKL_ANY_SNOOP,
  457. [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
  458. SKL_L3_MISS|SKL_ANY_SNOOP|
  459. SKL_SUPPLIER_NONE,
  460. },
  461. [ C(OP_WRITE) ] = {
  462. [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
  463. SKL_LLC_ACCESS|SKL_ANY_SNOOP,
  464. [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
  465. SKL_L3_MISS|SKL_ANY_SNOOP|
  466. SKL_SUPPLIER_NONE,
  467. },
  468. [ C(OP_PREFETCH) ] = {
  469. [ C(RESULT_ACCESS) ] = 0x0,
  470. [ C(RESULT_MISS) ] = 0x0,
  471. },
  472. },
  473. [ C(NODE) ] = {
  474. [ C(OP_READ) ] = {
  475. [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
  476. SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
  477. [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
  478. SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
  479. },
  480. [ C(OP_WRITE) ] = {
  481. [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
  482. SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
  483. [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
  484. SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
  485. },
  486. [ C(OP_PREFETCH) ] = {
  487. [ C(RESULT_ACCESS) ] = 0x0,
  488. [ C(RESULT_MISS) ] = 0x0,
  489. },
  490. },
  491. };
  492. #define SNB_DMND_DATA_RD (1ULL << 0)
  493. #define SNB_DMND_RFO (1ULL << 1)
  494. #define SNB_DMND_IFETCH (1ULL << 2)
  495. #define SNB_DMND_WB (1ULL << 3)
  496. #define SNB_PF_DATA_RD (1ULL << 4)
  497. #define SNB_PF_RFO (1ULL << 5)
  498. #define SNB_PF_IFETCH (1ULL << 6)
  499. #define SNB_LLC_DATA_RD (1ULL << 7)
  500. #define SNB_LLC_RFO (1ULL << 8)
  501. #define SNB_LLC_IFETCH (1ULL << 9)
  502. #define SNB_BUS_LOCKS (1ULL << 10)
  503. #define SNB_STRM_ST (1ULL << 11)
  504. #define SNB_OTHER (1ULL << 15)
  505. #define SNB_RESP_ANY (1ULL << 16)
  506. #define SNB_NO_SUPP (1ULL << 17)
  507. #define SNB_LLC_HITM (1ULL << 18)
  508. #define SNB_LLC_HITE (1ULL << 19)
  509. #define SNB_LLC_HITS (1ULL << 20)
  510. #define SNB_LLC_HITF (1ULL << 21)
  511. #define SNB_LOCAL (1ULL << 22)
  512. #define SNB_REMOTE (0xffULL << 23)
  513. #define SNB_SNP_NONE (1ULL << 31)
  514. #define SNB_SNP_NOT_NEEDED (1ULL << 32)
  515. #define SNB_SNP_MISS (1ULL << 33)
  516. #define SNB_NO_FWD (1ULL << 34)
  517. #define SNB_SNP_FWD (1ULL << 35)
  518. #define SNB_HITM (1ULL << 36)
  519. #define SNB_NON_DRAM (1ULL << 37)
  520. #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
  521. #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
  522. #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
  523. #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
  524. SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
  525. SNB_HITM)
  526. #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
  527. #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
  528. #define SNB_L3_ACCESS SNB_RESP_ANY
  529. #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
  530. static __initconst const u64 snb_hw_cache_extra_regs
  531. [PERF_COUNT_HW_CACHE_MAX]
  532. [PERF_COUNT_HW_CACHE_OP_MAX]
  533. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  534. {
  535. [ C(LL ) ] = {
  536. [ C(OP_READ) ] = {
  537. [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
  538. [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
  539. },
  540. [ C(OP_WRITE) ] = {
  541. [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
  542. [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
  543. },
  544. [ C(OP_PREFETCH) ] = {
  545. [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
  546. [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
  547. },
  548. },
  549. [ C(NODE) ] = {
  550. [ C(OP_READ) ] = {
  551. [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
  552. [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
  553. },
  554. [ C(OP_WRITE) ] = {
  555. [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
  556. [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
  557. },
  558. [ C(OP_PREFETCH) ] = {
  559. [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
  560. [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
  561. },
  562. },
  563. };
  564. static __initconst const u64 snb_hw_cache_event_ids
  565. [PERF_COUNT_HW_CACHE_MAX]
  566. [PERF_COUNT_HW_CACHE_OP_MAX]
  567. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  568. {
  569. [ C(L1D) ] = {
  570. [ C(OP_READ) ] = {
  571. [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
  572. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
  573. },
  574. [ C(OP_WRITE) ] = {
  575. [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
  576. [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
  577. },
  578. [ C(OP_PREFETCH) ] = {
  579. [ C(RESULT_ACCESS) ] = 0x0,
  580. [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
  581. },
  582. },
  583. [ C(L1I ) ] = {
  584. [ C(OP_READ) ] = {
  585. [ C(RESULT_ACCESS) ] = 0x0,
  586. [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
  587. },
  588. [ C(OP_WRITE) ] = {
  589. [ C(RESULT_ACCESS) ] = -1,
  590. [ C(RESULT_MISS) ] = -1,
  591. },
  592. [ C(OP_PREFETCH) ] = {
  593. [ C(RESULT_ACCESS) ] = 0x0,
  594. [ C(RESULT_MISS) ] = 0x0,
  595. },
  596. },
  597. [ C(LL ) ] = {
  598. [ C(OP_READ) ] = {
  599. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  600. [ C(RESULT_ACCESS) ] = 0x01b7,
  601. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  602. [ C(RESULT_MISS) ] = 0x01b7,
  603. },
  604. [ C(OP_WRITE) ] = {
  605. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  606. [ C(RESULT_ACCESS) ] = 0x01b7,
  607. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  608. [ C(RESULT_MISS) ] = 0x01b7,
  609. },
  610. [ C(OP_PREFETCH) ] = {
  611. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  612. [ C(RESULT_ACCESS) ] = 0x01b7,
  613. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  614. [ C(RESULT_MISS) ] = 0x01b7,
  615. },
  616. },
  617. [ C(DTLB) ] = {
  618. [ C(OP_READ) ] = {
  619. [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
  620. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
  621. },
  622. [ C(OP_WRITE) ] = {
  623. [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
  624. [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
  625. },
  626. [ C(OP_PREFETCH) ] = {
  627. [ C(RESULT_ACCESS) ] = 0x0,
  628. [ C(RESULT_MISS) ] = 0x0,
  629. },
  630. },
  631. [ C(ITLB) ] = {
  632. [ C(OP_READ) ] = {
  633. [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
  634. [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
  635. },
  636. [ C(OP_WRITE) ] = {
  637. [ C(RESULT_ACCESS) ] = -1,
  638. [ C(RESULT_MISS) ] = -1,
  639. },
  640. [ C(OP_PREFETCH) ] = {
  641. [ C(RESULT_ACCESS) ] = -1,
  642. [ C(RESULT_MISS) ] = -1,
  643. },
  644. },
  645. [ C(BPU ) ] = {
  646. [ C(OP_READ) ] = {
  647. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  648. [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
  649. },
  650. [ C(OP_WRITE) ] = {
  651. [ C(RESULT_ACCESS) ] = -1,
  652. [ C(RESULT_MISS) ] = -1,
  653. },
  654. [ C(OP_PREFETCH) ] = {
  655. [ C(RESULT_ACCESS) ] = -1,
  656. [ C(RESULT_MISS) ] = -1,
  657. },
  658. },
  659. [ C(NODE) ] = {
  660. [ C(OP_READ) ] = {
  661. [ C(RESULT_ACCESS) ] = 0x01b7,
  662. [ C(RESULT_MISS) ] = 0x01b7,
  663. },
  664. [ C(OP_WRITE) ] = {
  665. [ C(RESULT_ACCESS) ] = 0x01b7,
  666. [ C(RESULT_MISS) ] = 0x01b7,
  667. },
  668. [ C(OP_PREFETCH) ] = {
  669. [ C(RESULT_ACCESS) ] = 0x01b7,
  670. [ C(RESULT_MISS) ] = 0x01b7,
  671. },
  672. },
  673. };
  674. /*
  675. * Notes on the events:
  676. * - data reads do not include code reads (comparable to earlier tables)
  677. * - data counts include speculative execution (except L1 write, dtlb, bpu)
  678. * - remote node access includes remote memory, remote cache, remote mmio.
  679. * - prefetches are not included in the counts because they are not
  680. * reliably counted.
  681. */
  682. #define HSW_DEMAND_DATA_RD BIT_ULL(0)
  683. #define HSW_DEMAND_RFO BIT_ULL(1)
  684. #define HSW_ANY_RESPONSE BIT_ULL(16)
  685. #define HSW_SUPPLIER_NONE BIT_ULL(17)
  686. #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
  687. #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
  688. #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
  689. #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
  690. #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
  691. HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
  692. HSW_L3_MISS_REMOTE_HOP2P)
  693. #define HSW_SNOOP_NONE BIT_ULL(31)
  694. #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
  695. #define HSW_SNOOP_MISS BIT_ULL(33)
  696. #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
  697. #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
  698. #define HSW_SNOOP_HITM BIT_ULL(36)
  699. #define HSW_SNOOP_NON_DRAM BIT_ULL(37)
  700. #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
  701. HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
  702. HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
  703. HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
  704. #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
  705. #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
  706. #define HSW_DEMAND_WRITE HSW_DEMAND_RFO
  707. #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
  708. HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
  709. #define HSW_LLC_ACCESS HSW_ANY_RESPONSE
  710. #define BDW_L3_MISS_LOCAL BIT(26)
  711. #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
  712. HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
  713. HSW_L3_MISS_REMOTE_HOP2P)
  714. static __initconst const u64 hsw_hw_cache_event_ids
  715. [PERF_COUNT_HW_CACHE_MAX]
  716. [PERF_COUNT_HW_CACHE_OP_MAX]
  717. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  718. {
  719. [ C(L1D ) ] = {
  720. [ C(OP_READ) ] = {
  721. [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
  722. [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
  723. },
  724. [ C(OP_WRITE) ] = {
  725. [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
  726. [ C(RESULT_MISS) ] = 0x0,
  727. },
  728. [ C(OP_PREFETCH) ] = {
  729. [ C(RESULT_ACCESS) ] = 0x0,
  730. [ C(RESULT_MISS) ] = 0x0,
  731. },
  732. },
  733. [ C(L1I ) ] = {
  734. [ C(OP_READ) ] = {
  735. [ C(RESULT_ACCESS) ] = 0x0,
  736. [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
  737. },
  738. [ C(OP_WRITE) ] = {
  739. [ C(RESULT_ACCESS) ] = -1,
  740. [ C(RESULT_MISS) ] = -1,
  741. },
  742. [ C(OP_PREFETCH) ] = {
  743. [ C(RESULT_ACCESS) ] = 0x0,
  744. [ C(RESULT_MISS) ] = 0x0,
  745. },
  746. },
  747. [ C(LL ) ] = {
  748. [ C(OP_READ) ] = {
  749. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  750. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  751. },
  752. [ C(OP_WRITE) ] = {
  753. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  754. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  755. },
  756. [ C(OP_PREFETCH) ] = {
  757. [ C(RESULT_ACCESS) ] = 0x0,
  758. [ C(RESULT_MISS) ] = 0x0,
  759. },
  760. },
  761. [ C(DTLB) ] = {
  762. [ C(OP_READ) ] = {
  763. [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
  764. [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
  765. },
  766. [ C(OP_WRITE) ] = {
  767. [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
  768. [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
  769. },
  770. [ C(OP_PREFETCH) ] = {
  771. [ C(RESULT_ACCESS) ] = 0x0,
  772. [ C(RESULT_MISS) ] = 0x0,
  773. },
  774. },
  775. [ C(ITLB) ] = {
  776. [ C(OP_READ) ] = {
  777. [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
  778. [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
  779. },
  780. [ C(OP_WRITE) ] = {
  781. [ C(RESULT_ACCESS) ] = -1,
  782. [ C(RESULT_MISS) ] = -1,
  783. },
  784. [ C(OP_PREFETCH) ] = {
  785. [ C(RESULT_ACCESS) ] = -1,
  786. [ C(RESULT_MISS) ] = -1,
  787. },
  788. },
  789. [ C(BPU ) ] = {
  790. [ C(OP_READ) ] = {
  791. [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
  792. [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
  793. },
  794. [ C(OP_WRITE) ] = {
  795. [ C(RESULT_ACCESS) ] = -1,
  796. [ C(RESULT_MISS) ] = -1,
  797. },
  798. [ C(OP_PREFETCH) ] = {
  799. [ C(RESULT_ACCESS) ] = -1,
  800. [ C(RESULT_MISS) ] = -1,
  801. },
  802. },
  803. [ C(NODE) ] = {
  804. [ C(OP_READ) ] = {
  805. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  806. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  807. },
  808. [ C(OP_WRITE) ] = {
  809. [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  810. [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
  811. },
  812. [ C(OP_PREFETCH) ] = {
  813. [ C(RESULT_ACCESS) ] = 0x0,
  814. [ C(RESULT_MISS) ] = 0x0,
  815. },
  816. },
  817. };
  818. static __initconst const u64 hsw_hw_cache_extra_regs
  819. [PERF_COUNT_HW_CACHE_MAX]
  820. [PERF_COUNT_HW_CACHE_OP_MAX]
  821. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  822. {
  823. [ C(LL ) ] = {
  824. [ C(OP_READ) ] = {
  825. [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
  826. HSW_LLC_ACCESS,
  827. [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
  828. HSW_L3_MISS|HSW_ANY_SNOOP,
  829. },
  830. [ C(OP_WRITE) ] = {
  831. [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
  832. HSW_LLC_ACCESS,
  833. [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
  834. HSW_L3_MISS|HSW_ANY_SNOOP,
  835. },
  836. [ C(OP_PREFETCH) ] = {
  837. [ C(RESULT_ACCESS) ] = 0x0,
  838. [ C(RESULT_MISS) ] = 0x0,
  839. },
  840. },
  841. [ C(NODE) ] = {
  842. [ C(OP_READ) ] = {
  843. [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
  844. HSW_L3_MISS_LOCAL_DRAM|
  845. HSW_SNOOP_DRAM,
  846. [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
  847. HSW_L3_MISS_REMOTE|
  848. HSW_SNOOP_DRAM,
  849. },
  850. [ C(OP_WRITE) ] = {
  851. [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
  852. HSW_L3_MISS_LOCAL_DRAM|
  853. HSW_SNOOP_DRAM,
  854. [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
  855. HSW_L3_MISS_REMOTE|
  856. HSW_SNOOP_DRAM,
  857. },
  858. [ C(OP_PREFETCH) ] = {
  859. [ C(RESULT_ACCESS) ] = 0x0,
  860. [ C(RESULT_MISS) ] = 0x0,
  861. },
  862. },
  863. };
  864. static __initconst const u64 westmere_hw_cache_event_ids
  865. [PERF_COUNT_HW_CACHE_MAX]
  866. [PERF_COUNT_HW_CACHE_OP_MAX]
  867. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  868. {
  869. [ C(L1D) ] = {
  870. [ C(OP_READ) ] = {
  871. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  872. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
  873. },
  874. [ C(OP_WRITE) ] = {
  875. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  876. [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
  877. },
  878. [ C(OP_PREFETCH) ] = {
  879. [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
  880. [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
  881. },
  882. },
  883. [ C(L1I ) ] = {
  884. [ C(OP_READ) ] = {
  885. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  886. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  887. },
  888. [ C(OP_WRITE) ] = {
  889. [ C(RESULT_ACCESS) ] = -1,
  890. [ C(RESULT_MISS) ] = -1,
  891. },
  892. [ C(OP_PREFETCH) ] = {
  893. [ C(RESULT_ACCESS) ] = 0x0,
  894. [ C(RESULT_MISS) ] = 0x0,
  895. },
  896. },
  897. [ C(LL ) ] = {
  898. [ C(OP_READ) ] = {
  899. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  900. [ C(RESULT_ACCESS) ] = 0x01b7,
  901. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  902. [ C(RESULT_MISS) ] = 0x01b7,
  903. },
  904. /*
  905. * Use RFO, not WRITEBACK, because a write miss would typically occur
  906. * on RFO.
  907. */
  908. [ C(OP_WRITE) ] = {
  909. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  910. [ C(RESULT_ACCESS) ] = 0x01b7,
  911. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  912. [ C(RESULT_MISS) ] = 0x01b7,
  913. },
  914. [ C(OP_PREFETCH) ] = {
  915. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  916. [ C(RESULT_ACCESS) ] = 0x01b7,
  917. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  918. [ C(RESULT_MISS) ] = 0x01b7,
  919. },
  920. },
  921. [ C(DTLB) ] = {
  922. [ C(OP_READ) ] = {
  923. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  924. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
  925. },
  926. [ C(OP_WRITE) ] = {
  927. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  928. [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
  929. },
  930. [ C(OP_PREFETCH) ] = {
  931. [ C(RESULT_ACCESS) ] = 0x0,
  932. [ C(RESULT_MISS) ] = 0x0,
  933. },
  934. },
  935. [ C(ITLB) ] = {
  936. [ C(OP_READ) ] = {
  937. [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
  938. [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
  939. },
  940. [ C(OP_WRITE) ] = {
  941. [ C(RESULT_ACCESS) ] = -1,
  942. [ C(RESULT_MISS) ] = -1,
  943. },
  944. [ C(OP_PREFETCH) ] = {
  945. [ C(RESULT_ACCESS) ] = -1,
  946. [ C(RESULT_MISS) ] = -1,
  947. },
  948. },
  949. [ C(BPU ) ] = {
  950. [ C(OP_READ) ] = {
  951. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  952. [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
  953. },
  954. [ C(OP_WRITE) ] = {
  955. [ C(RESULT_ACCESS) ] = -1,
  956. [ C(RESULT_MISS) ] = -1,
  957. },
  958. [ C(OP_PREFETCH) ] = {
  959. [ C(RESULT_ACCESS) ] = -1,
  960. [ C(RESULT_MISS) ] = -1,
  961. },
  962. },
  963. [ C(NODE) ] = {
  964. [ C(OP_READ) ] = {
  965. [ C(RESULT_ACCESS) ] = 0x01b7,
  966. [ C(RESULT_MISS) ] = 0x01b7,
  967. },
  968. [ C(OP_WRITE) ] = {
  969. [ C(RESULT_ACCESS) ] = 0x01b7,
  970. [ C(RESULT_MISS) ] = 0x01b7,
  971. },
  972. [ C(OP_PREFETCH) ] = {
  973. [ C(RESULT_ACCESS) ] = 0x01b7,
  974. [ C(RESULT_MISS) ] = 0x01b7,
  975. },
  976. },
  977. };
  978. /*
  979. * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
  980. * See IA32 SDM Vol 3B 30.6.1.3
  981. */
  982. #define NHM_DMND_DATA_RD (1 << 0)
  983. #define NHM_DMND_RFO (1 << 1)
  984. #define NHM_DMND_IFETCH (1 << 2)
  985. #define NHM_DMND_WB (1 << 3)
  986. #define NHM_PF_DATA_RD (1 << 4)
  987. #define NHM_PF_DATA_RFO (1 << 5)
  988. #define NHM_PF_IFETCH (1 << 6)
  989. #define NHM_OFFCORE_OTHER (1 << 7)
  990. #define NHM_UNCORE_HIT (1 << 8)
  991. #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
  992. #define NHM_OTHER_CORE_HITM (1 << 10)
  993. /* reserved */
  994. #define NHM_REMOTE_CACHE_FWD (1 << 12)
  995. #define NHM_REMOTE_DRAM (1 << 13)
  996. #define NHM_LOCAL_DRAM (1 << 14)
  997. #define NHM_NON_DRAM (1 << 15)
  998. #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
  999. #define NHM_REMOTE (NHM_REMOTE_DRAM)
  1000. #define NHM_DMND_READ (NHM_DMND_DATA_RD)
  1001. #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
  1002. #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
  1003. #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
  1004. #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
  1005. #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
  1006. static __initconst const u64 nehalem_hw_cache_extra_regs
  1007. [PERF_COUNT_HW_CACHE_MAX]
  1008. [PERF_COUNT_HW_CACHE_OP_MAX]
  1009. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  1010. {
  1011. [ C(LL ) ] = {
  1012. [ C(OP_READ) ] = {
  1013. [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
  1014. [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
  1015. },
  1016. [ C(OP_WRITE) ] = {
  1017. [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
  1018. [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
  1019. },
  1020. [ C(OP_PREFETCH) ] = {
  1021. [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
  1022. [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
  1023. },
  1024. },
  1025. [ C(NODE) ] = {
  1026. [ C(OP_READ) ] = {
  1027. [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
  1028. [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
  1029. },
  1030. [ C(OP_WRITE) ] = {
  1031. [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
  1032. [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
  1033. },
  1034. [ C(OP_PREFETCH) ] = {
  1035. [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
  1036. [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
  1037. },
  1038. },
  1039. };
  1040. static __initconst const u64 nehalem_hw_cache_event_ids
  1041. [PERF_COUNT_HW_CACHE_MAX]
  1042. [PERF_COUNT_HW_CACHE_OP_MAX]
  1043. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  1044. {
  1045. [ C(L1D) ] = {
  1046. [ C(OP_READ) ] = {
  1047. [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
  1048. [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
  1049. },
  1050. [ C(OP_WRITE) ] = {
  1051. [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
  1052. [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
  1053. },
  1054. [ C(OP_PREFETCH) ] = {
  1055. [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
  1056. [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
  1057. },
  1058. },
  1059. [ C(L1I ) ] = {
  1060. [ C(OP_READ) ] = {
  1061. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  1062. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  1063. },
  1064. [ C(OP_WRITE) ] = {
  1065. [ C(RESULT_ACCESS) ] = -1,
  1066. [ C(RESULT_MISS) ] = -1,
  1067. },
  1068. [ C(OP_PREFETCH) ] = {
  1069. [ C(RESULT_ACCESS) ] = 0x0,
  1070. [ C(RESULT_MISS) ] = 0x0,
  1071. },
  1072. },
  1073. [ C(LL ) ] = {
  1074. [ C(OP_READ) ] = {
  1075. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  1076. [ C(RESULT_ACCESS) ] = 0x01b7,
  1077. /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
  1078. [ C(RESULT_MISS) ] = 0x01b7,
  1079. },
  1080. /*
  1081. * Use RFO, not WRITEBACK, because a write miss would typically occur
  1082. * on RFO.
  1083. */
  1084. [ C(OP_WRITE) ] = {
  1085. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  1086. [ C(RESULT_ACCESS) ] = 0x01b7,
  1087. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  1088. [ C(RESULT_MISS) ] = 0x01b7,
  1089. },
  1090. [ C(OP_PREFETCH) ] = {
  1091. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  1092. [ C(RESULT_ACCESS) ] = 0x01b7,
  1093. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  1094. [ C(RESULT_MISS) ] = 0x01b7,
  1095. },
  1096. },
  1097. [ C(DTLB) ] = {
  1098. [ C(OP_READ) ] = {
  1099. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
  1100. [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
  1101. },
  1102. [ C(OP_WRITE) ] = {
  1103. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
  1104. [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
  1105. },
  1106. [ C(OP_PREFETCH) ] = {
  1107. [ C(RESULT_ACCESS) ] = 0x0,
  1108. [ C(RESULT_MISS) ] = 0x0,
  1109. },
  1110. },
  1111. [ C(ITLB) ] = {
  1112. [ C(OP_READ) ] = {
  1113. [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
  1114. [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
  1115. },
  1116. [ C(OP_WRITE) ] = {
  1117. [ C(RESULT_ACCESS) ] = -1,
  1118. [ C(RESULT_MISS) ] = -1,
  1119. },
  1120. [ C(OP_PREFETCH) ] = {
  1121. [ C(RESULT_ACCESS) ] = -1,
  1122. [ C(RESULT_MISS) ] = -1,
  1123. },
  1124. },
  1125. [ C(BPU ) ] = {
  1126. [ C(OP_READ) ] = {
  1127. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  1128. [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
  1129. },
  1130. [ C(OP_WRITE) ] = {
  1131. [ C(RESULT_ACCESS) ] = -1,
  1132. [ C(RESULT_MISS) ] = -1,
  1133. },
  1134. [ C(OP_PREFETCH) ] = {
  1135. [ C(RESULT_ACCESS) ] = -1,
  1136. [ C(RESULT_MISS) ] = -1,
  1137. },
  1138. },
  1139. [ C(NODE) ] = {
  1140. [ C(OP_READ) ] = {
  1141. [ C(RESULT_ACCESS) ] = 0x01b7,
  1142. [ C(RESULT_MISS) ] = 0x01b7,
  1143. },
  1144. [ C(OP_WRITE) ] = {
  1145. [ C(RESULT_ACCESS) ] = 0x01b7,
  1146. [ C(RESULT_MISS) ] = 0x01b7,
  1147. },
  1148. [ C(OP_PREFETCH) ] = {
  1149. [ C(RESULT_ACCESS) ] = 0x01b7,
  1150. [ C(RESULT_MISS) ] = 0x01b7,
  1151. },
  1152. },
  1153. };
  1154. static __initconst const u64 core2_hw_cache_event_ids
  1155. [PERF_COUNT_HW_CACHE_MAX]
  1156. [PERF_COUNT_HW_CACHE_OP_MAX]
  1157. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  1158. {
  1159. [ C(L1D) ] = {
  1160. [ C(OP_READ) ] = {
  1161. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
  1162. [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
  1163. },
  1164. [ C(OP_WRITE) ] = {
  1165. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
  1166. [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
  1167. },
  1168. [ C(OP_PREFETCH) ] = {
  1169. [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
  1170. [ C(RESULT_MISS) ] = 0,
  1171. },
  1172. },
  1173. [ C(L1I ) ] = {
  1174. [ C(OP_READ) ] = {
  1175. [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
  1176. [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
  1177. },
  1178. [ C(OP_WRITE) ] = {
  1179. [ C(RESULT_ACCESS) ] = -1,
  1180. [ C(RESULT_MISS) ] = -1,
  1181. },
  1182. [ C(OP_PREFETCH) ] = {
  1183. [ C(RESULT_ACCESS) ] = 0,
  1184. [ C(RESULT_MISS) ] = 0,
  1185. },
  1186. },
  1187. [ C(LL ) ] = {
  1188. [ C(OP_READ) ] = {
  1189. [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
  1190. [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
  1191. },
  1192. [ C(OP_WRITE) ] = {
  1193. [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
  1194. [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
  1195. },
  1196. [ C(OP_PREFETCH) ] = {
  1197. [ C(RESULT_ACCESS) ] = 0,
  1198. [ C(RESULT_MISS) ] = 0,
  1199. },
  1200. },
  1201. [ C(DTLB) ] = {
  1202. [ C(OP_READ) ] = {
  1203. [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
  1204. [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
  1205. },
  1206. [ C(OP_WRITE) ] = {
  1207. [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
  1208. [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
  1209. },
  1210. [ C(OP_PREFETCH) ] = {
  1211. [ C(RESULT_ACCESS) ] = 0,
  1212. [ C(RESULT_MISS) ] = 0,
  1213. },
  1214. },
  1215. [ C(ITLB) ] = {
  1216. [ C(OP_READ) ] = {
  1217. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  1218. [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
  1219. },
  1220. [ C(OP_WRITE) ] = {
  1221. [ C(RESULT_ACCESS) ] = -1,
  1222. [ C(RESULT_MISS) ] = -1,
  1223. },
  1224. [ C(OP_PREFETCH) ] = {
  1225. [ C(RESULT_ACCESS) ] = -1,
  1226. [ C(RESULT_MISS) ] = -1,
  1227. },
  1228. },
  1229. [ C(BPU ) ] = {
  1230. [ C(OP_READ) ] = {
  1231. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  1232. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  1233. },
  1234. [ C(OP_WRITE) ] = {
  1235. [ C(RESULT_ACCESS) ] = -1,
  1236. [ C(RESULT_MISS) ] = -1,
  1237. },
  1238. [ C(OP_PREFETCH) ] = {
  1239. [ C(RESULT_ACCESS) ] = -1,
  1240. [ C(RESULT_MISS) ] = -1,
  1241. },
  1242. },
  1243. };
  1244. static __initconst const u64 atom_hw_cache_event_ids
  1245. [PERF_COUNT_HW_CACHE_MAX]
  1246. [PERF_COUNT_HW_CACHE_OP_MAX]
  1247. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  1248. {
  1249. [ C(L1D) ] = {
  1250. [ C(OP_READ) ] = {
  1251. [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
  1252. [ C(RESULT_MISS) ] = 0,
  1253. },
  1254. [ C(OP_WRITE) ] = {
  1255. [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
  1256. [ C(RESULT_MISS) ] = 0,
  1257. },
  1258. [ C(OP_PREFETCH) ] = {
  1259. [ C(RESULT_ACCESS) ] = 0x0,
  1260. [ C(RESULT_MISS) ] = 0,
  1261. },
  1262. },
  1263. [ C(L1I ) ] = {
  1264. [ C(OP_READ) ] = {
  1265. [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
  1266. [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
  1267. },
  1268. [ C(OP_WRITE) ] = {
  1269. [ C(RESULT_ACCESS) ] = -1,
  1270. [ C(RESULT_MISS) ] = -1,
  1271. },
  1272. [ C(OP_PREFETCH) ] = {
  1273. [ C(RESULT_ACCESS) ] = 0,
  1274. [ C(RESULT_MISS) ] = 0,
  1275. },
  1276. },
  1277. [ C(LL ) ] = {
  1278. [ C(OP_READ) ] = {
  1279. [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
  1280. [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
  1281. },
  1282. [ C(OP_WRITE) ] = {
  1283. [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
  1284. [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
  1285. },
  1286. [ C(OP_PREFETCH) ] = {
  1287. [ C(RESULT_ACCESS) ] = 0,
  1288. [ C(RESULT_MISS) ] = 0,
  1289. },
  1290. },
  1291. [ C(DTLB) ] = {
  1292. [ C(OP_READ) ] = {
  1293. [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
  1294. [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
  1295. },
  1296. [ C(OP_WRITE) ] = {
  1297. [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
  1298. [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
  1299. },
  1300. [ C(OP_PREFETCH) ] = {
  1301. [ C(RESULT_ACCESS) ] = 0,
  1302. [ C(RESULT_MISS) ] = 0,
  1303. },
  1304. },
  1305. [ C(ITLB) ] = {
  1306. [ C(OP_READ) ] = {
  1307. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  1308. [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
  1309. },
  1310. [ C(OP_WRITE) ] = {
  1311. [ C(RESULT_ACCESS) ] = -1,
  1312. [ C(RESULT_MISS) ] = -1,
  1313. },
  1314. [ C(OP_PREFETCH) ] = {
  1315. [ C(RESULT_ACCESS) ] = -1,
  1316. [ C(RESULT_MISS) ] = -1,
  1317. },
  1318. },
  1319. [ C(BPU ) ] = {
  1320. [ C(OP_READ) ] = {
  1321. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  1322. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  1323. },
  1324. [ C(OP_WRITE) ] = {
  1325. [ C(RESULT_ACCESS) ] = -1,
  1326. [ C(RESULT_MISS) ] = -1,
  1327. },
  1328. [ C(OP_PREFETCH) ] = {
  1329. [ C(RESULT_ACCESS) ] = -1,
  1330. [ C(RESULT_MISS) ] = -1,
  1331. },
  1332. },
  1333. };
  1334. EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
  1335. EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
  1336. /* no_alloc_cycles.not_delivered */
  1337. EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
  1338. "event=0xca,umask=0x50");
  1339. EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
  1340. /* uops_retired.all */
  1341. EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
  1342. "event=0xc2,umask=0x10");
  1343. /* uops_retired.all */
  1344. EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
  1345. "event=0xc2,umask=0x10");
  1346. static struct attribute *slm_events_attrs[] = {
  1347. EVENT_PTR(td_total_slots_slm),
  1348. EVENT_PTR(td_total_slots_scale_slm),
  1349. EVENT_PTR(td_fetch_bubbles_slm),
  1350. EVENT_PTR(td_fetch_bubbles_scale_slm),
  1351. EVENT_PTR(td_slots_issued_slm),
  1352. EVENT_PTR(td_slots_retired_slm),
  1353. NULL
  1354. };
  1355. static struct extra_reg intel_slm_extra_regs[] __read_mostly =
  1356. {
  1357. /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
  1358. INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
  1359. INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
  1360. EVENT_EXTRA_END
  1361. };
  1362. #define SLM_DMND_READ SNB_DMND_DATA_RD
  1363. #define SLM_DMND_WRITE SNB_DMND_RFO
  1364. #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
  1365. #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
  1366. #define SLM_LLC_ACCESS SNB_RESP_ANY
  1367. #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
  1368. static __initconst const u64 slm_hw_cache_extra_regs
  1369. [PERF_COUNT_HW_CACHE_MAX]
  1370. [PERF_COUNT_HW_CACHE_OP_MAX]
  1371. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  1372. {
  1373. [ C(LL ) ] = {
  1374. [ C(OP_READ) ] = {
  1375. [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
  1376. [ C(RESULT_MISS) ] = 0,
  1377. },
  1378. [ C(OP_WRITE) ] = {
  1379. [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
  1380. [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
  1381. },
  1382. [ C(OP_PREFETCH) ] = {
  1383. [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
  1384. [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
  1385. },
  1386. },
  1387. };
  1388. static __initconst const u64 slm_hw_cache_event_ids
  1389. [PERF_COUNT_HW_CACHE_MAX]
  1390. [PERF_COUNT_HW_CACHE_OP_MAX]
  1391. [PERF_COUNT_HW_CACHE_RESULT_MAX] =
  1392. {
  1393. [ C(L1D) ] = {
  1394. [ C(OP_READ) ] = {
  1395. [ C(RESULT_ACCESS) ] = 0,
  1396. [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
  1397. },
  1398. [ C(OP_WRITE) ] = {
  1399. [ C(RESULT_ACCESS) ] = 0,
  1400. [ C(RESULT_MISS) ] = 0,
  1401. },
  1402. [ C(OP_PREFETCH) ] = {
  1403. [ C(RESULT_ACCESS) ] = 0,
  1404. [ C(RESULT_MISS) ] = 0,
  1405. },
  1406. },
  1407. [ C(L1I ) ] = {
  1408. [ C(OP_READ) ] = {
  1409. [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
  1410. [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
  1411. },
  1412. [ C(OP_WRITE) ] = {
  1413. [ C(RESULT_ACCESS) ] = -1,
  1414. [ C(RESULT_MISS) ] = -1,
  1415. },
  1416. [ C(OP_PREFETCH) ] = {
  1417. [ C(RESULT_ACCESS) ] = 0,
  1418. [ C(RESULT_MISS) ] = 0,
  1419. },
  1420. },
  1421. [ C(LL ) ] = {
  1422. [ C(OP_READ) ] = {
  1423. /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
  1424. [ C(RESULT_ACCESS) ] = 0x01b7,
  1425. [ C(RESULT_MISS) ] = 0,
  1426. },
  1427. [ C(OP_WRITE) ] = {
  1428. /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
  1429. [ C(RESULT_ACCESS) ] = 0x01b7,
  1430. /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
  1431. [ C(RESULT_MISS) ] = 0x01b7,
  1432. },
  1433. [ C(OP_PREFETCH) ] = {
  1434. /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
  1435. [ C(RESULT_ACCESS) ] = 0x01b7,
  1436. /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
  1437. [ C(RESULT_MISS) ] = 0x01b7,
  1438. },
  1439. },
  1440. [ C(DTLB) ] = {
  1441. [ C(OP_READ) ] = {
  1442. [ C(RESULT_ACCESS) ] = 0,
  1443. [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
  1444. },
  1445. [ C(OP_WRITE) ] = {
  1446. [ C(RESULT_ACCESS) ] = 0,
  1447. [ C(RESULT_MISS) ] = 0,
  1448. },
  1449. [ C(OP_PREFETCH) ] = {
  1450. [ C(RESULT_ACCESS) ] = 0,
  1451. [ C(RESULT_MISS) ] = 0,
  1452. },
  1453. },
  1454. [ C(ITLB) ] = {
  1455. [ C(OP_READ) ] = {
  1456. [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
  1457. [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
  1458. },
  1459. [ C(OP_WRITE) ] = {
  1460. [ C(RESULT_ACCESS) ] = -1,
  1461. [ C(RESULT_MISS) ] = -1,
  1462. },
  1463. [ C(OP_PREFETCH) ] = {
  1464. [ C(RESULT_ACCESS) ] = -1,
  1465. [ C(RESULT_MISS) ] = -1,
  1466. },
  1467. },
  1468. [ C(BPU ) ] = {
  1469. [ C(OP_READ) ] = {
  1470. [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
  1471. [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
  1472. },
  1473. [ C(OP_WRITE) ] = {
  1474. [ C(RESULT_ACCESS) ] = -1,
  1475. [ C(RESULT_MISS) ] = -1,
  1476. },
  1477. [ C(OP_PREFETCH) ] = {
  1478. [ C(RESULT_ACCESS) ] = -1,
  1479. [ C(RESULT_MISS) ] = -1,
  1480. },
  1481. },
  1482. };
  1483. static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
  1484. /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
  1485. INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
  1486. INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
  1487. EVENT_EXTRA_END
  1488. };
  1489. #define GLM_DEMAND_DATA_RD BIT_ULL(0)
  1490. #define GLM_DEMAND_RFO BIT_ULL(1)
  1491. #define GLM_ANY_RESPONSE BIT_ULL(16)
  1492. #define GLM_SNP_NONE_OR_MISS BIT_ULL(33)
  1493. #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD
  1494. #define GLM_DEMAND_WRITE GLM_DEMAND_RFO
  1495. #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
  1496. #define GLM_LLC_ACCESS GLM_ANY_RESPONSE
  1497. #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
  1498. #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM)
  1499. static __initconst const u64 glm_hw_cache_event_ids
  1500. [PERF_COUNT_HW_CACHE_MAX]
  1501. [PERF_COUNT_HW_CACHE_OP_MAX]
  1502. [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
  1503. [C(L1D)] = {
  1504. [C(OP_READ)] = {
  1505. [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
  1506. [C(RESULT_MISS)] = 0x0,
  1507. },
  1508. [C(OP_WRITE)] = {
  1509. [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
  1510. [C(RESULT_MISS)] = 0x0,
  1511. },
  1512. [C(OP_PREFETCH)] = {
  1513. [C(RESULT_ACCESS)] = 0x0,
  1514. [C(RESULT_MISS)] = 0x0,
  1515. },
  1516. },
  1517. [C(L1I)] = {
  1518. [C(OP_READ)] = {
  1519. [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
  1520. [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
  1521. },
  1522. [C(OP_WRITE)] = {
  1523. [C(RESULT_ACCESS)] = -1,
  1524. [C(RESULT_MISS)] = -1,
  1525. },
  1526. [C(OP_PREFETCH)] = {
  1527. [C(RESULT_ACCESS)] = 0x0,
  1528. [C(RESULT_MISS)] = 0x0,
  1529. },
  1530. },
  1531. [C(LL)] = {
  1532. [C(OP_READ)] = {
  1533. [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
  1534. [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
  1535. },
  1536. [C(OP_WRITE)] = {
  1537. [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
  1538. [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
  1539. },
  1540. [C(OP_PREFETCH)] = {
  1541. [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
  1542. [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
  1543. },
  1544. },
  1545. [C(DTLB)] = {
  1546. [C(OP_READ)] = {
  1547. [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
  1548. [C(RESULT_MISS)] = 0x0,
  1549. },
  1550. [C(OP_WRITE)] = {
  1551. [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
  1552. [C(RESULT_MISS)] = 0x0,
  1553. },
  1554. [C(OP_PREFETCH)] = {
  1555. [C(RESULT_ACCESS)] = 0x0,
  1556. [C(RESULT_MISS)] = 0x0,
  1557. },
  1558. },
  1559. [C(ITLB)] = {
  1560. [C(OP_READ)] = {
  1561. [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
  1562. [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
  1563. },
  1564. [C(OP_WRITE)] = {
  1565. [C(RESULT_ACCESS)] = -1,
  1566. [C(RESULT_MISS)] = -1,
  1567. },
  1568. [C(OP_PREFETCH)] = {
  1569. [C(RESULT_ACCESS)] = -1,
  1570. [C(RESULT_MISS)] = -1,
  1571. },
  1572. },
  1573. [C(BPU)] = {
  1574. [C(OP_READ)] = {
  1575. [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
  1576. [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
  1577. },
  1578. [C(OP_WRITE)] = {
  1579. [C(RESULT_ACCESS)] = -1,
  1580. [C(RESULT_MISS)] = -1,
  1581. },
  1582. [C(OP_PREFETCH)] = {
  1583. [C(RESULT_ACCESS)] = -1,
  1584. [C(RESULT_MISS)] = -1,
  1585. },
  1586. },
  1587. };
  1588. static __initconst const u64 glm_hw_cache_extra_regs
  1589. [PERF_COUNT_HW_CACHE_MAX]
  1590. [PERF_COUNT_HW_CACHE_OP_MAX]
  1591. [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
  1592. [C(LL)] = {
  1593. [C(OP_READ)] = {
  1594. [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
  1595. GLM_LLC_ACCESS,
  1596. [C(RESULT_MISS)] = GLM_DEMAND_READ|
  1597. GLM_LLC_MISS,
  1598. },
  1599. [C(OP_WRITE)] = {
  1600. [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
  1601. GLM_LLC_ACCESS,
  1602. [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
  1603. GLM_LLC_MISS,
  1604. },
  1605. [C(OP_PREFETCH)] = {
  1606. [C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH|
  1607. GLM_LLC_ACCESS,
  1608. [C(RESULT_MISS)] = GLM_DEMAND_PREFETCH|
  1609. GLM_LLC_MISS,
  1610. },
  1611. },
  1612. };
  1613. #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */
  1614. #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */
  1615. #define KNL_MCDRAM_LOCAL BIT_ULL(21)
  1616. #define KNL_MCDRAM_FAR BIT_ULL(22)
  1617. #define KNL_DDR_LOCAL BIT_ULL(23)
  1618. #define KNL_DDR_FAR BIT_ULL(24)
  1619. #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
  1620. KNL_DDR_LOCAL | KNL_DDR_FAR)
  1621. #define KNL_L2_READ SLM_DMND_READ
  1622. #define KNL_L2_WRITE SLM_DMND_WRITE
  1623. #define KNL_L2_PREFETCH SLM_DMND_PREFETCH
  1624. #define KNL_L2_ACCESS SLM_LLC_ACCESS
  1625. #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
  1626. KNL_DRAM_ANY | SNB_SNP_ANY | \
  1627. SNB_NON_DRAM)
  1628. static __initconst const u64 knl_hw_cache_extra_regs
  1629. [PERF_COUNT_HW_CACHE_MAX]
  1630. [PERF_COUNT_HW_CACHE_OP_MAX]
  1631. [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
  1632. [C(LL)] = {
  1633. [C(OP_READ)] = {
  1634. [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
  1635. [C(RESULT_MISS)] = 0,
  1636. },
  1637. [C(OP_WRITE)] = {
  1638. [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
  1639. [C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS,
  1640. },
  1641. [C(OP_PREFETCH)] = {
  1642. [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
  1643. [C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS,
  1644. },
  1645. },
  1646. };
  1647. /*
  1648. * Used from PMIs where the LBRs are already disabled.
  1649. *
  1650. * This function could be called consecutively. It is required to remain in
  1651. * disabled state if called consecutively.
  1652. *
  1653. * During consecutive calls, the same disable value will be written to related
  1654. * registers, so the PMU state remains unchanged.
  1655. *
  1656. * intel_bts events don't coexist with intel PMU's BTS events because of
  1657. * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
  1658. * disabled around intel PMU's event batching etc, only inside the PMI handler.
  1659. */
  1660. static void __intel_pmu_disable_all(void)
  1661. {
  1662. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  1663. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
  1664. if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
  1665. intel_pmu_disable_bts();
  1666. intel_pmu_pebs_disable_all();
  1667. }
  1668. static void intel_pmu_disable_all(void)
  1669. {
  1670. __intel_pmu_disable_all();
  1671. intel_pmu_lbr_disable_all();
  1672. }
  1673. static void __intel_pmu_enable_all(int added, bool pmi)
  1674. {
  1675. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  1676. intel_pmu_pebs_enable_all();
  1677. intel_pmu_lbr_enable_all(pmi);
  1678. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
  1679. x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
  1680. if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
  1681. struct perf_event *event =
  1682. cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
  1683. if (WARN_ON_ONCE(!event))
  1684. return;
  1685. intel_pmu_enable_bts(event->hw.config);
  1686. }
  1687. }
  1688. static void intel_pmu_enable_all(int added)
  1689. {
  1690. __intel_pmu_enable_all(added, false);
  1691. }
  1692. /*
  1693. * Workaround for:
  1694. * Intel Errata AAK100 (model 26)
  1695. * Intel Errata AAP53 (model 30)
  1696. * Intel Errata BD53 (model 44)
  1697. *
  1698. * The official story:
  1699. * These chips need to be 'reset' when adding counters by programming the
  1700. * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
  1701. * in sequence on the same PMC or on different PMCs.
  1702. *
  1703. * In practise it appears some of these events do in fact count, and
  1704. * we need to programm all 4 events.
  1705. */
  1706. static void intel_pmu_nhm_workaround(void)
  1707. {
  1708. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  1709. static const unsigned long nhm_magic[4] = {
  1710. 0x4300B5,
  1711. 0x4300D2,
  1712. 0x4300B1,
  1713. 0x4300B1
  1714. };
  1715. struct perf_event *event;
  1716. int i;
  1717. /*
  1718. * The Errata requires below steps:
  1719. * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
  1720. * 2) Configure 4 PERFEVTSELx with the magic events and clear
  1721. * the corresponding PMCx;
  1722. * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
  1723. * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
  1724. * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
  1725. */
  1726. /*
  1727. * The real steps we choose are a little different from above.
  1728. * A) To reduce MSR operations, we don't run step 1) as they
  1729. * are already cleared before this function is called;
  1730. * B) Call x86_perf_event_update to save PMCx before configuring
  1731. * PERFEVTSELx with magic number;
  1732. * C) With step 5), we do clear only when the PERFEVTSELx is
  1733. * not used currently.
  1734. * D) Call x86_perf_event_set_period to restore PMCx;
  1735. */
  1736. /* We always operate 4 pairs of PERF Counters */
  1737. for (i = 0; i < 4; i++) {
  1738. event = cpuc->events[i];
  1739. if (event)
  1740. x86_perf_event_update(event);
  1741. }
  1742. for (i = 0; i < 4; i++) {
  1743. wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
  1744. wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
  1745. }
  1746. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
  1747. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
  1748. for (i = 0; i < 4; i++) {
  1749. event = cpuc->events[i];
  1750. if (event) {
  1751. x86_perf_event_set_period(event);
  1752. __x86_pmu_enable_event(&event->hw,
  1753. ARCH_PERFMON_EVENTSEL_ENABLE);
  1754. } else
  1755. wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
  1756. }
  1757. }
  1758. static void intel_pmu_nhm_enable_all(int added)
  1759. {
  1760. if (added)
  1761. intel_pmu_nhm_workaround();
  1762. intel_pmu_enable_all(added);
  1763. }
  1764. static inline u64 intel_pmu_get_status(void)
  1765. {
  1766. u64 status;
  1767. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  1768. return status;
  1769. }
  1770. static inline void intel_pmu_ack_status(u64 ack)
  1771. {
  1772. wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
  1773. }
  1774. static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
  1775. {
  1776. int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
  1777. u64 ctrl_val, mask;
  1778. mask = 0xfULL << (idx * 4);
  1779. rdmsrl(hwc->config_base, ctrl_val);
  1780. ctrl_val &= ~mask;
  1781. wrmsrl(hwc->config_base, ctrl_val);
  1782. }
  1783. static inline bool event_is_checkpointed(struct perf_event *event)
  1784. {
  1785. return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
  1786. }
  1787. static void intel_pmu_disable_event(struct perf_event *event)
  1788. {
  1789. struct hw_perf_event *hwc = &event->hw;
  1790. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  1791. if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
  1792. intel_pmu_disable_bts();
  1793. intel_pmu_drain_bts_buffer();
  1794. return;
  1795. }
  1796. cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
  1797. cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
  1798. cpuc->intel_cp_status &= ~(1ull << hwc->idx);
  1799. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  1800. intel_pmu_disable_fixed(hwc);
  1801. return;
  1802. }
  1803. x86_pmu_disable_event(event);
  1804. if (unlikely(event->attr.precise_ip))
  1805. intel_pmu_pebs_disable(event);
  1806. }
  1807. static void intel_pmu_del_event(struct perf_event *event)
  1808. {
  1809. if (needs_branch_stack(event))
  1810. intel_pmu_lbr_del(event);
  1811. if (event->attr.precise_ip)
  1812. intel_pmu_pebs_del(event);
  1813. }
  1814. static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
  1815. {
  1816. int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
  1817. u64 ctrl_val, bits, mask;
  1818. /*
  1819. * Enable IRQ generation (0x8),
  1820. * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
  1821. * if requested:
  1822. */
  1823. bits = 0x8ULL;
  1824. if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
  1825. bits |= 0x2;
  1826. if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
  1827. bits |= 0x1;
  1828. /*
  1829. * ANY bit is supported in v3 and up
  1830. */
  1831. if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
  1832. bits |= 0x4;
  1833. bits <<= (idx * 4);
  1834. mask = 0xfULL << (idx * 4);
  1835. rdmsrl(hwc->config_base, ctrl_val);
  1836. ctrl_val &= ~mask;
  1837. ctrl_val |= bits;
  1838. wrmsrl(hwc->config_base, ctrl_val);
  1839. }
  1840. static void intel_pmu_enable_event(struct perf_event *event)
  1841. {
  1842. struct hw_perf_event *hwc = &event->hw;
  1843. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  1844. if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
  1845. if (!__this_cpu_read(cpu_hw_events.enabled))
  1846. return;
  1847. intel_pmu_enable_bts(hwc->config);
  1848. return;
  1849. }
  1850. if (event->attr.exclude_host)
  1851. cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
  1852. if (event->attr.exclude_guest)
  1853. cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
  1854. if (unlikely(event_is_checkpointed(event)))
  1855. cpuc->intel_cp_status |= (1ull << hwc->idx);
  1856. if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
  1857. intel_pmu_enable_fixed(hwc);
  1858. return;
  1859. }
  1860. if (unlikely(event->attr.precise_ip))
  1861. intel_pmu_pebs_enable(event);
  1862. __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
  1863. }
  1864. static void intel_pmu_add_event(struct perf_event *event)
  1865. {
  1866. if (event->attr.precise_ip)
  1867. intel_pmu_pebs_add(event);
  1868. if (needs_branch_stack(event))
  1869. intel_pmu_lbr_add(event);
  1870. }
  1871. /*
  1872. * Save and restart an expired event. Called by NMI contexts,
  1873. * so it has to be careful about preempting normal event ops:
  1874. */
  1875. int intel_pmu_save_and_restart(struct perf_event *event)
  1876. {
  1877. x86_perf_event_update(event);
  1878. /*
  1879. * For a checkpointed counter always reset back to 0. This
  1880. * avoids a situation where the counter overflows, aborts the
  1881. * transaction and is then set back to shortly before the
  1882. * overflow, and overflows and aborts again.
  1883. */
  1884. if (unlikely(event_is_checkpointed(event))) {
  1885. /* No race with NMIs because the counter should not be armed */
  1886. wrmsrl(event->hw.event_base, 0);
  1887. local64_set(&event->hw.prev_count, 0);
  1888. }
  1889. return x86_perf_event_set_period(event);
  1890. }
  1891. static void intel_pmu_reset(void)
  1892. {
  1893. struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
  1894. unsigned long flags;
  1895. int idx;
  1896. if (!x86_pmu.num_counters)
  1897. return;
  1898. local_irq_save(flags);
  1899. pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
  1900. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  1901. wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
  1902. wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
  1903. }
  1904. for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
  1905. wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
  1906. if (ds)
  1907. ds->bts_index = ds->bts_buffer_base;
  1908. /* Ack all overflows and disable fixed counters */
  1909. if (x86_pmu.version >= 2) {
  1910. intel_pmu_ack_status(intel_pmu_get_status());
  1911. wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
  1912. }
  1913. /* Reset LBRs and LBR freezing */
  1914. if (x86_pmu.lbr_nr) {
  1915. update_debugctlmsr(get_debugctlmsr() &
  1916. ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
  1917. }
  1918. local_irq_restore(flags);
  1919. }
  1920. /*
  1921. * This handler is triggered by the local APIC, so the APIC IRQ handling
  1922. * rules apply:
  1923. */
  1924. static int intel_pmu_handle_irq(struct pt_regs *regs)
  1925. {
  1926. struct perf_sample_data data;
  1927. struct cpu_hw_events *cpuc;
  1928. int bit, loops;
  1929. u64 status;
  1930. int handled;
  1931. cpuc = this_cpu_ptr(&cpu_hw_events);
  1932. /*
  1933. * No known reason to not always do late ACK,
  1934. * but just in case do it opt-in.
  1935. */
  1936. if (!x86_pmu.late_ack)
  1937. apic_write(APIC_LVTPC, APIC_DM_NMI);
  1938. intel_bts_disable_local();
  1939. __intel_pmu_disable_all();
  1940. handled = intel_pmu_drain_bts_buffer();
  1941. handled += intel_bts_interrupt();
  1942. status = intel_pmu_get_status();
  1943. if (!status)
  1944. goto done;
  1945. loops = 0;
  1946. again:
  1947. intel_pmu_lbr_read();
  1948. intel_pmu_ack_status(status);
  1949. if (++loops > 100) {
  1950. static bool warned = false;
  1951. if (!warned) {
  1952. WARN(1, "perfevents: irq loop stuck!\n");
  1953. perf_event_print_debug();
  1954. warned = true;
  1955. }
  1956. intel_pmu_reset();
  1957. goto done;
  1958. }
  1959. inc_irq_stat(apic_perf_irqs);
  1960. /*
  1961. * Ignore a range of extra bits in status that do not indicate
  1962. * overflow by themselves.
  1963. */
  1964. status &= ~(GLOBAL_STATUS_COND_CHG |
  1965. GLOBAL_STATUS_ASIF |
  1966. GLOBAL_STATUS_LBRS_FROZEN);
  1967. if (!status)
  1968. goto done;
  1969. /*
  1970. * In case multiple PEBS events are sampled at the same time,
  1971. * it is possible to have GLOBAL_STATUS bit 62 set indicating
  1972. * PEBS buffer overflow and also seeing at most 3 PEBS counters
  1973. * having their bits set in the status register. This is a sign
  1974. * that there was at least one PEBS record pending at the time
  1975. * of the PMU interrupt. PEBS counters must only be processed
  1976. * via the drain_pebs() calls and not via the regular sample
  1977. * processing loop coming after that the function, otherwise
  1978. * phony regular samples may be generated in the sampling buffer
  1979. * not marked with the EXACT tag. Another possibility is to have
  1980. * one PEBS event and at least one non-PEBS event whic hoverflows
  1981. * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
  1982. * not be set, yet the overflow status bit for the PEBS counter will
  1983. * be on Skylake.
  1984. *
  1985. * To avoid this problem, we systematically ignore the PEBS-enabled
  1986. * counters from the GLOBAL_STATUS mask and we always process PEBS
  1987. * events via drain_pebs().
  1988. */
  1989. status &= ~cpuc->pebs_enabled;
  1990. /*
  1991. * PEBS overflow sets bit 62 in the global status register
  1992. */
  1993. if (__test_and_clear_bit(62, (unsigned long *)&status)) {
  1994. handled++;
  1995. x86_pmu.drain_pebs(regs);
  1996. status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
  1997. }
  1998. /*
  1999. * Intel PT
  2000. */
  2001. if (__test_and_clear_bit(55, (unsigned long *)&status)) {
  2002. handled++;
  2003. intel_pt_interrupt();
  2004. }
  2005. /*
  2006. * Checkpointed counters can lead to 'spurious' PMIs because the
  2007. * rollback caused by the PMI will have cleared the overflow status
  2008. * bit. Therefore always force probe these counters.
  2009. */
  2010. status |= cpuc->intel_cp_status;
  2011. for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
  2012. struct perf_event *event = cpuc->events[bit];
  2013. handled++;
  2014. if (!test_bit(bit, cpuc->active_mask))
  2015. continue;
  2016. if (!intel_pmu_save_and_restart(event))
  2017. continue;
  2018. perf_sample_data_init(&data, 0, event->hw.last_period);
  2019. if (has_branch_stack(event))
  2020. data.br_stack = &cpuc->lbr_stack;
  2021. if (perf_event_overflow(event, &data, regs))
  2022. x86_pmu_stop(event, 0);
  2023. }
  2024. /*
  2025. * Repeat if there is more work to be done:
  2026. */
  2027. status = intel_pmu_get_status();
  2028. if (status)
  2029. goto again;
  2030. done:
  2031. /* Only restore PMU state when it's active. See x86_pmu_disable(). */
  2032. if (cpuc->enabled)
  2033. __intel_pmu_enable_all(0, true);
  2034. intel_bts_enable_local();
  2035. /*
  2036. * Only unmask the NMI after the overflow counters
  2037. * have been reset. This avoids spurious NMIs on
  2038. * Haswell CPUs.
  2039. */
  2040. if (x86_pmu.late_ack)
  2041. apic_write(APIC_LVTPC, APIC_DM_NMI);
  2042. return handled;
  2043. }
  2044. static struct event_constraint *
  2045. intel_bts_constraints(struct perf_event *event)
  2046. {
  2047. struct hw_perf_event *hwc = &event->hw;
  2048. unsigned int hw_event, bts_event;
  2049. if (event->attr.freq)
  2050. return NULL;
  2051. hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
  2052. bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
  2053. if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
  2054. return &bts_constraint;
  2055. return NULL;
  2056. }
  2057. static int intel_alt_er(int idx, u64 config)
  2058. {
  2059. int alt_idx = idx;
  2060. if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
  2061. return idx;
  2062. if (idx == EXTRA_REG_RSP_0)
  2063. alt_idx = EXTRA_REG_RSP_1;
  2064. if (idx == EXTRA_REG_RSP_1)
  2065. alt_idx = EXTRA_REG_RSP_0;
  2066. if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
  2067. return idx;
  2068. return alt_idx;
  2069. }
  2070. static void intel_fixup_er(struct perf_event *event, int idx)
  2071. {
  2072. event->hw.extra_reg.idx = idx;
  2073. if (idx == EXTRA_REG_RSP_0) {
  2074. event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
  2075. event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
  2076. event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
  2077. } else if (idx == EXTRA_REG_RSP_1) {
  2078. event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
  2079. event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
  2080. event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
  2081. }
  2082. }
  2083. /*
  2084. * manage allocation of shared extra msr for certain events
  2085. *
  2086. * sharing can be:
  2087. * per-cpu: to be shared between the various events on a single PMU
  2088. * per-core: per-cpu + shared by HT threads
  2089. */
  2090. static struct event_constraint *
  2091. __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
  2092. struct perf_event *event,
  2093. struct hw_perf_event_extra *reg)
  2094. {
  2095. struct event_constraint *c = &emptyconstraint;
  2096. struct er_account *era;
  2097. unsigned long flags;
  2098. int idx = reg->idx;
  2099. /*
  2100. * reg->alloc can be set due to existing state, so for fake cpuc we
  2101. * need to ignore this, otherwise we might fail to allocate proper fake
  2102. * state for this extra reg constraint. Also see the comment below.
  2103. */
  2104. if (reg->alloc && !cpuc->is_fake)
  2105. return NULL; /* call x86_get_event_constraint() */
  2106. again:
  2107. era = &cpuc->shared_regs->regs[idx];
  2108. /*
  2109. * we use spin_lock_irqsave() to avoid lockdep issues when
  2110. * passing a fake cpuc
  2111. */
  2112. raw_spin_lock_irqsave(&era->lock, flags);
  2113. if (!atomic_read(&era->ref) || era->config == reg->config) {
  2114. /*
  2115. * If its a fake cpuc -- as per validate_{group,event}() we
  2116. * shouldn't touch event state and we can avoid doing so
  2117. * since both will only call get_event_constraints() once
  2118. * on each event, this avoids the need for reg->alloc.
  2119. *
  2120. * Not doing the ER fixup will only result in era->reg being
  2121. * wrong, but since we won't actually try and program hardware
  2122. * this isn't a problem either.
  2123. */
  2124. if (!cpuc->is_fake) {
  2125. if (idx != reg->idx)
  2126. intel_fixup_er(event, idx);
  2127. /*
  2128. * x86_schedule_events() can call get_event_constraints()
  2129. * multiple times on events in the case of incremental
  2130. * scheduling(). reg->alloc ensures we only do the ER
  2131. * allocation once.
  2132. */
  2133. reg->alloc = 1;
  2134. }
  2135. /* lock in msr value */
  2136. era->config = reg->config;
  2137. era->reg = reg->reg;
  2138. /* one more user */
  2139. atomic_inc(&era->ref);
  2140. /*
  2141. * need to call x86_get_event_constraint()
  2142. * to check if associated event has constraints
  2143. */
  2144. c = NULL;
  2145. } else {
  2146. idx = intel_alt_er(idx, reg->config);
  2147. if (idx != reg->idx) {
  2148. raw_spin_unlock_irqrestore(&era->lock, flags);
  2149. goto again;
  2150. }
  2151. }
  2152. raw_spin_unlock_irqrestore(&era->lock, flags);
  2153. return c;
  2154. }
  2155. static void
  2156. __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
  2157. struct hw_perf_event_extra *reg)
  2158. {
  2159. struct er_account *era;
  2160. /*
  2161. * Only put constraint if extra reg was actually allocated. Also takes
  2162. * care of event which do not use an extra shared reg.
  2163. *
  2164. * Also, if this is a fake cpuc we shouldn't touch any event state
  2165. * (reg->alloc) and we don't care about leaving inconsistent cpuc state
  2166. * either since it'll be thrown out.
  2167. */
  2168. if (!reg->alloc || cpuc->is_fake)
  2169. return;
  2170. era = &cpuc->shared_regs->regs[reg->idx];
  2171. /* one fewer user */
  2172. atomic_dec(&era->ref);
  2173. /* allocate again next time */
  2174. reg->alloc = 0;
  2175. }
  2176. static struct event_constraint *
  2177. intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
  2178. struct perf_event *event)
  2179. {
  2180. struct event_constraint *c = NULL, *d;
  2181. struct hw_perf_event_extra *xreg, *breg;
  2182. xreg = &event->hw.extra_reg;
  2183. if (xreg->idx != EXTRA_REG_NONE) {
  2184. c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
  2185. if (c == &emptyconstraint)
  2186. return c;
  2187. }
  2188. breg = &event->hw.branch_reg;
  2189. if (breg->idx != EXTRA_REG_NONE) {
  2190. d = __intel_shared_reg_get_constraints(cpuc, event, breg);
  2191. if (d == &emptyconstraint) {
  2192. __intel_shared_reg_put_constraints(cpuc, xreg);
  2193. c = d;
  2194. }
  2195. }
  2196. return c;
  2197. }
  2198. struct event_constraint *
  2199. x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
  2200. struct perf_event *event)
  2201. {
  2202. struct event_constraint *c;
  2203. if (x86_pmu.event_constraints) {
  2204. for_each_event_constraint(c, x86_pmu.event_constraints) {
  2205. if ((event->hw.config & c->cmask) == c->code) {
  2206. event->hw.flags |= c->flags;
  2207. return c;
  2208. }
  2209. }
  2210. }
  2211. return &unconstrained;
  2212. }
  2213. static struct event_constraint *
  2214. __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
  2215. struct perf_event *event)
  2216. {
  2217. struct event_constraint *c;
  2218. c = intel_bts_constraints(event);
  2219. if (c)
  2220. return c;
  2221. c = intel_shared_regs_constraints(cpuc, event);
  2222. if (c)
  2223. return c;
  2224. c = intel_pebs_constraints(event);
  2225. if (c)
  2226. return c;
  2227. return x86_get_event_constraints(cpuc, idx, event);
  2228. }
  2229. static void
  2230. intel_start_scheduling(struct cpu_hw_events *cpuc)
  2231. {
  2232. struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
  2233. struct intel_excl_states *xl;
  2234. int tid = cpuc->excl_thread_id;
  2235. /*
  2236. * nothing needed if in group validation mode
  2237. */
  2238. if (cpuc->is_fake || !is_ht_workaround_enabled())
  2239. return;
  2240. /*
  2241. * no exclusion needed
  2242. */
  2243. if (WARN_ON_ONCE(!excl_cntrs))
  2244. return;
  2245. xl = &excl_cntrs->states[tid];
  2246. xl->sched_started = true;
  2247. /*
  2248. * lock shared state until we are done scheduling
  2249. * in stop_event_scheduling()
  2250. * makes scheduling appear as a transaction
  2251. */
  2252. raw_spin_lock(&excl_cntrs->lock);
  2253. }
  2254. static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
  2255. {
  2256. struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
  2257. struct event_constraint *c = cpuc->event_constraint[idx];
  2258. struct intel_excl_states *xl;
  2259. int tid = cpuc->excl_thread_id;
  2260. if (cpuc->is_fake || !is_ht_workaround_enabled())
  2261. return;
  2262. if (WARN_ON_ONCE(!excl_cntrs))
  2263. return;
  2264. if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
  2265. return;
  2266. xl = &excl_cntrs->states[tid];
  2267. lockdep_assert_held(&excl_cntrs->lock);
  2268. if (c->flags & PERF_X86_EVENT_EXCL)
  2269. xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
  2270. else
  2271. xl->state[cntr] = INTEL_EXCL_SHARED;
  2272. }
  2273. static void
  2274. intel_stop_scheduling(struct cpu_hw_events *cpuc)
  2275. {
  2276. struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
  2277. struct intel_excl_states *xl;
  2278. int tid = cpuc->excl_thread_id;
  2279. /*
  2280. * nothing needed if in group validation mode
  2281. */
  2282. if (cpuc->is_fake || !is_ht_workaround_enabled())
  2283. return;
  2284. /*
  2285. * no exclusion needed
  2286. */
  2287. if (WARN_ON_ONCE(!excl_cntrs))
  2288. return;
  2289. xl = &excl_cntrs->states[tid];
  2290. xl->sched_started = false;
  2291. /*
  2292. * release shared state lock (acquired in intel_start_scheduling())
  2293. */
  2294. raw_spin_unlock(&excl_cntrs->lock);
  2295. }
  2296. static struct event_constraint *
  2297. intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
  2298. int idx, struct event_constraint *c)
  2299. {
  2300. struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
  2301. struct intel_excl_states *xlo;
  2302. int tid = cpuc->excl_thread_id;
  2303. int is_excl, i;
  2304. /*
  2305. * validating a group does not require
  2306. * enforcing cross-thread exclusion
  2307. */
  2308. if (cpuc->is_fake || !is_ht_workaround_enabled())
  2309. return c;
  2310. /*
  2311. * no exclusion needed
  2312. */
  2313. if (WARN_ON_ONCE(!excl_cntrs))
  2314. return c;
  2315. /*
  2316. * because we modify the constraint, we need
  2317. * to make a copy. Static constraints come
  2318. * from static const tables.
  2319. *
  2320. * only needed when constraint has not yet
  2321. * been cloned (marked dynamic)
  2322. */
  2323. if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
  2324. struct event_constraint *cx;
  2325. /*
  2326. * grab pre-allocated constraint entry
  2327. */
  2328. cx = &cpuc->constraint_list[idx];
  2329. /*
  2330. * initialize dynamic constraint
  2331. * with static constraint
  2332. */
  2333. *cx = *c;
  2334. /*
  2335. * mark constraint as dynamic, so we
  2336. * can free it later on
  2337. */
  2338. cx->flags |= PERF_X86_EVENT_DYNAMIC;
  2339. c = cx;
  2340. }
  2341. /*
  2342. * From here on, the constraint is dynamic.
  2343. * Either it was just allocated above, or it
  2344. * was allocated during a earlier invocation
  2345. * of this function
  2346. */
  2347. /*
  2348. * state of sibling HT
  2349. */
  2350. xlo = &excl_cntrs->states[tid ^ 1];
  2351. /*
  2352. * event requires exclusive counter access
  2353. * across HT threads
  2354. */
  2355. is_excl = c->flags & PERF_X86_EVENT_EXCL;
  2356. if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
  2357. event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
  2358. if (!cpuc->n_excl++)
  2359. WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
  2360. }
  2361. /*
  2362. * Modify static constraint with current dynamic
  2363. * state of thread
  2364. *
  2365. * EXCLUSIVE: sibling counter measuring exclusive event
  2366. * SHARED : sibling counter measuring non-exclusive event
  2367. * UNUSED : sibling counter unused
  2368. */
  2369. for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
  2370. /*
  2371. * exclusive event in sibling counter
  2372. * our corresponding counter cannot be used
  2373. * regardless of our event
  2374. */
  2375. if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
  2376. __clear_bit(i, c->idxmsk);
  2377. /*
  2378. * if measuring an exclusive event, sibling
  2379. * measuring non-exclusive, then counter cannot
  2380. * be used
  2381. */
  2382. if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
  2383. __clear_bit(i, c->idxmsk);
  2384. }
  2385. /*
  2386. * recompute actual bit weight for scheduling algorithm
  2387. */
  2388. c->weight = hweight64(c->idxmsk64);
  2389. /*
  2390. * if we return an empty mask, then switch
  2391. * back to static empty constraint to avoid
  2392. * the cost of freeing later on
  2393. */
  2394. if (c->weight == 0)
  2395. c = &emptyconstraint;
  2396. return c;
  2397. }
  2398. static struct event_constraint *
  2399. intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
  2400. struct perf_event *event)
  2401. {
  2402. struct event_constraint *c1 = NULL;
  2403. struct event_constraint *c2;
  2404. if (idx >= 0) /* fake does < 0 */
  2405. c1 = cpuc->event_constraint[idx];
  2406. /*
  2407. * first time only
  2408. * - static constraint: no change across incremental scheduling calls
  2409. * - dynamic constraint: handled by intel_get_excl_constraints()
  2410. */
  2411. c2 = __intel_get_event_constraints(cpuc, idx, event);
  2412. if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
  2413. bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
  2414. c1->weight = c2->weight;
  2415. c2 = c1;
  2416. }
  2417. if (cpuc->excl_cntrs)
  2418. return intel_get_excl_constraints(cpuc, event, idx, c2);
  2419. return c2;
  2420. }
  2421. static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
  2422. struct perf_event *event)
  2423. {
  2424. struct hw_perf_event *hwc = &event->hw;
  2425. struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
  2426. int tid = cpuc->excl_thread_id;
  2427. struct intel_excl_states *xl;
  2428. /*
  2429. * nothing needed if in group validation mode
  2430. */
  2431. if (cpuc->is_fake)
  2432. return;
  2433. if (WARN_ON_ONCE(!excl_cntrs))
  2434. return;
  2435. if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
  2436. hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
  2437. if (!--cpuc->n_excl)
  2438. WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
  2439. }
  2440. /*
  2441. * If event was actually assigned, then mark the counter state as
  2442. * unused now.
  2443. */
  2444. if (hwc->idx >= 0) {
  2445. xl = &excl_cntrs->states[tid];
  2446. /*
  2447. * put_constraint may be called from x86_schedule_events()
  2448. * which already has the lock held so here make locking
  2449. * conditional.
  2450. */
  2451. if (!xl->sched_started)
  2452. raw_spin_lock(&excl_cntrs->lock);
  2453. xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
  2454. if (!xl->sched_started)
  2455. raw_spin_unlock(&excl_cntrs->lock);
  2456. }
  2457. }
  2458. static void
  2459. intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
  2460. struct perf_event *event)
  2461. {
  2462. struct hw_perf_event_extra *reg;
  2463. reg = &event->hw.extra_reg;
  2464. if (reg->idx != EXTRA_REG_NONE)
  2465. __intel_shared_reg_put_constraints(cpuc, reg);
  2466. reg = &event->hw.branch_reg;
  2467. if (reg->idx != EXTRA_REG_NONE)
  2468. __intel_shared_reg_put_constraints(cpuc, reg);
  2469. }
  2470. static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
  2471. struct perf_event *event)
  2472. {
  2473. intel_put_shared_regs_event_constraints(cpuc, event);
  2474. /*
  2475. * is PMU has exclusive counter restrictions, then
  2476. * all events are subject to and must call the
  2477. * put_excl_constraints() routine
  2478. */
  2479. if (cpuc->excl_cntrs)
  2480. intel_put_excl_constraints(cpuc, event);
  2481. }
  2482. static void intel_pebs_aliases_core2(struct perf_event *event)
  2483. {
  2484. if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
  2485. /*
  2486. * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
  2487. * (0x003c) so that we can use it with PEBS.
  2488. *
  2489. * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
  2490. * PEBS capable. However we can use INST_RETIRED.ANY_P
  2491. * (0x00c0), which is a PEBS capable event, to get the same
  2492. * count.
  2493. *
  2494. * INST_RETIRED.ANY_P counts the number of cycles that retires
  2495. * CNTMASK instructions. By setting CNTMASK to a value (16)
  2496. * larger than the maximum number of instructions that can be
  2497. * retired per cycle (4) and then inverting the condition, we
  2498. * count all cycles that retire 16 or less instructions, which
  2499. * is every cycle.
  2500. *
  2501. * Thereby we gain a PEBS capable cycle counter.
  2502. */
  2503. u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
  2504. alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
  2505. event->hw.config = alt_config;
  2506. }
  2507. }
  2508. static void intel_pebs_aliases_snb(struct perf_event *event)
  2509. {
  2510. if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
  2511. /*
  2512. * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
  2513. * (0x003c) so that we can use it with PEBS.
  2514. *
  2515. * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
  2516. * PEBS capable. However we can use UOPS_RETIRED.ALL
  2517. * (0x01c2), which is a PEBS capable event, to get the same
  2518. * count.
  2519. *
  2520. * UOPS_RETIRED.ALL counts the number of cycles that retires
  2521. * CNTMASK micro-ops. By setting CNTMASK to a value (16)
  2522. * larger than the maximum number of micro-ops that can be
  2523. * retired per cycle (4) and then inverting the condition, we
  2524. * count all cycles that retire 16 or less micro-ops, which
  2525. * is every cycle.
  2526. *
  2527. * Thereby we gain a PEBS capable cycle counter.
  2528. */
  2529. u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
  2530. alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
  2531. event->hw.config = alt_config;
  2532. }
  2533. }
  2534. static void intel_pebs_aliases_precdist(struct perf_event *event)
  2535. {
  2536. if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
  2537. /*
  2538. * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
  2539. * (0x003c) so that we can use it with PEBS.
  2540. *
  2541. * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
  2542. * PEBS capable. However we can use INST_RETIRED.PREC_DIST
  2543. * (0x01c0), which is a PEBS capable event, to get the same
  2544. * count.
  2545. *
  2546. * The PREC_DIST event has special support to minimize sample
  2547. * shadowing effects. One drawback is that it can be
  2548. * only programmed on counter 1, but that seems like an
  2549. * acceptable trade off.
  2550. */
  2551. u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
  2552. alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
  2553. event->hw.config = alt_config;
  2554. }
  2555. }
  2556. static void intel_pebs_aliases_ivb(struct perf_event *event)
  2557. {
  2558. if (event->attr.precise_ip < 3)
  2559. return intel_pebs_aliases_snb(event);
  2560. return intel_pebs_aliases_precdist(event);
  2561. }
  2562. static void intel_pebs_aliases_skl(struct perf_event *event)
  2563. {
  2564. if (event->attr.precise_ip < 3)
  2565. return intel_pebs_aliases_core2(event);
  2566. return intel_pebs_aliases_precdist(event);
  2567. }
  2568. static unsigned long intel_pmu_free_running_flags(struct perf_event *event)
  2569. {
  2570. unsigned long flags = x86_pmu.free_running_flags;
  2571. if (event->attr.use_clockid)
  2572. flags &= ~PERF_SAMPLE_TIME;
  2573. return flags;
  2574. }
  2575. static int intel_pmu_hw_config(struct perf_event *event)
  2576. {
  2577. int ret = x86_pmu_hw_config(event);
  2578. if (ret)
  2579. return ret;
  2580. if (event->attr.precise_ip) {
  2581. if (!event->attr.freq) {
  2582. event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
  2583. if (!(event->attr.sample_type &
  2584. ~intel_pmu_free_running_flags(event)))
  2585. event->hw.flags |= PERF_X86_EVENT_FREERUNNING;
  2586. }
  2587. if (x86_pmu.pebs_aliases)
  2588. x86_pmu.pebs_aliases(event);
  2589. }
  2590. if (needs_branch_stack(event)) {
  2591. ret = intel_pmu_setup_lbr_filter(event);
  2592. if (ret)
  2593. return ret;
  2594. /*
  2595. * BTS is set up earlier in this path, so don't account twice
  2596. */
  2597. if (!intel_pmu_has_bts(event)) {
  2598. /* disallow lbr if conflicting events are present */
  2599. if (x86_add_exclusive(x86_lbr_exclusive_lbr))
  2600. return -EBUSY;
  2601. event->destroy = hw_perf_lbr_event_destroy;
  2602. }
  2603. }
  2604. if (event->attr.type != PERF_TYPE_RAW)
  2605. return 0;
  2606. if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
  2607. return 0;
  2608. if (x86_pmu.version < 3)
  2609. return -EINVAL;
  2610. if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  2611. return -EACCES;
  2612. event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
  2613. return 0;
  2614. }
  2615. struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
  2616. {
  2617. if (x86_pmu.guest_get_msrs)
  2618. return x86_pmu.guest_get_msrs(nr);
  2619. *nr = 0;
  2620. return NULL;
  2621. }
  2622. EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
  2623. static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
  2624. {
  2625. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  2626. struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
  2627. arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
  2628. arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
  2629. arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
  2630. /*
  2631. * If PMU counter has PEBS enabled it is not enough to disable counter
  2632. * on a guest entry since PEBS memory write can overshoot guest entry
  2633. * and corrupt guest memory. Disabling PEBS solves the problem.
  2634. */
  2635. arr[1].msr = MSR_IA32_PEBS_ENABLE;
  2636. arr[1].host = cpuc->pebs_enabled;
  2637. arr[1].guest = 0;
  2638. *nr = 2;
  2639. return arr;
  2640. }
  2641. static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
  2642. {
  2643. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  2644. struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
  2645. int idx;
  2646. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  2647. struct perf_event *event = cpuc->events[idx];
  2648. arr[idx].msr = x86_pmu_config_addr(idx);
  2649. arr[idx].host = arr[idx].guest = 0;
  2650. if (!test_bit(idx, cpuc->active_mask))
  2651. continue;
  2652. arr[idx].host = arr[idx].guest =
  2653. event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
  2654. if (event->attr.exclude_host)
  2655. arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  2656. else if (event->attr.exclude_guest)
  2657. arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  2658. }
  2659. *nr = x86_pmu.num_counters;
  2660. return arr;
  2661. }
  2662. static void core_pmu_enable_event(struct perf_event *event)
  2663. {
  2664. if (!event->attr.exclude_host)
  2665. x86_pmu_enable_event(event);
  2666. }
  2667. static void core_pmu_enable_all(int added)
  2668. {
  2669. struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
  2670. int idx;
  2671. for (idx = 0; idx < x86_pmu.num_counters; idx++) {
  2672. struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
  2673. if (!test_bit(idx, cpuc->active_mask) ||
  2674. cpuc->events[idx]->attr.exclude_host)
  2675. continue;
  2676. __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
  2677. }
  2678. }
  2679. static int hsw_hw_config(struct perf_event *event)
  2680. {
  2681. int ret = intel_pmu_hw_config(event);
  2682. if (ret)
  2683. return ret;
  2684. if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
  2685. return 0;
  2686. event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
  2687. /*
  2688. * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
  2689. * PEBS or in ANY thread mode. Since the results are non-sensical forbid
  2690. * this combination.
  2691. */
  2692. if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
  2693. ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
  2694. event->attr.precise_ip > 0))
  2695. return -EOPNOTSUPP;
  2696. if (event_is_checkpointed(event)) {
  2697. /*
  2698. * Sampling of checkpointed events can cause situations where
  2699. * the CPU constantly aborts because of a overflow, which is
  2700. * then checkpointed back and ignored. Forbid checkpointing
  2701. * for sampling.
  2702. *
  2703. * But still allow a long sampling period, so that perf stat
  2704. * from KVM works.
  2705. */
  2706. if (event->attr.sample_period > 0 &&
  2707. event->attr.sample_period < 0x7fffffff)
  2708. return -EOPNOTSUPP;
  2709. }
  2710. return 0;
  2711. }
  2712. static struct event_constraint counter2_constraint =
  2713. EVENT_CONSTRAINT(0, 0x4, 0);
  2714. static struct event_constraint *
  2715. hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
  2716. struct perf_event *event)
  2717. {
  2718. struct event_constraint *c;
  2719. c = intel_get_event_constraints(cpuc, idx, event);
  2720. /* Handle special quirk on in_tx_checkpointed only in counter 2 */
  2721. if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
  2722. if (c->idxmsk64 & (1U << 2))
  2723. return &counter2_constraint;
  2724. return &emptyconstraint;
  2725. }
  2726. return c;
  2727. }
  2728. /*
  2729. * Broadwell:
  2730. *
  2731. * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
  2732. * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
  2733. * the two to enforce a minimum period of 128 (the smallest value that has bits
  2734. * 0-5 cleared and >= 100).
  2735. *
  2736. * Because of how the code in x86_perf_event_set_period() works, the truncation
  2737. * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
  2738. * to make up for the 'lost' events due to carrying the 'error' in period_left.
  2739. *
  2740. * Therefore the effective (average) period matches the requested period,
  2741. * despite coarser hardware granularity.
  2742. */
  2743. static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
  2744. {
  2745. if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
  2746. X86_CONFIG(.event=0xc0, .umask=0x01)) {
  2747. if (left < 128)
  2748. left = 128;
  2749. left &= ~0x3fu;
  2750. }
  2751. return left;
  2752. }
  2753. PMU_FORMAT_ATTR(event, "config:0-7" );
  2754. PMU_FORMAT_ATTR(umask, "config:8-15" );
  2755. PMU_FORMAT_ATTR(edge, "config:18" );
  2756. PMU_FORMAT_ATTR(pc, "config:19" );
  2757. PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
  2758. PMU_FORMAT_ATTR(inv, "config:23" );
  2759. PMU_FORMAT_ATTR(cmask, "config:24-31" );
  2760. PMU_FORMAT_ATTR(in_tx, "config:32");
  2761. PMU_FORMAT_ATTR(in_tx_cp, "config:33");
  2762. static struct attribute *intel_arch_formats_attr[] = {
  2763. &format_attr_event.attr,
  2764. &format_attr_umask.attr,
  2765. &format_attr_edge.attr,
  2766. &format_attr_pc.attr,
  2767. &format_attr_inv.attr,
  2768. &format_attr_cmask.attr,
  2769. NULL,
  2770. };
  2771. ssize_t intel_event_sysfs_show(char *page, u64 config)
  2772. {
  2773. u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
  2774. return x86_event_sysfs_show(page, config, event);
  2775. }
  2776. struct intel_shared_regs *allocate_shared_regs(int cpu)
  2777. {
  2778. struct intel_shared_regs *regs;
  2779. int i;
  2780. regs = kzalloc_node(sizeof(struct intel_shared_regs),
  2781. GFP_KERNEL, cpu_to_node(cpu));
  2782. if (regs) {
  2783. /*
  2784. * initialize the locks to keep lockdep happy
  2785. */
  2786. for (i = 0; i < EXTRA_REG_MAX; i++)
  2787. raw_spin_lock_init(&regs->regs[i].lock);
  2788. regs->core_id = -1;
  2789. }
  2790. return regs;
  2791. }
  2792. static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
  2793. {
  2794. struct intel_excl_cntrs *c;
  2795. c = kzalloc_node(sizeof(struct intel_excl_cntrs),
  2796. GFP_KERNEL, cpu_to_node(cpu));
  2797. if (c) {
  2798. raw_spin_lock_init(&c->lock);
  2799. c->core_id = -1;
  2800. }
  2801. return c;
  2802. }
  2803. static int intel_pmu_cpu_prepare(int cpu)
  2804. {
  2805. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  2806. if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
  2807. cpuc->shared_regs = allocate_shared_regs(cpu);
  2808. if (!cpuc->shared_regs)
  2809. goto err;
  2810. }
  2811. if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
  2812. size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
  2813. cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
  2814. if (!cpuc->constraint_list)
  2815. goto err_shared_regs;
  2816. cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
  2817. if (!cpuc->excl_cntrs)
  2818. goto err_constraint_list;
  2819. cpuc->excl_thread_id = 0;
  2820. }
  2821. return 0;
  2822. err_constraint_list:
  2823. kfree(cpuc->constraint_list);
  2824. cpuc->constraint_list = NULL;
  2825. err_shared_regs:
  2826. kfree(cpuc->shared_regs);
  2827. cpuc->shared_regs = NULL;
  2828. err:
  2829. return -ENOMEM;
  2830. }
  2831. static void intel_pmu_cpu_starting(int cpu)
  2832. {
  2833. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  2834. int core_id = topology_core_id(cpu);
  2835. int i;
  2836. init_debug_store_on_cpu(cpu);
  2837. /*
  2838. * Deal with CPUs that don't clear their LBRs on power-up.
  2839. */
  2840. intel_pmu_lbr_reset();
  2841. cpuc->lbr_sel = NULL;
  2842. if (!cpuc->shared_regs)
  2843. return;
  2844. if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
  2845. for_each_cpu(i, topology_sibling_cpumask(cpu)) {
  2846. struct intel_shared_regs *pc;
  2847. pc = per_cpu(cpu_hw_events, i).shared_regs;
  2848. if (pc && pc->core_id == core_id) {
  2849. cpuc->kfree_on_online[0] = cpuc->shared_regs;
  2850. cpuc->shared_regs = pc;
  2851. break;
  2852. }
  2853. }
  2854. cpuc->shared_regs->core_id = core_id;
  2855. cpuc->shared_regs->refcnt++;
  2856. }
  2857. if (x86_pmu.lbr_sel_map)
  2858. cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
  2859. if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
  2860. for_each_cpu(i, topology_sibling_cpumask(cpu)) {
  2861. struct intel_excl_cntrs *c;
  2862. c = per_cpu(cpu_hw_events, i).excl_cntrs;
  2863. if (c && c->core_id == core_id) {
  2864. cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
  2865. cpuc->excl_cntrs = c;
  2866. cpuc->excl_thread_id = 1;
  2867. break;
  2868. }
  2869. }
  2870. cpuc->excl_cntrs->core_id = core_id;
  2871. cpuc->excl_cntrs->refcnt++;
  2872. }
  2873. }
  2874. static void free_excl_cntrs(int cpu)
  2875. {
  2876. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  2877. struct intel_excl_cntrs *c;
  2878. c = cpuc->excl_cntrs;
  2879. if (c) {
  2880. if (c->core_id == -1 || --c->refcnt == 0)
  2881. kfree(c);
  2882. cpuc->excl_cntrs = NULL;
  2883. kfree(cpuc->constraint_list);
  2884. cpuc->constraint_list = NULL;
  2885. }
  2886. }
  2887. static void intel_pmu_cpu_dying(int cpu)
  2888. {
  2889. struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
  2890. struct intel_shared_regs *pc;
  2891. pc = cpuc->shared_regs;
  2892. if (pc) {
  2893. if (pc->core_id == -1 || --pc->refcnt == 0)
  2894. kfree(pc);
  2895. cpuc->shared_regs = NULL;
  2896. }
  2897. free_excl_cntrs(cpu);
  2898. fini_debug_store_on_cpu(cpu);
  2899. }
  2900. static void intel_pmu_sched_task(struct perf_event_context *ctx,
  2901. bool sched_in)
  2902. {
  2903. if (x86_pmu.pebs_active)
  2904. intel_pmu_pebs_sched_task(ctx, sched_in);
  2905. if (x86_pmu.lbr_nr)
  2906. intel_pmu_lbr_sched_task(ctx, sched_in);
  2907. }
  2908. PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
  2909. PMU_FORMAT_ATTR(ldlat, "config1:0-15");
  2910. PMU_FORMAT_ATTR(frontend, "config1:0-23");
  2911. static struct attribute *intel_arch3_formats_attr[] = {
  2912. &format_attr_event.attr,
  2913. &format_attr_umask.attr,
  2914. &format_attr_edge.attr,
  2915. &format_attr_pc.attr,
  2916. &format_attr_any.attr,
  2917. &format_attr_inv.attr,
  2918. &format_attr_cmask.attr,
  2919. &format_attr_in_tx.attr,
  2920. &format_attr_in_tx_cp.attr,
  2921. &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
  2922. &format_attr_ldlat.attr, /* PEBS load latency */
  2923. NULL,
  2924. };
  2925. static struct attribute *skl_format_attr[] = {
  2926. &format_attr_frontend.attr,
  2927. NULL,
  2928. };
  2929. static __initconst const struct x86_pmu core_pmu = {
  2930. .name = "core",
  2931. .handle_irq = x86_pmu_handle_irq,
  2932. .disable_all = x86_pmu_disable_all,
  2933. .enable_all = core_pmu_enable_all,
  2934. .enable = core_pmu_enable_event,
  2935. .disable = x86_pmu_disable_event,
  2936. .hw_config = x86_pmu_hw_config,
  2937. .schedule_events = x86_schedule_events,
  2938. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  2939. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  2940. .event_map = intel_pmu_event_map,
  2941. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  2942. .apic = 1,
  2943. .free_running_flags = PEBS_FREERUNNING_FLAGS,
  2944. /*
  2945. * Intel PMCs cannot be accessed sanely above 32-bit width,
  2946. * so we install an artificial 1<<31 period regardless of
  2947. * the generic event period:
  2948. */
  2949. .max_period = (1ULL<<31) - 1,
  2950. .get_event_constraints = intel_get_event_constraints,
  2951. .put_event_constraints = intel_put_event_constraints,
  2952. .event_constraints = intel_core_event_constraints,
  2953. .guest_get_msrs = core_guest_get_msrs,
  2954. .format_attrs = intel_arch_formats_attr,
  2955. .events_sysfs_show = intel_event_sysfs_show,
  2956. /*
  2957. * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
  2958. * together with PMU version 1 and thus be using core_pmu with
  2959. * shared_regs. We need following callbacks here to allocate
  2960. * it properly.
  2961. */
  2962. .cpu_prepare = intel_pmu_cpu_prepare,
  2963. .cpu_starting = intel_pmu_cpu_starting,
  2964. .cpu_dying = intel_pmu_cpu_dying,
  2965. };
  2966. static __initconst const struct x86_pmu intel_pmu = {
  2967. .name = "Intel",
  2968. .handle_irq = intel_pmu_handle_irq,
  2969. .disable_all = intel_pmu_disable_all,
  2970. .enable_all = intel_pmu_enable_all,
  2971. .enable = intel_pmu_enable_event,
  2972. .disable = intel_pmu_disable_event,
  2973. .add = intel_pmu_add_event,
  2974. .del = intel_pmu_del_event,
  2975. .hw_config = intel_pmu_hw_config,
  2976. .schedule_events = x86_schedule_events,
  2977. .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
  2978. .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
  2979. .event_map = intel_pmu_event_map,
  2980. .max_events = ARRAY_SIZE(intel_perfmon_event_map),
  2981. .apic = 1,
  2982. .free_running_flags = PEBS_FREERUNNING_FLAGS,
  2983. /*
  2984. * Intel PMCs cannot be accessed sanely above 32 bit width,
  2985. * so we install an artificial 1<<31 period regardless of
  2986. * the generic event period:
  2987. */
  2988. .max_period = (1ULL << 31) - 1,
  2989. .get_event_constraints = intel_get_event_constraints,
  2990. .put_event_constraints = intel_put_event_constraints,
  2991. .pebs_aliases = intel_pebs_aliases_core2,
  2992. .format_attrs = intel_arch3_formats_attr,
  2993. .events_sysfs_show = intel_event_sysfs_show,
  2994. .cpu_prepare = intel_pmu_cpu_prepare,
  2995. .cpu_starting = intel_pmu_cpu_starting,
  2996. .cpu_dying = intel_pmu_cpu_dying,
  2997. .guest_get_msrs = intel_guest_get_msrs,
  2998. .sched_task = intel_pmu_sched_task,
  2999. };
  3000. static __init void intel_clovertown_quirk(void)
  3001. {
  3002. /*
  3003. * PEBS is unreliable due to:
  3004. *
  3005. * AJ67 - PEBS may experience CPL leaks
  3006. * AJ68 - PEBS PMI may be delayed by one event
  3007. * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
  3008. * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
  3009. *
  3010. * AJ67 could be worked around by restricting the OS/USR flags.
  3011. * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
  3012. *
  3013. * AJ106 could possibly be worked around by not allowing LBR
  3014. * usage from PEBS, including the fixup.
  3015. * AJ68 could possibly be worked around by always programming
  3016. * a pebs_event_reset[0] value and coping with the lost events.
  3017. *
  3018. * But taken together it might just make sense to not enable PEBS on
  3019. * these chips.
  3020. */
  3021. pr_warn("PEBS disabled due to CPU errata\n");
  3022. x86_pmu.pebs = 0;
  3023. x86_pmu.pebs_constraints = NULL;
  3024. }
  3025. static int intel_snb_pebs_broken(int cpu)
  3026. {
  3027. u32 rev = UINT_MAX; /* default to broken for unknown models */
  3028. switch (cpu_data(cpu).x86_model) {
  3029. case INTEL_FAM6_SANDYBRIDGE:
  3030. rev = 0x28;
  3031. break;
  3032. case INTEL_FAM6_SANDYBRIDGE_X:
  3033. switch (cpu_data(cpu).x86_mask) {
  3034. case 6: rev = 0x618; break;
  3035. case 7: rev = 0x70c; break;
  3036. }
  3037. }
  3038. return (cpu_data(cpu).microcode < rev);
  3039. }
  3040. static void intel_snb_check_microcode(void)
  3041. {
  3042. int pebs_broken = 0;
  3043. int cpu;
  3044. get_online_cpus();
  3045. for_each_online_cpu(cpu) {
  3046. if ((pebs_broken = intel_snb_pebs_broken(cpu)))
  3047. break;
  3048. }
  3049. put_online_cpus();
  3050. if (pebs_broken == x86_pmu.pebs_broken)
  3051. return;
  3052. /*
  3053. * Serialized by the microcode lock..
  3054. */
  3055. if (x86_pmu.pebs_broken) {
  3056. pr_info("PEBS enabled due to microcode update\n");
  3057. x86_pmu.pebs_broken = 0;
  3058. } else {
  3059. pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
  3060. x86_pmu.pebs_broken = 1;
  3061. }
  3062. }
  3063. static bool is_lbr_from(unsigned long msr)
  3064. {
  3065. unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
  3066. return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
  3067. }
  3068. /*
  3069. * Under certain circumstances, access certain MSR may cause #GP.
  3070. * The function tests if the input MSR can be safely accessed.
  3071. */
  3072. static bool check_msr(unsigned long msr, u64 mask)
  3073. {
  3074. u64 val_old, val_new, val_tmp;
  3075. /*
  3076. * Read the current value, change it and read it back to see if it
  3077. * matches, this is needed to detect certain hardware emulators
  3078. * (qemu/kvm) that don't trap on the MSR access and always return 0s.
  3079. */
  3080. if (rdmsrl_safe(msr, &val_old))
  3081. return false;
  3082. /*
  3083. * Only change the bits which can be updated by wrmsrl.
  3084. */
  3085. val_tmp = val_old ^ mask;
  3086. if (is_lbr_from(msr))
  3087. val_tmp = lbr_from_signext_quirk_wr(val_tmp);
  3088. if (wrmsrl_safe(msr, val_tmp) ||
  3089. rdmsrl_safe(msr, &val_new))
  3090. return false;
  3091. /*
  3092. * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
  3093. * should equal rdmsrl()'s even with the quirk.
  3094. */
  3095. if (val_new != val_tmp)
  3096. return false;
  3097. if (is_lbr_from(msr))
  3098. val_old = lbr_from_signext_quirk_wr(val_old);
  3099. /* Here it's sure that the MSR can be safely accessed.
  3100. * Restore the old value and return.
  3101. */
  3102. wrmsrl(msr, val_old);
  3103. return true;
  3104. }
  3105. static __init void intel_sandybridge_quirk(void)
  3106. {
  3107. x86_pmu.check_microcode = intel_snb_check_microcode;
  3108. intel_snb_check_microcode();
  3109. }
  3110. static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
  3111. { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
  3112. { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
  3113. { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
  3114. { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
  3115. { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
  3116. { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
  3117. { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
  3118. };
  3119. static __init void intel_arch_events_quirk(void)
  3120. {
  3121. int bit;
  3122. /* disable event that reported as not presend by cpuid */
  3123. for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
  3124. intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
  3125. pr_warn("CPUID marked event: \'%s\' unavailable\n",
  3126. intel_arch_events_map[bit].name);
  3127. }
  3128. }
  3129. static __init void intel_nehalem_quirk(void)
  3130. {
  3131. union cpuid10_ebx ebx;
  3132. ebx.full = x86_pmu.events_maskl;
  3133. if (ebx.split.no_branch_misses_retired) {
  3134. /*
  3135. * Erratum AAJ80 detected, we work it around by using
  3136. * the BR_MISP_EXEC.ANY event. This will over-count
  3137. * branch-misses, but it's still much better than the
  3138. * architectural event which is often completely bogus:
  3139. */
  3140. intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
  3141. ebx.split.no_branch_misses_retired = 0;
  3142. x86_pmu.events_maskl = ebx.full;
  3143. pr_info("CPU erratum AAJ80 worked around\n");
  3144. }
  3145. }
  3146. /*
  3147. * enable software workaround for errata:
  3148. * SNB: BJ122
  3149. * IVB: BV98
  3150. * HSW: HSD29
  3151. *
  3152. * Only needed when HT is enabled. However detecting
  3153. * if HT is enabled is difficult (model specific). So instead,
  3154. * we enable the workaround in the early boot, and verify if
  3155. * it is needed in a later initcall phase once we have valid
  3156. * topology information to check if HT is actually enabled
  3157. */
  3158. static __init void intel_ht_bug(void)
  3159. {
  3160. x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
  3161. x86_pmu.start_scheduling = intel_start_scheduling;
  3162. x86_pmu.commit_scheduling = intel_commit_scheduling;
  3163. x86_pmu.stop_scheduling = intel_stop_scheduling;
  3164. }
  3165. EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
  3166. EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
  3167. /* Haswell special events */
  3168. EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
  3169. EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
  3170. EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
  3171. EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
  3172. EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
  3173. EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
  3174. EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
  3175. EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
  3176. EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
  3177. EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
  3178. EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
  3179. EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
  3180. static struct attribute *hsw_events_attrs[] = {
  3181. EVENT_PTR(tx_start),
  3182. EVENT_PTR(tx_commit),
  3183. EVENT_PTR(tx_abort),
  3184. EVENT_PTR(tx_capacity),
  3185. EVENT_PTR(tx_conflict),
  3186. EVENT_PTR(el_start),
  3187. EVENT_PTR(el_commit),
  3188. EVENT_PTR(el_abort),
  3189. EVENT_PTR(el_capacity),
  3190. EVENT_PTR(el_conflict),
  3191. EVENT_PTR(cycles_t),
  3192. EVENT_PTR(cycles_ct),
  3193. EVENT_PTR(mem_ld_hsw),
  3194. EVENT_PTR(mem_st_hsw),
  3195. EVENT_PTR(td_slots_issued),
  3196. EVENT_PTR(td_slots_retired),
  3197. EVENT_PTR(td_fetch_bubbles),
  3198. EVENT_PTR(td_total_slots),
  3199. EVENT_PTR(td_total_slots_scale),
  3200. EVENT_PTR(td_recovery_bubbles),
  3201. EVENT_PTR(td_recovery_bubbles_scale),
  3202. NULL
  3203. };
  3204. __init int intel_pmu_init(void)
  3205. {
  3206. union cpuid10_edx edx;
  3207. union cpuid10_eax eax;
  3208. union cpuid10_ebx ebx;
  3209. struct event_constraint *c;
  3210. unsigned int unused;
  3211. struct extra_reg *er;
  3212. int version, i;
  3213. if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
  3214. switch (boot_cpu_data.x86) {
  3215. case 0x6:
  3216. return p6_pmu_init();
  3217. case 0xb:
  3218. return knc_pmu_init();
  3219. case 0xf:
  3220. return p4_pmu_init();
  3221. }
  3222. return -ENODEV;
  3223. }
  3224. /*
  3225. * Check whether the Architectural PerfMon supports
  3226. * Branch Misses Retired hw_event or not.
  3227. */
  3228. cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
  3229. if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
  3230. return -ENODEV;
  3231. version = eax.split.version_id;
  3232. if (version < 2)
  3233. x86_pmu = core_pmu;
  3234. else
  3235. x86_pmu = intel_pmu;
  3236. x86_pmu.version = version;
  3237. x86_pmu.num_counters = eax.split.num_counters;
  3238. x86_pmu.cntval_bits = eax.split.bit_width;
  3239. x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
  3240. x86_pmu.events_maskl = ebx.full;
  3241. x86_pmu.events_mask_len = eax.split.mask_length;
  3242. x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
  3243. /*
  3244. * Quirk: v2 perfmon does not report fixed-purpose events, so
  3245. * assume at least 3 events, when not running in a hypervisor:
  3246. */
  3247. if (version > 1) {
  3248. int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
  3249. x86_pmu.num_counters_fixed =
  3250. max((int)edx.split.num_counters_fixed, assume);
  3251. }
  3252. if (boot_cpu_has(X86_FEATURE_PDCM)) {
  3253. u64 capabilities;
  3254. rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
  3255. x86_pmu.intel_cap.capabilities = capabilities;
  3256. }
  3257. intel_ds_init();
  3258. x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
  3259. /*
  3260. * Install the hw-cache-events table:
  3261. */
  3262. switch (boot_cpu_data.x86_model) {
  3263. case INTEL_FAM6_CORE_YONAH:
  3264. pr_cont("Core events, ");
  3265. break;
  3266. case INTEL_FAM6_CORE2_MEROM:
  3267. x86_add_quirk(intel_clovertown_quirk);
  3268. case INTEL_FAM6_CORE2_MEROM_L:
  3269. case INTEL_FAM6_CORE2_PENRYN:
  3270. case INTEL_FAM6_CORE2_DUNNINGTON:
  3271. memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
  3272. sizeof(hw_cache_event_ids));
  3273. intel_pmu_lbr_init_core();
  3274. x86_pmu.event_constraints = intel_core2_event_constraints;
  3275. x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
  3276. pr_cont("Core2 events, ");
  3277. break;
  3278. case INTEL_FAM6_NEHALEM:
  3279. case INTEL_FAM6_NEHALEM_EP:
  3280. case INTEL_FAM6_NEHALEM_EX:
  3281. memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
  3282. sizeof(hw_cache_event_ids));
  3283. memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
  3284. sizeof(hw_cache_extra_regs));
  3285. intel_pmu_lbr_init_nhm();
  3286. x86_pmu.event_constraints = intel_nehalem_event_constraints;
  3287. x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
  3288. x86_pmu.enable_all = intel_pmu_nhm_enable_all;
  3289. x86_pmu.extra_regs = intel_nehalem_extra_regs;
  3290. x86_pmu.cpu_events = nhm_events_attrs;
  3291. /* UOPS_ISSUED.STALLED_CYCLES */
  3292. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
  3293. X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
  3294. /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
  3295. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
  3296. X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
  3297. intel_pmu_pebs_data_source_nhm();
  3298. x86_add_quirk(intel_nehalem_quirk);
  3299. pr_cont("Nehalem events, ");
  3300. break;
  3301. case INTEL_FAM6_ATOM_PINEVIEW:
  3302. case INTEL_FAM6_ATOM_LINCROFT:
  3303. case INTEL_FAM6_ATOM_PENWELL:
  3304. case INTEL_FAM6_ATOM_CLOVERVIEW:
  3305. case INTEL_FAM6_ATOM_CEDARVIEW:
  3306. memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
  3307. sizeof(hw_cache_event_ids));
  3308. intel_pmu_lbr_init_atom();
  3309. x86_pmu.event_constraints = intel_gen_event_constraints;
  3310. x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
  3311. x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
  3312. pr_cont("Atom events, ");
  3313. break;
  3314. case INTEL_FAM6_ATOM_SILVERMONT1:
  3315. case INTEL_FAM6_ATOM_SILVERMONT2:
  3316. case INTEL_FAM6_ATOM_AIRMONT:
  3317. memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
  3318. sizeof(hw_cache_event_ids));
  3319. memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
  3320. sizeof(hw_cache_extra_regs));
  3321. intel_pmu_lbr_init_slm();
  3322. x86_pmu.event_constraints = intel_slm_event_constraints;
  3323. x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
  3324. x86_pmu.extra_regs = intel_slm_extra_regs;
  3325. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3326. x86_pmu.cpu_events = slm_events_attrs;
  3327. pr_cont("Silvermont events, ");
  3328. break;
  3329. case INTEL_FAM6_ATOM_GOLDMONT:
  3330. case INTEL_FAM6_ATOM_DENVERTON:
  3331. memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
  3332. sizeof(hw_cache_event_ids));
  3333. memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
  3334. sizeof(hw_cache_extra_regs));
  3335. intel_pmu_lbr_init_skl();
  3336. x86_pmu.event_constraints = intel_slm_event_constraints;
  3337. x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
  3338. x86_pmu.extra_regs = intel_glm_extra_regs;
  3339. /*
  3340. * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
  3341. * for precise cycles.
  3342. * :pp is identical to :ppp
  3343. */
  3344. x86_pmu.pebs_aliases = NULL;
  3345. x86_pmu.pebs_prec_dist = true;
  3346. x86_pmu.lbr_pt_coexist = true;
  3347. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3348. pr_cont("Goldmont events, ");
  3349. break;
  3350. case INTEL_FAM6_WESTMERE:
  3351. case INTEL_FAM6_WESTMERE_EP:
  3352. case INTEL_FAM6_WESTMERE_EX:
  3353. memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
  3354. sizeof(hw_cache_event_ids));
  3355. memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
  3356. sizeof(hw_cache_extra_regs));
  3357. intel_pmu_lbr_init_nhm();
  3358. x86_pmu.event_constraints = intel_westmere_event_constraints;
  3359. x86_pmu.enable_all = intel_pmu_nhm_enable_all;
  3360. x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
  3361. x86_pmu.extra_regs = intel_westmere_extra_regs;
  3362. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3363. x86_pmu.cpu_events = nhm_events_attrs;
  3364. /* UOPS_ISSUED.STALLED_CYCLES */
  3365. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
  3366. X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
  3367. /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
  3368. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
  3369. X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
  3370. intel_pmu_pebs_data_source_nhm();
  3371. pr_cont("Westmere events, ");
  3372. break;
  3373. case INTEL_FAM6_SANDYBRIDGE:
  3374. case INTEL_FAM6_SANDYBRIDGE_X:
  3375. x86_add_quirk(intel_sandybridge_quirk);
  3376. x86_add_quirk(intel_ht_bug);
  3377. memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
  3378. sizeof(hw_cache_event_ids));
  3379. memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
  3380. sizeof(hw_cache_extra_regs));
  3381. intel_pmu_lbr_init_snb();
  3382. x86_pmu.event_constraints = intel_snb_event_constraints;
  3383. x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
  3384. x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
  3385. if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
  3386. x86_pmu.extra_regs = intel_snbep_extra_regs;
  3387. else
  3388. x86_pmu.extra_regs = intel_snb_extra_regs;
  3389. /* all extra regs are per-cpu when HT is on */
  3390. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3391. x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
  3392. x86_pmu.cpu_events = snb_events_attrs;
  3393. /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
  3394. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
  3395. X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
  3396. /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
  3397. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
  3398. X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
  3399. pr_cont("SandyBridge events, ");
  3400. break;
  3401. case INTEL_FAM6_IVYBRIDGE:
  3402. case INTEL_FAM6_IVYBRIDGE_X:
  3403. x86_add_quirk(intel_ht_bug);
  3404. memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
  3405. sizeof(hw_cache_event_ids));
  3406. /* dTLB-load-misses on IVB is different than SNB */
  3407. hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
  3408. memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
  3409. sizeof(hw_cache_extra_regs));
  3410. intel_pmu_lbr_init_snb();
  3411. x86_pmu.event_constraints = intel_ivb_event_constraints;
  3412. x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
  3413. x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
  3414. x86_pmu.pebs_prec_dist = true;
  3415. if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
  3416. x86_pmu.extra_regs = intel_snbep_extra_regs;
  3417. else
  3418. x86_pmu.extra_regs = intel_snb_extra_regs;
  3419. /* all extra regs are per-cpu when HT is on */
  3420. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3421. x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
  3422. x86_pmu.cpu_events = snb_events_attrs;
  3423. /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
  3424. intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
  3425. X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
  3426. pr_cont("IvyBridge events, ");
  3427. break;
  3428. case INTEL_FAM6_HASWELL_CORE:
  3429. case INTEL_FAM6_HASWELL_X:
  3430. case INTEL_FAM6_HASWELL_ULT:
  3431. case INTEL_FAM6_HASWELL_GT3E:
  3432. x86_add_quirk(intel_ht_bug);
  3433. x86_pmu.late_ack = true;
  3434. memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
  3435. memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
  3436. intel_pmu_lbr_init_hsw();
  3437. x86_pmu.event_constraints = intel_hsw_event_constraints;
  3438. x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
  3439. x86_pmu.extra_regs = intel_snbep_extra_regs;
  3440. x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
  3441. x86_pmu.pebs_prec_dist = true;
  3442. /* all extra regs are per-cpu when HT is on */
  3443. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3444. x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
  3445. x86_pmu.hw_config = hsw_hw_config;
  3446. x86_pmu.get_event_constraints = hsw_get_event_constraints;
  3447. x86_pmu.cpu_events = hsw_events_attrs;
  3448. x86_pmu.lbr_double_abort = true;
  3449. pr_cont("Haswell events, ");
  3450. break;
  3451. case INTEL_FAM6_BROADWELL_CORE:
  3452. case INTEL_FAM6_BROADWELL_XEON_D:
  3453. case INTEL_FAM6_BROADWELL_GT3E:
  3454. case INTEL_FAM6_BROADWELL_X:
  3455. x86_pmu.late_ack = true;
  3456. memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
  3457. memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
  3458. /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
  3459. hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
  3460. BDW_L3_MISS|HSW_SNOOP_DRAM;
  3461. hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
  3462. HSW_SNOOP_DRAM;
  3463. hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
  3464. BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
  3465. hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
  3466. BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
  3467. intel_pmu_lbr_init_hsw();
  3468. x86_pmu.event_constraints = intel_bdw_event_constraints;
  3469. x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
  3470. x86_pmu.extra_regs = intel_snbep_extra_regs;
  3471. x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
  3472. x86_pmu.pebs_prec_dist = true;
  3473. /* all extra regs are per-cpu when HT is on */
  3474. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3475. x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
  3476. x86_pmu.hw_config = hsw_hw_config;
  3477. x86_pmu.get_event_constraints = hsw_get_event_constraints;
  3478. x86_pmu.cpu_events = hsw_events_attrs;
  3479. x86_pmu.limit_period = bdw_limit_period;
  3480. pr_cont("Broadwell events, ");
  3481. break;
  3482. case INTEL_FAM6_XEON_PHI_KNL:
  3483. case INTEL_FAM6_XEON_PHI_KNM:
  3484. memcpy(hw_cache_event_ids,
  3485. slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
  3486. memcpy(hw_cache_extra_regs,
  3487. knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
  3488. intel_pmu_lbr_init_knl();
  3489. x86_pmu.event_constraints = intel_slm_event_constraints;
  3490. x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
  3491. x86_pmu.extra_regs = intel_knl_extra_regs;
  3492. /* all extra regs are per-cpu when HT is on */
  3493. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3494. x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
  3495. pr_cont("Knights Landing/Mill events, ");
  3496. break;
  3497. case INTEL_FAM6_SKYLAKE_MOBILE:
  3498. case INTEL_FAM6_SKYLAKE_DESKTOP:
  3499. case INTEL_FAM6_SKYLAKE_X:
  3500. case INTEL_FAM6_KABYLAKE_MOBILE:
  3501. case INTEL_FAM6_KABYLAKE_DESKTOP:
  3502. x86_pmu.late_ack = true;
  3503. memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
  3504. memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
  3505. intel_pmu_lbr_init_skl();
  3506. /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
  3507. event_attr_td_recovery_bubbles.event_str_noht =
  3508. "event=0xd,umask=0x1,cmask=1";
  3509. event_attr_td_recovery_bubbles.event_str_ht =
  3510. "event=0xd,umask=0x1,cmask=1,any=1";
  3511. x86_pmu.event_constraints = intel_skl_event_constraints;
  3512. x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
  3513. x86_pmu.extra_regs = intel_skl_extra_regs;
  3514. x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
  3515. x86_pmu.pebs_prec_dist = true;
  3516. /* all extra regs are per-cpu when HT is on */
  3517. x86_pmu.flags |= PMU_FL_HAS_RSP_1;
  3518. x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
  3519. x86_pmu.hw_config = hsw_hw_config;
  3520. x86_pmu.get_event_constraints = hsw_get_event_constraints;
  3521. x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
  3522. skl_format_attr);
  3523. WARN_ON(!x86_pmu.format_attrs);
  3524. x86_pmu.cpu_events = hsw_events_attrs;
  3525. pr_cont("Skylake events, ");
  3526. break;
  3527. default:
  3528. switch (x86_pmu.version) {
  3529. case 1:
  3530. x86_pmu.event_constraints = intel_v1_event_constraints;
  3531. pr_cont("generic architected perfmon v1, ");
  3532. break;
  3533. default:
  3534. /*
  3535. * default constraints for v2 and up
  3536. */
  3537. x86_pmu.event_constraints = intel_gen_event_constraints;
  3538. pr_cont("generic architected perfmon, ");
  3539. break;
  3540. }
  3541. }
  3542. if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
  3543. WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
  3544. x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
  3545. x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
  3546. }
  3547. x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
  3548. if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
  3549. WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
  3550. x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
  3551. x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
  3552. }
  3553. x86_pmu.intel_ctrl |=
  3554. ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
  3555. if (x86_pmu.event_constraints) {
  3556. /*
  3557. * event on fixed counter2 (REF_CYCLES) only works on this
  3558. * counter, so do not extend mask to generic counters
  3559. */
  3560. for_each_event_constraint(c, x86_pmu.event_constraints) {
  3561. if (c->cmask == FIXED_EVENT_FLAGS
  3562. && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
  3563. c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
  3564. }
  3565. c->idxmsk64 &=
  3566. ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
  3567. c->weight = hweight64(c->idxmsk64);
  3568. }
  3569. }
  3570. /*
  3571. * Access LBR MSR may cause #GP under certain circumstances.
  3572. * E.g. KVM doesn't support LBR MSR
  3573. * Check all LBT MSR here.
  3574. * Disable LBR access if any LBR MSRs can not be accessed.
  3575. */
  3576. if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
  3577. x86_pmu.lbr_nr = 0;
  3578. for (i = 0; i < x86_pmu.lbr_nr; i++) {
  3579. if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
  3580. check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
  3581. x86_pmu.lbr_nr = 0;
  3582. }
  3583. if (x86_pmu.lbr_nr)
  3584. pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
  3585. /*
  3586. * Access extra MSR may cause #GP under certain circumstances.
  3587. * E.g. KVM doesn't support offcore event
  3588. * Check all extra_regs here.
  3589. */
  3590. if (x86_pmu.extra_regs) {
  3591. for (er = x86_pmu.extra_regs; er->msr; er++) {
  3592. er->extra_msr_access = check_msr(er->msr, 0x11UL);
  3593. /* Disable LBR select mapping */
  3594. if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
  3595. x86_pmu.lbr_sel_map = NULL;
  3596. }
  3597. }
  3598. /* Support full width counters using alternative MSR range */
  3599. if (x86_pmu.intel_cap.full_width_write) {
  3600. x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
  3601. x86_pmu.perfctr = MSR_IA32_PMC0;
  3602. pr_cont("full-width counters, ");
  3603. }
  3604. return 0;
  3605. }
  3606. /*
  3607. * HT bug: phase 2 init
  3608. * Called once we have valid topology information to check
  3609. * whether or not HT is enabled
  3610. * If HT is off, then we disable the workaround
  3611. */
  3612. static __init int fixup_ht_bug(void)
  3613. {
  3614. int c;
  3615. /*
  3616. * problem not present on this CPU model, nothing to do
  3617. */
  3618. if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
  3619. return 0;
  3620. if (topology_max_smt_threads() > 1) {
  3621. pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
  3622. return 0;
  3623. }
  3624. if (lockup_detector_suspend() != 0) {
  3625. pr_debug("failed to disable PMU erratum BJ122, BV98, HSD29 workaround\n");
  3626. return 0;
  3627. }
  3628. x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
  3629. x86_pmu.start_scheduling = NULL;
  3630. x86_pmu.commit_scheduling = NULL;
  3631. x86_pmu.stop_scheduling = NULL;
  3632. lockup_detector_resume();
  3633. get_online_cpus();
  3634. for_each_online_cpu(c) {
  3635. free_excl_cntrs(c);
  3636. }
  3637. put_online_cpus();
  3638. pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
  3639. return 0;
  3640. }
  3641. subsys_initcall(fixup_ht_bug)