urb.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970
  1. /*
  2. * Released under the GPLv2 only.
  3. * SPDX-License-Identifier: GPL-2.0
  4. */
  5. #include <linux/module.h>
  6. #include <linux/string.h>
  7. #include <linux/bitops.h>
  8. #include <linux/slab.h>
  9. #include <linux/log2.h>
  10. #include <linux/usb.h>
  11. #include <linux/wait.h>
  12. #include <linux/usb/hcd.h>
  13. #include <linux/scatterlist.h>
  14. #define to_urb(d) container_of(d, struct urb, kref)
  15. static void urb_destroy(struct kref *kref)
  16. {
  17. struct urb *urb = to_urb(kref);
  18. if (urb->transfer_flags & URB_FREE_BUFFER)
  19. kfree(urb->transfer_buffer);
  20. kfree(urb);
  21. }
  22. /**
  23. * usb_init_urb - initializes a urb so that it can be used by a USB driver
  24. * @urb: pointer to the urb to initialize
  25. *
  26. * Initializes a urb so that the USB subsystem can use it properly.
  27. *
  28. * If a urb is created with a call to usb_alloc_urb() it is not
  29. * necessary to call this function. Only use this if you allocate the
  30. * space for a struct urb on your own. If you call this function, be
  31. * careful when freeing the memory for your urb that it is no longer in
  32. * use by the USB core.
  33. *
  34. * Only use this function if you _really_ understand what you are doing.
  35. */
  36. void usb_init_urb(struct urb *urb)
  37. {
  38. if (urb) {
  39. memset(urb, 0, sizeof(*urb));
  40. kref_init(&urb->kref);
  41. INIT_LIST_HEAD(&urb->anchor_list);
  42. }
  43. }
  44. EXPORT_SYMBOL_GPL(usb_init_urb);
  45. /**
  46. * usb_alloc_urb - creates a new urb for a USB driver to use
  47. * @iso_packets: number of iso packets for this urb
  48. * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
  49. * valid options for this.
  50. *
  51. * Creates an urb for the USB driver to use, initializes a few internal
  52. * structures, increments the usage counter, and returns a pointer to it.
  53. *
  54. * If the driver want to use this urb for interrupt, control, or bulk
  55. * endpoints, pass '0' as the number of iso packets.
  56. *
  57. * The driver must call usb_free_urb() when it is finished with the urb.
  58. *
  59. * Return: A pointer to the new urb, or %NULL if no memory is available.
  60. */
  61. struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
  62. {
  63. struct urb *urb;
  64. urb = kmalloc(sizeof(struct urb) +
  65. iso_packets * sizeof(struct usb_iso_packet_descriptor),
  66. mem_flags);
  67. if (!urb)
  68. return NULL;
  69. usb_init_urb(urb);
  70. return urb;
  71. }
  72. EXPORT_SYMBOL_GPL(usb_alloc_urb);
  73. /**
  74. * usb_free_urb - frees the memory used by a urb when all users of it are finished
  75. * @urb: pointer to the urb to free, may be NULL
  76. *
  77. * Must be called when a user of a urb is finished with it. When the last user
  78. * of the urb calls this function, the memory of the urb is freed.
  79. *
  80. * Note: The transfer buffer associated with the urb is not freed unless the
  81. * URB_FREE_BUFFER transfer flag is set.
  82. */
  83. void usb_free_urb(struct urb *urb)
  84. {
  85. if (urb)
  86. kref_put(&urb->kref, urb_destroy);
  87. }
  88. EXPORT_SYMBOL_GPL(usb_free_urb);
  89. /**
  90. * usb_get_urb - increments the reference count of the urb
  91. * @urb: pointer to the urb to modify, may be NULL
  92. *
  93. * This must be called whenever a urb is transferred from a device driver to a
  94. * host controller driver. This allows proper reference counting to happen
  95. * for urbs.
  96. *
  97. * Return: A pointer to the urb with the incremented reference counter.
  98. */
  99. struct urb *usb_get_urb(struct urb *urb)
  100. {
  101. if (urb)
  102. kref_get(&urb->kref);
  103. return urb;
  104. }
  105. EXPORT_SYMBOL_GPL(usb_get_urb);
  106. /**
  107. * usb_anchor_urb - anchors an URB while it is processed
  108. * @urb: pointer to the urb to anchor
  109. * @anchor: pointer to the anchor
  110. *
  111. * This can be called to have access to URBs which are to be executed
  112. * without bothering to track them
  113. */
  114. void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
  115. {
  116. unsigned long flags;
  117. spin_lock_irqsave(&anchor->lock, flags);
  118. usb_get_urb(urb);
  119. list_add_tail(&urb->anchor_list, &anchor->urb_list);
  120. urb->anchor = anchor;
  121. if (unlikely(anchor->poisoned))
  122. atomic_inc(&urb->reject);
  123. spin_unlock_irqrestore(&anchor->lock, flags);
  124. }
  125. EXPORT_SYMBOL_GPL(usb_anchor_urb);
  126. static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
  127. {
  128. return atomic_read(&anchor->suspend_wakeups) == 0 &&
  129. list_empty(&anchor->urb_list);
  130. }
  131. /* Callers must hold anchor->lock */
  132. static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
  133. {
  134. urb->anchor = NULL;
  135. list_del(&urb->anchor_list);
  136. usb_put_urb(urb);
  137. if (usb_anchor_check_wakeup(anchor))
  138. wake_up(&anchor->wait);
  139. }
  140. /**
  141. * usb_unanchor_urb - unanchors an URB
  142. * @urb: pointer to the urb to anchor
  143. *
  144. * Call this to stop the system keeping track of this URB
  145. */
  146. void usb_unanchor_urb(struct urb *urb)
  147. {
  148. unsigned long flags;
  149. struct usb_anchor *anchor;
  150. if (!urb)
  151. return;
  152. anchor = urb->anchor;
  153. if (!anchor)
  154. return;
  155. spin_lock_irqsave(&anchor->lock, flags);
  156. /*
  157. * At this point, we could be competing with another thread which
  158. * has the same intention. To protect the urb from being unanchored
  159. * twice, only the winner of the race gets the job.
  160. */
  161. if (likely(anchor == urb->anchor))
  162. __usb_unanchor_urb(urb, anchor);
  163. spin_unlock_irqrestore(&anchor->lock, flags);
  164. }
  165. EXPORT_SYMBOL_GPL(usb_unanchor_urb);
  166. /*-------------------------------------------------------------------*/
  167. /**
  168. * usb_submit_urb - issue an asynchronous transfer request for an endpoint
  169. * @urb: pointer to the urb describing the request
  170. * @mem_flags: the type of memory to allocate, see kmalloc() for a list
  171. * of valid options for this.
  172. *
  173. * This submits a transfer request, and transfers control of the URB
  174. * describing that request to the USB subsystem. Request completion will
  175. * be indicated later, asynchronously, by calling the completion handler.
  176. * The three types of completion are success, error, and unlink
  177. * (a software-induced fault, also called "request cancellation").
  178. *
  179. * URBs may be submitted in interrupt context.
  180. *
  181. * The caller must have correctly initialized the URB before submitting
  182. * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
  183. * available to ensure that most fields are correctly initialized, for
  184. * the particular kind of transfer, although they will not initialize
  185. * any transfer flags.
  186. *
  187. * If the submission is successful, the complete() callback from the URB
  188. * will be called exactly once, when the USB core and Host Controller Driver
  189. * (HCD) are finished with the URB. When the completion function is called,
  190. * control of the URB is returned to the device driver which issued the
  191. * request. The completion handler may then immediately free or reuse that
  192. * URB.
  193. *
  194. * With few exceptions, USB device drivers should never access URB fields
  195. * provided by usbcore or the HCD until its complete() is called.
  196. * The exceptions relate to periodic transfer scheduling. For both
  197. * interrupt and isochronous urbs, as part of successful URB submission
  198. * urb->interval is modified to reflect the actual transfer period used
  199. * (normally some power of two units). And for isochronous urbs,
  200. * urb->start_frame is modified to reflect when the URB's transfers were
  201. * scheduled to start.
  202. *
  203. * Not all isochronous transfer scheduling policies will work, but most
  204. * host controller drivers should easily handle ISO queues going from now
  205. * until 10-200 msec into the future. Drivers should try to keep at
  206. * least one or two msec of data in the queue; many controllers require
  207. * that new transfers start at least 1 msec in the future when they are
  208. * added. If the driver is unable to keep up and the queue empties out,
  209. * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
  210. * If the flag is set, or if the queue is idle, then the URB is always
  211. * assigned to the first available (and not yet expired) slot in the
  212. * endpoint's schedule. If the flag is not set and the queue is active
  213. * then the URB is always assigned to the next slot in the schedule
  214. * following the end of the endpoint's previous URB, even if that slot is
  215. * in the past. When a packet is assigned in this way to a slot that has
  216. * already expired, the packet is not transmitted and the corresponding
  217. * usb_iso_packet_descriptor's status field will return -EXDEV. If this
  218. * would happen to all the packets in the URB, submission fails with a
  219. * -EXDEV error code.
  220. *
  221. * For control endpoints, the synchronous usb_control_msg() call is
  222. * often used (in non-interrupt context) instead of this call.
  223. * That is often used through convenience wrappers, for the requests
  224. * that are standardized in the USB 2.0 specification. For bulk
  225. * endpoints, a synchronous usb_bulk_msg() call is available.
  226. *
  227. * Return:
  228. * 0 on successful submissions. A negative error number otherwise.
  229. *
  230. * Request Queuing:
  231. *
  232. * URBs may be submitted to endpoints before previous ones complete, to
  233. * minimize the impact of interrupt latencies and system overhead on data
  234. * throughput. With that queuing policy, an endpoint's queue would never
  235. * be empty. This is required for continuous isochronous data streams,
  236. * and may also be required for some kinds of interrupt transfers. Such
  237. * queuing also maximizes bandwidth utilization by letting USB controllers
  238. * start work on later requests before driver software has finished the
  239. * completion processing for earlier (successful) requests.
  240. *
  241. * As of Linux 2.6, all USB endpoint transfer queues support depths greater
  242. * than one. This was previously a HCD-specific behavior, except for ISO
  243. * transfers. Non-isochronous endpoint queues are inactive during cleanup
  244. * after faults (transfer errors or cancellation).
  245. *
  246. * Reserved Bandwidth Transfers:
  247. *
  248. * Periodic transfers (interrupt or isochronous) are performed repeatedly,
  249. * using the interval specified in the urb. Submitting the first urb to
  250. * the endpoint reserves the bandwidth necessary to make those transfers.
  251. * If the USB subsystem can't allocate sufficient bandwidth to perform
  252. * the periodic request, submitting such a periodic request should fail.
  253. *
  254. * For devices under xHCI, the bandwidth is reserved at configuration time, or
  255. * when the alt setting is selected. If there is not enough bus bandwidth, the
  256. * configuration/alt setting request will fail. Therefore, submissions to
  257. * periodic endpoints on devices under xHCI should never fail due to bandwidth
  258. * constraints.
  259. *
  260. * Device drivers must explicitly request that repetition, by ensuring that
  261. * some URB is always on the endpoint's queue (except possibly for short
  262. * periods during completion callbacks). When there is no longer an urb
  263. * queued, the endpoint's bandwidth reservation is canceled. This means
  264. * drivers can use their completion handlers to ensure they keep bandwidth
  265. * they need, by reinitializing and resubmitting the just-completed urb
  266. * until the driver longer needs that periodic bandwidth.
  267. *
  268. * Memory Flags:
  269. *
  270. * The general rules for how to decide which mem_flags to use
  271. * are the same as for kmalloc. There are four
  272. * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
  273. * GFP_ATOMIC.
  274. *
  275. * GFP_NOFS is not ever used, as it has not been implemented yet.
  276. *
  277. * GFP_ATOMIC is used when
  278. * (a) you are inside a completion handler, an interrupt, bottom half,
  279. * tasklet or timer, or
  280. * (b) you are holding a spinlock or rwlock (does not apply to
  281. * semaphores), or
  282. * (c) current->state != TASK_RUNNING, this is the case only after
  283. * you've changed it.
  284. *
  285. * GFP_NOIO is used in the block io path and error handling of storage
  286. * devices.
  287. *
  288. * All other situations use GFP_KERNEL.
  289. *
  290. * Some more specific rules for mem_flags can be inferred, such as
  291. * (1) start_xmit, timeout, and receive methods of network drivers must
  292. * use GFP_ATOMIC (they are called with a spinlock held);
  293. * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
  294. * called with a spinlock held);
  295. * (3) If you use a kernel thread with a network driver you must use
  296. * GFP_NOIO, unless (b) or (c) apply;
  297. * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
  298. * apply or your are in a storage driver's block io path;
  299. * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
  300. * (6) changing firmware on a running storage or net device uses
  301. * GFP_NOIO, unless b) or c) apply
  302. *
  303. */
  304. int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
  305. {
  306. static int pipetypes[4] = {
  307. PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
  308. };
  309. int xfertype, max;
  310. struct usb_device *dev;
  311. struct usb_host_endpoint *ep;
  312. int is_out;
  313. unsigned int allowed;
  314. if (!urb || !urb->complete)
  315. return -EINVAL;
  316. if (urb->hcpriv) {
  317. WARN_ONCE(1, "URB %p submitted while active\n", urb);
  318. return -EBUSY;
  319. }
  320. dev = urb->dev;
  321. if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
  322. return -ENODEV;
  323. /* For now, get the endpoint from the pipe. Eventually drivers
  324. * will be required to set urb->ep directly and we will eliminate
  325. * urb->pipe.
  326. */
  327. ep = usb_pipe_endpoint(dev, urb->pipe);
  328. if (!ep)
  329. return -ENOENT;
  330. urb->ep = ep;
  331. urb->status = -EINPROGRESS;
  332. urb->actual_length = 0;
  333. /* Lots of sanity checks, so HCDs can rely on clean data
  334. * and don't need to duplicate tests
  335. */
  336. xfertype = usb_endpoint_type(&ep->desc);
  337. if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
  338. struct usb_ctrlrequest *setup =
  339. (struct usb_ctrlrequest *) urb->setup_packet;
  340. if (!setup)
  341. return -ENOEXEC;
  342. is_out = !(setup->bRequestType & USB_DIR_IN) ||
  343. !setup->wLength;
  344. } else {
  345. is_out = usb_endpoint_dir_out(&ep->desc);
  346. }
  347. /* Clear the internal flags and cache the direction for later use */
  348. urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
  349. URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
  350. URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
  351. URB_DMA_SG_COMBINED);
  352. urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
  353. if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
  354. dev->state < USB_STATE_CONFIGURED)
  355. return -ENODEV;
  356. max = usb_endpoint_maxp(&ep->desc);
  357. if (max <= 0) {
  358. dev_dbg(&dev->dev,
  359. "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
  360. usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
  361. __func__, max);
  362. return -EMSGSIZE;
  363. }
  364. /* periodic transfers limit size per frame/uframe,
  365. * but drivers only control those sizes for ISO.
  366. * while we're checking, initialize return status.
  367. */
  368. if (xfertype == USB_ENDPOINT_XFER_ISOC) {
  369. int n, len;
  370. /* SuperSpeed isoc endpoints have up to 16 bursts of up to
  371. * 3 packets each
  372. */
  373. if (dev->speed >= USB_SPEED_SUPER) {
  374. int burst = 1 + ep->ss_ep_comp.bMaxBurst;
  375. int mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
  376. max *= burst;
  377. max *= mult;
  378. }
  379. /* "high bandwidth" mode, 1-3 packets/uframe? */
  380. if (dev->speed == USB_SPEED_HIGH)
  381. max *= usb_endpoint_maxp_mult(&ep->desc);
  382. if (urb->number_of_packets <= 0)
  383. return -EINVAL;
  384. for (n = 0; n < urb->number_of_packets; n++) {
  385. len = urb->iso_frame_desc[n].length;
  386. if (len < 0 || len > max)
  387. return -EMSGSIZE;
  388. urb->iso_frame_desc[n].status = -EXDEV;
  389. urb->iso_frame_desc[n].actual_length = 0;
  390. }
  391. } else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint &&
  392. dev->speed != USB_SPEED_WIRELESS) {
  393. struct scatterlist *sg;
  394. int i;
  395. for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
  396. if (sg->length % max)
  397. return -EINVAL;
  398. }
  399. /* the I/O buffer must be mapped/unmapped, except when length=0 */
  400. if (urb->transfer_buffer_length > INT_MAX)
  401. return -EMSGSIZE;
  402. /*
  403. * stuff that drivers shouldn't do, but which shouldn't
  404. * cause problems in HCDs if they get it wrong.
  405. */
  406. /* Check that the pipe's type matches the endpoint's type */
  407. if (usb_pipetype(urb->pipe) != pipetypes[xfertype])
  408. dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
  409. usb_pipetype(urb->pipe), pipetypes[xfertype]);
  410. /* Check against a simple/standard policy */
  411. allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
  412. URB_FREE_BUFFER);
  413. switch (xfertype) {
  414. case USB_ENDPOINT_XFER_BULK:
  415. case USB_ENDPOINT_XFER_INT:
  416. if (is_out)
  417. allowed |= URB_ZERO_PACKET;
  418. /* FALLTHROUGH */
  419. case USB_ENDPOINT_XFER_CONTROL:
  420. allowed |= URB_NO_FSBR; /* only affects UHCI */
  421. /* FALLTHROUGH */
  422. default: /* all non-iso endpoints */
  423. if (!is_out)
  424. allowed |= URB_SHORT_NOT_OK;
  425. break;
  426. case USB_ENDPOINT_XFER_ISOC:
  427. allowed |= URB_ISO_ASAP;
  428. break;
  429. }
  430. allowed &= urb->transfer_flags;
  431. /* warn if submitter gave bogus flags */
  432. if (allowed != urb->transfer_flags)
  433. dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
  434. urb->transfer_flags, allowed);
  435. /*
  436. * Force periodic transfer intervals to be legal values that are
  437. * a power of two (so HCDs don't need to).
  438. *
  439. * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC
  440. * supports different values... this uses EHCI/UHCI defaults (and
  441. * EHCI can use smaller non-default values).
  442. */
  443. switch (xfertype) {
  444. case USB_ENDPOINT_XFER_ISOC:
  445. case USB_ENDPOINT_XFER_INT:
  446. /* too small? */
  447. switch (dev->speed) {
  448. case USB_SPEED_WIRELESS:
  449. if ((urb->interval < 6)
  450. && (xfertype == USB_ENDPOINT_XFER_INT))
  451. return -EINVAL;
  452. default:
  453. if (urb->interval <= 0)
  454. return -EINVAL;
  455. break;
  456. }
  457. /* too big? */
  458. switch (dev->speed) {
  459. case USB_SPEED_SUPER_PLUS:
  460. case USB_SPEED_SUPER: /* units are 125us */
  461. /* Handle up to 2^(16-1) microframes */
  462. if (urb->interval > (1 << 15))
  463. return -EINVAL;
  464. max = 1 << 15;
  465. break;
  466. case USB_SPEED_WIRELESS:
  467. if (urb->interval > 16)
  468. return -EINVAL;
  469. break;
  470. case USB_SPEED_HIGH: /* units are microframes */
  471. /* NOTE usb handles 2^15 */
  472. if (urb->interval > (1024 * 8))
  473. urb->interval = 1024 * 8;
  474. max = 1024 * 8;
  475. break;
  476. case USB_SPEED_FULL: /* units are frames/msec */
  477. case USB_SPEED_LOW:
  478. if (xfertype == USB_ENDPOINT_XFER_INT) {
  479. if (urb->interval > 255)
  480. return -EINVAL;
  481. /* NOTE ohci only handles up to 32 */
  482. max = 128;
  483. } else {
  484. if (urb->interval > 1024)
  485. urb->interval = 1024;
  486. /* NOTE usb and ohci handle up to 2^15 */
  487. max = 1024;
  488. }
  489. break;
  490. default:
  491. return -EINVAL;
  492. }
  493. if (dev->speed != USB_SPEED_WIRELESS) {
  494. /* Round down to a power of 2, no more than max */
  495. urb->interval = min(max, 1 << ilog2(urb->interval));
  496. }
  497. }
  498. return usb_hcd_submit_urb(urb, mem_flags);
  499. }
  500. EXPORT_SYMBOL_GPL(usb_submit_urb);
  501. /*-------------------------------------------------------------------*/
  502. /**
  503. * usb_unlink_urb - abort/cancel a transfer request for an endpoint
  504. * @urb: pointer to urb describing a previously submitted request,
  505. * may be NULL
  506. *
  507. * This routine cancels an in-progress request. URBs complete only once
  508. * per submission, and may be canceled only once per submission.
  509. * Successful cancellation means termination of @urb will be expedited
  510. * and the completion handler will be called with a status code
  511. * indicating that the request has been canceled (rather than any other
  512. * code).
  513. *
  514. * Drivers should not call this routine or related routines, such as
  515. * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
  516. * method has returned. The disconnect function should synchronize with
  517. * a driver's I/O routines to insure that all URB-related activity has
  518. * completed before it returns.
  519. *
  520. * This request is asynchronous, however the HCD might call the ->complete()
  521. * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
  522. * must not hold any locks that may be taken by the completion function.
  523. * Success is indicated by returning -EINPROGRESS, at which time the URB will
  524. * probably not yet have been given back to the device driver. When it is
  525. * eventually called, the completion function will see @urb->status ==
  526. * -ECONNRESET.
  527. * Failure is indicated by usb_unlink_urb() returning any other value.
  528. * Unlinking will fail when @urb is not currently "linked" (i.e., it was
  529. * never submitted, or it was unlinked before, or the hardware is already
  530. * finished with it), even if the completion handler has not yet run.
  531. *
  532. * The URB must not be deallocated while this routine is running. In
  533. * particular, when a driver calls this routine, it must insure that the
  534. * completion handler cannot deallocate the URB.
  535. *
  536. * Return: -EINPROGRESS on success. See description for other values on
  537. * failure.
  538. *
  539. * Unlinking and Endpoint Queues:
  540. *
  541. * [The behaviors and guarantees described below do not apply to virtual
  542. * root hubs but only to endpoint queues for physical USB devices.]
  543. *
  544. * Host Controller Drivers (HCDs) place all the URBs for a particular
  545. * endpoint in a queue. Normally the queue advances as the controller
  546. * hardware processes each request. But when an URB terminates with an
  547. * error its queue generally stops (see below), at least until that URB's
  548. * completion routine returns. It is guaranteed that a stopped queue
  549. * will not restart until all its unlinked URBs have been fully retired,
  550. * with their completion routines run, even if that's not until some time
  551. * after the original completion handler returns. The same behavior and
  552. * guarantee apply when an URB terminates because it was unlinked.
  553. *
  554. * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
  555. * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
  556. * and -EREMOTEIO. Control endpoint queues behave the same way except
  557. * that they are not guaranteed to stop for -EREMOTEIO errors. Queues
  558. * for isochronous endpoints are treated differently, because they must
  559. * advance at fixed rates. Such queues do not stop when an URB
  560. * encounters an error or is unlinked. An unlinked isochronous URB may
  561. * leave a gap in the stream of packets; it is undefined whether such
  562. * gaps can be filled in.
  563. *
  564. * Note that early termination of an URB because a short packet was
  565. * received will generate a -EREMOTEIO error if and only if the
  566. * URB_SHORT_NOT_OK flag is set. By setting this flag, USB device
  567. * drivers can build deep queues for large or complex bulk transfers
  568. * and clean them up reliably after any sort of aborted transfer by
  569. * unlinking all pending URBs at the first fault.
  570. *
  571. * When a control URB terminates with an error other than -EREMOTEIO, it
  572. * is quite likely that the status stage of the transfer will not take
  573. * place.
  574. */
  575. int usb_unlink_urb(struct urb *urb)
  576. {
  577. if (!urb)
  578. return -EINVAL;
  579. if (!urb->dev)
  580. return -ENODEV;
  581. if (!urb->ep)
  582. return -EIDRM;
  583. return usb_hcd_unlink_urb(urb, -ECONNRESET);
  584. }
  585. EXPORT_SYMBOL_GPL(usb_unlink_urb);
  586. /**
  587. * usb_kill_urb - cancel a transfer request and wait for it to finish
  588. * @urb: pointer to URB describing a previously submitted request,
  589. * may be NULL
  590. *
  591. * This routine cancels an in-progress request. It is guaranteed that
  592. * upon return all completion handlers will have finished and the URB
  593. * will be totally idle and available for reuse. These features make
  594. * this an ideal way to stop I/O in a disconnect() callback or close()
  595. * function. If the request has not already finished or been unlinked
  596. * the completion handler will see urb->status == -ENOENT.
  597. *
  598. * While the routine is running, attempts to resubmit the URB will fail
  599. * with error -EPERM. Thus even if the URB's completion handler always
  600. * tries to resubmit, it will not succeed and the URB will become idle.
  601. *
  602. * The URB must not be deallocated while this routine is running. In
  603. * particular, when a driver calls this routine, it must insure that the
  604. * completion handler cannot deallocate the URB.
  605. *
  606. * This routine may not be used in an interrupt context (such as a bottom
  607. * half or a completion handler), or when holding a spinlock, or in other
  608. * situations where the caller can't schedule().
  609. *
  610. * This routine should not be called by a driver after its disconnect
  611. * method has returned.
  612. */
  613. void usb_kill_urb(struct urb *urb)
  614. {
  615. might_sleep();
  616. if (!(urb && urb->dev && urb->ep))
  617. return;
  618. atomic_inc(&urb->reject);
  619. usb_hcd_unlink_urb(urb, -ENOENT);
  620. wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
  621. atomic_dec(&urb->reject);
  622. }
  623. EXPORT_SYMBOL_GPL(usb_kill_urb);
  624. /**
  625. * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
  626. * @urb: pointer to URB describing a previously submitted request,
  627. * may be NULL
  628. *
  629. * This routine cancels an in-progress request. It is guaranteed that
  630. * upon return all completion handlers will have finished and the URB
  631. * will be totally idle and cannot be reused. These features make
  632. * this an ideal way to stop I/O in a disconnect() callback.
  633. * If the request has not already finished or been unlinked
  634. * the completion handler will see urb->status == -ENOENT.
  635. *
  636. * After and while the routine runs, attempts to resubmit the URB will fail
  637. * with error -EPERM. Thus even if the URB's completion handler always
  638. * tries to resubmit, it will not succeed and the URB will become idle.
  639. *
  640. * The URB must not be deallocated while this routine is running. In
  641. * particular, when a driver calls this routine, it must insure that the
  642. * completion handler cannot deallocate the URB.
  643. *
  644. * This routine may not be used in an interrupt context (such as a bottom
  645. * half or a completion handler), or when holding a spinlock, or in other
  646. * situations where the caller can't schedule().
  647. *
  648. * This routine should not be called by a driver after its disconnect
  649. * method has returned.
  650. */
  651. void usb_poison_urb(struct urb *urb)
  652. {
  653. might_sleep();
  654. if (!urb)
  655. return;
  656. atomic_inc(&urb->reject);
  657. if (!urb->dev || !urb->ep)
  658. return;
  659. usb_hcd_unlink_urb(urb, -ENOENT);
  660. wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
  661. }
  662. EXPORT_SYMBOL_GPL(usb_poison_urb);
  663. void usb_unpoison_urb(struct urb *urb)
  664. {
  665. if (!urb)
  666. return;
  667. atomic_dec(&urb->reject);
  668. }
  669. EXPORT_SYMBOL_GPL(usb_unpoison_urb);
  670. /**
  671. * usb_block_urb - reliably prevent further use of an URB
  672. * @urb: pointer to URB to be blocked, may be NULL
  673. *
  674. * After the routine has run, attempts to resubmit the URB will fail
  675. * with error -EPERM. Thus even if the URB's completion handler always
  676. * tries to resubmit, it will not succeed and the URB will become idle.
  677. *
  678. * The URB must not be deallocated while this routine is running. In
  679. * particular, when a driver calls this routine, it must insure that the
  680. * completion handler cannot deallocate the URB.
  681. */
  682. void usb_block_urb(struct urb *urb)
  683. {
  684. if (!urb)
  685. return;
  686. atomic_inc(&urb->reject);
  687. }
  688. EXPORT_SYMBOL_GPL(usb_block_urb);
  689. /**
  690. * usb_kill_anchored_urbs - cancel transfer requests en masse
  691. * @anchor: anchor the requests are bound to
  692. *
  693. * this allows all outstanding URBs to be killed starting
  694. * from the back of the queue
  695. *
  696. * This routine should not be called by a driver after its disconnect
  697. * method has returned.
  698. */
  699. void usb_kill_anchored_urbs(struct usb_anchor *anchor)
  700. {
  701. struct urb *victim;
  702. spin_lock_irq(&anchor->lock);
  703. while (!list_empty(&anchor->urb_list)) {
  704. victim = list_entry(anchor->urb_list.prev, struct urb,
  705. anchor_list);
  706. /* we must make sure the URB isn't freed before we kill it*/
  707. usb_get_urb(victim);
  708. spin_unlock_irq(&anchor->lock);
  709. /* this will unanchor the URB */
  710. usb_kill_urb(victim);
  711. usb_put_urb(victim);
  712. spin_lock_irq(&anchor->lock);
  713. }
  714. spin_unlock_irq(&anchor->lock);
  715. }
  716. EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
  717. /**
  718. * usb_poison_anchored_urbs - cease all traffic from an anchor
  719. * @anchor: anchor the requests are bound to
  720. *
  721. * this allows all outstanding URBs to be poisoned starting
  722. * from the back of the queue. Newly added URBs will also be
  723. * poisoned
  724. *
  725. * This routine should not be called by a driver after its disconnect
  726. * method has returned.
  727. */
  728. void usb_poison_anchored_urbs(struct usb_anchor *anchor)
  729. {
  730. struct urb *victim;
  731. spin_lock_irq(&anchor->lock);
  732. anchor->poisoned = 1;
  733. while (!list_empty(&anchor->urb_list)) {
  734. victim = list_entry(anchor->urb_list.prev, struct urb,
  735. anchor_list);
  736. /* we must make sure the URB isn't freed before we kill it*/
  737. usb_get_urb(victim);
  738. spin_unlock_irq(&anchor->lock);
  739. /* this will unanchor the URB */
  740. usb_poison_urb(victim);
  741. usb_put_urb(victim);
  742. spin_lock_irq(&anchor->lock);
  743. }
  744. spin_unlock_irq(&anchor->lock);
  745. }
  746. EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
  747. /**
  748. * usb_unpoison_anchored_urbs - let an anchor be used successfully again
  749. * @anchor: anchor the requests are bound to
  750. *
  751. * Reverses the effect of usb_poison_anchored_urbs
  752. * the anchor can be used normally after it returns
  753. */
  754. void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
  755. {
  756. unsigned long flags;
  757. struct urb *lazarus;
  758. spin_lock_irqsave(&anchor->lock, flags);
  759. list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
  760. usb_unpoison_urb(lazarus);
  761. }
  762. anchor->poisoned = 0;
  763. spin_unlock_irqrestore(&anchor->lock, flags);
  764. }
  765. EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
  766. /**
  767. * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
  768. * @anchor: anchor the requests are bound to
  769. *
  770. * this allows all outstanding URBs to be unlinked starting
  771. * from the back of the queue. This function is asynchronous.
  772. * The unlinking is just triggered. It may happen after this
  773. * function has returned.
  774. *
  775. * This routine should not be called by a driver after its disconnect
  776. * method has returned.
  777. */
  778. void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
  779. {
  780. struct urb *victim;
  781. while ((victim = usb_get_from_anchor(anchor)) != NULL) {
  782. usb_unlink_urb(victim);
  783. usb_put_urb(victim);
  784. }
  785. }
  786. EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
  787. /**
  788. * usb_anchor_suspend_wakeups
  789. * @anchor: the anchor you want to suspend wakeups on
  790. *
  791. * Call this to stop the last urb being unanchored from waking up any
  792. * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
  793. * back path to delay waking up until after the completion handler has run.
  794. */
  795. void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
  796. {
  797. if (anchor)
  798. atomic_inc(&anchor->suspend_wakeups);
  799. }
  800. EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
  801. /**
  802. * usb_anchor_resume_wakeups
  803. * @anchor: the anchor you want to resume wakeups on
  804. *
  805. * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
  806. * wake up any current waiters if the anchor is empty.
  807. */
  808. void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
  809. {
  810. if (!anchor)
  811. return;
  812. atomic_dec(&anchor->suspend_wakeups);
  813. if (usb_anchor_check_wakeup(anchor))
  814. wake_up(&anchor->wait);
  815. }
  816. EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
  817. /**
  818. * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
  819. * @anchor: the anchor you want to become unused
  820. * @timeout: how long you are willing to wait in milliseconds
  821. *
  822. * Call this is you want to be sure all an anchor's
  823. * URBs have finished
  824. *
  825. * Return: Non-zero if the anchor became unused. Zero on timeout.
  826. */
  827. int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
  828. unsigned int timeout)
  829. {
  830. return wait_event_timeout(anchor->wait,
  831. usb_anchor_check_wakeup(anchor),
  832. msecs_to_jiffies(timeout));
  833. }
  834. EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
  835. /**
  836. * usb_get_from_anchor - get an anchor's oldest urb
  837. * @anchor: the anchor whose urb you want
  838. *
  839. * This will take the oldest urb from an anchor,
  840. * unanchor and return it
  841. *
  842. * Return: The oldest urb from @anchor, or %NULL if @anchor has no
  843. * urbs associated with it.
  844. */
  845. struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
  846. {
  847. struct urb *victim;
  848. unsigned long flags;
  849. spin_lock_irqsave(&anchor->lock, flags);
  850. if (!list_empty(&anchor->urb_list)) {
  851. victim = list_entry(anchor->urb_list.next, struct urb,
  852. anchor_list);
  853. usb_get_urb(victim);
  854. __usb_unanchor_urb(victim, anchor);
  855. } else {
  856. victim = NULL;
  857. }
  858. spin_unlock_irqrestore(&anchor->lock, flags);
  859. return victim;
  860. }
  861. EXPORT_SYMBOL_GPL(usb_get_from_anchor);
  862. /**
  863. * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
  864. * @anchor: the anchor whose urbs you want to unanchor
  865. *
  866. * use this to get rid of all an anchor's urbs
  867. */
  868. void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
  869. {
  870. struct urb *victim;
  871. unsigned long flags;
  872. spin_lock_irqsave(&anchor->lock, flags);
  873. while (!list_empty(&anchor->urb_list)) {
  874. victim = list_entry(anchor->urb_list.prev, struct urb,
  875. anchor_list);
  876. __usb_unanchor_urb(victim, anchor);
  877. }
  878. spin_unlock_irqrestore(&anchor->lock, flags);
  879. }
  880. EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
  881. /**
  882. * usb_anchor_empty - is an anchor empty
  883. * @anchor: the anchor you want to query
  884. *
  885. * Return: 1 if the anchor has no urbs associated with it.
  886. */
  887. int usb_anchor_empty(struct usb_anchor *anchor)
  888. {
  889. return list_empty(&anchor->urb_list);
  890. }
  891. EXPORT_SYMBOL_GPL(usb_anchor_empty);