raid5.h 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785
  1. #ifndef _RAID5_H
  2. #define _RAID5_H
  3. #include <linux/raid/xor.h>
  4. #include <linux/dmaengine.h>
  5. /*
  6. *
  7. * Each stripe contains one buffer per device. Each buffer can be in
  8. * one of a number of states stored in "flags". Changes between
  9. * these states happen *almost* exclusively under the protection of the
  10. * STRIPE_ACTIVE flag. Some very specific changes can happen in bi_end_io, and
  11. * these are not protected by STRIPE_ACTIVE.
  12. *
  13. * The flag bits that are used to represent these states are:
  14. * R5_UPTODATE and R5_LOCKED
  15. *
  16. * State Empty == !UPTODATE, !LOCK
  17. * We have no data, and there is no active request
  18. * State Want == !UPTODATE, LOCK
  19. * A read request is being submitted for this block
  20. * State Dirty == UPTODATE, LOCK
  21. * Some new data is in this buffer, and it is being written out
  22. * State Clean == UPTODATE, !LOCK
  23. * We have valid data which is the same as on disc
  24. *
  25. * The possible state transitions are:
  26. *
  27. * Empty -> Want - on read or write to get old data for parity calc
  28. * Empty -> Dirty - on compute_parity to satisfy write/sync request.
  29. * Empty -> Clean - on compute_block when computing a block for failed drive
  30. * Want -> Empty - on failed read
  31. * Want -> Clean - on successful completion of read request
  32. * Dirty -> Clean - on successful completion of write request
  33. * Dirty -> Clean - on failed write
  34. * Clean -> Dirty - on compute_parity to satisfy write/sync (RECONSTRUCT or RMW)
  35. *
  36. * The Want->Empty, Want->Clean, Dirty->Clean, transitions
  37. * all happen in b_end_io at interrupt time.
  38. * Each sets the Uptodate bit before releasing the Lock bit.
  39. * This leaves one multi-stage transition:
  40. * Want->Dirty->Clean
  41. * This is safe because thinking that a Clean buffer is actually dirty
  42. * will at worst delay some action, and the stripe will be scheduled
  43. * for attention after the transition is complete.
  44. *
  45. * There is one possibility that is not covered by these states. That
  46. * is if one drive has failed and there is a spare being rebuilt. We
  47. * can't distinguish between a clean block that has been generated
  48. * from parity calculations, and a clean block that has been
  49. * successfully written to the spare ( or to parity when resyncing).
  50. * To distinguish these states we have a stripe bit STRIPE_INSYNC that
  51. * is set whenever a write is scheduled to the spare, or to the parity
  52. * disc if there is no spare. A sync request clears this bit, and
  53. * when we find it set with no buffers locked, we know the sync is
  54. * complete.
  55. *
  56. * Buffers for the md device that arrive via make_request are attached
  57. * to the appropriate stripe in one of two lists linked on b_reqnext.
  58. * One list (bh_read) for read requests, one (bh_write) for write.
  59. * There should never be more than one buffer on the two lists
  60. * together, but we are not guaranteed of that so we allow for more.
  61. *
  62. * If a buffer is on the read list when the associated cache buffer is
  63. * Uptodate, the data is copied into the read buffer and it's b_end_io
  64. * routine is called. This may happen in the end_request routine only
  65. * if the buffer has just successfully been read. end_request should
  66. * remove the buffers from the list and then set the Uptodate bit on
  67. * the buffer. Other threads may do this only if they first check
  68. * that the Uptodate bit is set. Once they have checked that they may
  69. * take buffers off the read queue.
  70. *
  71. * When a buffer on the write list is committed for write it is copied
  72. * into the cache buffer, which is then marked dirty, and moved onto a
  73. * third list, the written list (bh_written). Once both the parity
  74. * block and the cached buffer are successfully written, any buffer on
  75. * a written list can be returned with b_end_io.
  76. *
  77. * The write list and read list both act as fifos. The read list,
  78. * write list and written list are protected by the device_lock.
  79. * The device_lock is only for list manipulations and will only be
  80. * held for a very short time. It can be claimed from interrupts.
  81. *
  82. *
  83. * Stripes in the stripe cache can be on one of two lists (or on
  84. * neither). The "inactive_list" contains stripes which are not
  85. * currently being used for any request. They can freely be reused
  86. * for another stripe. The "handle_list" contains stripes that need
  87. * to be handled in some way. Both of these are fifo queues. Each
  88. * stripe is also (potentially) linked to a hash bucket in the hash
  89. * table so that it can be found by sector number. Stripes that are
  90. * not hashed must be on the inactive_list, and will normally be at
  91. * the front. All stripes start life this way.
  92. *
  93. * The inactive_list, handle_list and hash bucket lists are all protected by the
  94. * device_lock.
  95. * - stripes have a reference counter. If count==0, they are on a list.
  96. * - If a stripe might need handling, STRIPE_HANDLE is set.
  97. * - When refcount reaches zero, then if STRIPE_HANDLE it is put on
  98. * handle_list else inactive_list
  99. *
  100. * This, combined with the fact that STRIPE_HANDLE is only ever
  101. * cleared while a stripe has a non-zero count means that if the
  102. * refcount is 0 and STRIPE_HANDLE is set, then it is on the
  103. * handle_list and if recount is 0 and STRIPE_HANDLE is not set, then
  104. * the stripe is on inactive_list.
  105. *
  106. * The possible transitions are:
  107. * activate an unhashed/inactive stripe (get_active_stripe())
  108. * lockdev check-hash unlink-stripe cnt++ clean-stripe hash-stripe unlockdev
  109. * activate a hashed, possibly active stripe (get_active_stripe())
  110. * lockdev check-hash if(!cnt++)unlink-stripe unlockdev
  111. * attach a request to an active stripe (add_stripe_bh())
  112. * lockdev attach-buffer unlockdev
  113. * handle a stripe (handle_stripe())
  114. * setSTRIPE_ACTIVE, clrSTRIPE_HANDLE ...
  115. * (lockdev check-buffers unlockdev) ..
  116. * change-state ..
  117. * record io/ops needed clearSTRIPE_ACTIVE schedule io/ops
  118. * release an active stripe (release_stripe())
  119. * lockdev if (!--cnt) { if STRIPE_HANDLE, add to handle_list else add to inactive-list } unlockdev
  120. *
  121. * The refcount counts each thread that have activated the stripe,
  122. * plus raid5d if it is handling it, plus one for each active request
  123. * on a cached buffer, and plus one if the stripe is undergoing stripe
  124. * operations.
  125. *
  126. * The stripe operations are:
  127. * -copying data between the stripe cache and user application buffers
  128. * -computing blocks to save a disk access, or to recover a missing block
  129. * -updating the parity on a write operation (reconstruct write and
  130. * read-modify-write)
  131. * -checking parity correctness
  132. * -running i/o to disk
  133. * These operations are carried out by raid5_run_ops which uses the async_tx
  134. * api to (optionally) offload operations to dedicated hardware engines.
  135. * When requesting an operation handle_stripe sets the pending bit for the
  136. * operation and increments the count. raid5_run_ops is then run whenever
  137. * the count is non-zero.
  138. * There are some critical dependencies between the operations that prevent some
  139. * from being requested while another is in flight.
  140. * 1/ Parity check operations destroy the in cache version of the parity block,
  141. * so we prevent parity dependent operations like writes and compute_blocks
  142. * from starting while a check is in progress. Some dma engines can perform
  143. * the check without damaging the parity block, in these cases the parity
  144. * block is re-marked up to date (assuming the check was successful) and is
  145. * not re-read from disk.
  146. * 2/ When a write operation is requested we immediately lock the affected
  147. * blocks, and mark them as not up to date. This causes new read requests
  148. * to be held off, as well as parity checks and compute block operations.
  149. * 3/ Once a compute block operation has been requested handle_stripe treats
  150. * that block as if it is up to date. raid5_run_ops guaruntees that any
  151. * operation that is dependent on the compute block result is initiated after
  152. * the compute block completes.
  153. */
  154. /*
  155. * Operations state - intermediate states that are visible outside of
  156. * STRIPE_ACTIVE.
  157. * In general _idle indicates nothing is running, _run indicates a data
  158. * processing operation is active, and _result means the data processing result
  159. * is stable and can be acted upon. For simple operations like biofill and
  160. * compute that only have an _idle and _run state they are indicated with
  161. * sh->state flags (STRIPE_BIOFILL_RUN and STRIPE_COMPUTE_RUN)
  162. */
  163. /**
  164. * enum check_states - handles syncing / repairing a stripe
  165. * @check_state_idle - check operations are quiesced
  166. * @check_state_run - check operation is running
  167. * @check_state_result - set outside lock when check result is valid
  168. * @check_state_compute_run - check failed and we are repairing
  169. * @check_state_compute_result - set outside lock when compute result is valid
  170. */
  171. enum check_states {
  172. check_state_idle = 0,
  173. check_state_run, /* xor parity check */
  174. check_state_run_q, /* q-parity check */
  175. check_state_run_pq, /* pq dual parity check */
  176. check_state_check_result,
  177. check_state_compute_run, /* parity repair */
  178. check_state_compute_result,
  179. };
  180. /**
  181. * enum reconstruct_states - handles writing or expanding a stripe
  182. */
  183. enum reconstruct_states {
  184. reconstruct_state_idle = 0,
  185. reconstruct_state_prexor_drain_run, /* prexor-write */
  186. reconstruct_state_drain_run, /* write */
  187. reconstruct_state_run, /* expand */
  188. reconstruct_state_prexor_drain_result,
  189. reconstruct_state_drain_result,
  190. reconstruct_state_result,
  191. };
  192. struct stripe_head {
  193. struct hlist_node hash;
  194. struct list_head lru; /* inactive_list or handle_list */
  195. struct llist_node release_list;
  196. struct r5conf *raid_conf;
  197. short generation; /* increments with every
  198. * reshape */
  199. sector_t sector; /* sector of this row */
  200. short pd_idx; /* parity disk index */
  201. short qd_idx; /* 'Q' disk index for raid6 */
  202. short ddf_layout;/* use DDF ordering to calculate Q */
  203. short hash_lock_index;
  204. unsigned long state; /* state flags */
  205. atomic_t count; /* nr of active thread/requests */
  206. int bm_seq; /* sequence number for bitmap flushes */
  207. int disks; /* disks in stripe */
  208. int overwrite_disks; /* total overwrite disks in stripe,
  209. * this is only checked when stripe
  210. * has STRIPE_BATCH_READY
  211. */
  212. enum check_states check_state;
  213. enum reconstruct_states reconstruct_state;
  214. spinlock_t stripe_lock;
  215. int cpu;
  216. struct r5worker_group *group;
  217. struct stripe_head *batch_head; /* protected by stripe lock */
  218. spinlock_t batch_lock; /* only header's lock is useful */
  219. struct list_head batch_list; /* protected by head's batch lock*/
  220. struct r5l_io_unit *log_io;
  221. struct list_head log_list;
  222. sector_t log_start; /* first meta block on the journal */
  223. struct list_head r5c; /* for r5c_cache->stripe_in_journal */
  224. /**
  225. * struct stripe_operations
  226. * @target - STRIPE_OP_COMPUTE_BLK target
  227. * @target2 - 2nd compute target in the raid6 case
  228. * @zero_sum_result - P and Q verification flags
  229. * @request - async service request flags for raid_run_ops
  230. */
  231. struct stripe_operations {
  232. int target, target2;
  233. enum sum_check_flags zero_sum_result;
  234. } ops;
  235. struct r5dev {
  236. /* rreq and rvec are used for the replacement device when
  237. * writing data to both devices.
  238. */
  239. struct bio req, rreq;
  240. struct bio_vec vec, rvec;
  241. struct page *page, *orig_page;
  242. struct bio *toread, *read, *towrite, *written;
  243. sector_t sector; /* sector of this page */
  244. unsigned long flags;
  245. u32 log_checksum;
  246. } dev[1]; /* allocated with extra space depending of RAID geometry */
  247. };
  248. /* stripe_head_state - collects and tracks the dynamic state of a stripe_head
  249. * for handle_stripe.
  250. */
  251. struct stripe_head_state {
  252. /* 'syncing' means that we need to read all devices, either
  253. * to check/correct parity, or to reconstruct a missing device.
  254. * 'replacing' means we are replacing one or more drives and
  255. * the source is valid at this point so we don't need to
  256. * read all devices, just the replacement targets.
  257. */
  258. int syncing, expanding, expanded, replacing;
  259. int locked, uptodate, to_read, to_write, failed, written;
  260. int to_fill, compute, req_compute, non_overwrite;
  261. int injournal, just_cached;
  262. int failed_num[2];
  263. int p_failed, q_failed;
  264. int dec_preread_active;
  265. unsigned long ops_request;
  266. struct bio_list return_bi;
  267. struct md_rdev *blocked_rdev;
  268. int handle_bad_blocks;
  269. int log_failed;
  270. int waiting_extra_page;
  271. };
  272. /* Flags for struct r5dev.flags */
  273. enum r5dev_flags {
  274. R5_UPTODATE, /* page contains current data */
  275. R5_LOCKED, /* IO has been submitted on "req" */
  276. R5_DOUBLE_LOCKED,/* Cannot clear R5_LOCKED until 2 writes complete */
  277. R5_OVERWRITE, /* towrite covers whole page */
  278. /* and some that are internal to handle_stripe */
  279. R5_Insync, /* rdev && rdev->in_sync at start */
  280. R5_Wantread, /* want to schedule a read */
  281. R5_Wantwrite,
  282. R5_Overlap, /* There is a pending overlapping request
  283. * on this block */
  284. R5_ReadNoMerge, /* prevent bio from merging in block-layer */
  285. R5_ReadError, /* seen a read error here recently */
  286. R5_ReWrite, /* have tried to over-write the readerror */
  287. R5_Expanded, /* This block now has post-expand data */
  288. R5_Wantcompute, /* compute_block in progress treat as
  289. * uptodate
  290. */
  291. R5_Wantfill, /* dev->toread contains a bio that needs
  292. * filling
  293. */
  294. R5_Wantdrain, /* dev->towrite needs to be drained */
  295. R5_WantFUA, /* Write should be FUA */
  296. R5_SyncIO, /* The IO is sync */
  297. R5_WriteError, /* got a write error - need to record it */
  298. R5_MadeGood, /* A bad block has been fixed by writing to it */
  299. R5_ReadRepl, /* Will/did read from replacement rather than orig */
  300. R5_MadeGoodRepl,/* A bad block on the replacement device has been
  301. * fixed by writing to it */
  302. R5_NeedReplace, /* This device has a replacement which is not
  303. * up-to-date at this stripe. */
  304. R5_WantReplace, /* We need to update the replacement, we have read
  305. * data in, and now is a good time to write it out.
  306. */
  307. R5_Discard, /* Discard the stripe */
  308. R5_SkipCopy, /* Don't copy data from bio to stripe cache */
  309. R5_InJournal, /* data being written is in the journal device.
  310. * if R5_InJournal is set for parity pd_idx, all the
  311. * data and parity being written are in the journal
  312. * device
  313. */
  314. };
  315. /*
  316. * Stripe state
  317. */
  318. enum {
  319. STRIPE_ACTIVE,
  320. STRIPE_HANDLE,
  321. STRIPE_SYNC_REQUESTED,
  322. STRIPE_SYNCING,
  323. STRIPE_INSYNC,
  324. STRIPE_REPLACED,
  325. STRIPE_PREREAD_ACTIVE,
  326. STRIPE_DELAYED,
  327. STRIPE_DEGRADED,
  328. STRIPE_BIT_DELAY,
  329. STRIPE_EXPANDING,
  330. STRIPE_EXPAND_SOURCE,
  331. STRIPE_EXPAND_READY,
  332. STRIPE_IO_STARTED, /* do not count towards 'bypass_count' */
  333. STRIPE_FULL_WRITE, /* all blocks are set to be overwritten */
  334. STRIPE_BIOFILL_RUN,
  335. STRIPE_COMPUTE_RUN,
  336. STRIPE_OPS_REQ_PENDING,
  337. STRIPE_ON_UNPLUG_LIST,
  338. STRIPE_DISCARD,
  339. STRIPE_ON_RELEASE_LIST,
  340. STRIPE_BATCH_READY,
  341. STRIPE_BATCH_ERR,
  342. STRIPE_BITMAP_PENDING, /* Being added to bitmap, don't add
  343. * to batch yet.
  344. */
  345. STRIPE_LOG_TRAPPED, /* trapped into log (see raid5-cache.c)
  346. * this bit is used in two scenarios:
  347. *
  348. * 1. write-out phase
  349. * set in first entry of r5l_write_stripe
  350. * clear in second entry of r5l_write_stripe
  351. * used to bypass logic in handle_stripe
  352. *
  353. * 2. caching phase
  354. * set in r5c_try_caching_write()
  355. * clear when journal write is done
  356. * used to initiate r5c_cache_data()
  357. * also used to bypass logic in handle_stripe
  358. */
  359. STRIPE_R5C_CACHING, /* the stripe is in caching phase
  360. * see more detail in the raid5-cache.c
  361. */
  362. STRIPE_R5C_PARTIAL_STRIPE, /* in r5c cache (to-be/being handled or
  363. * in conf->r5c_partial_stripe_list)
  364. */
  365. STRIPE_R5C_FULL_STRIPE, /* in r5c cache (to-be/being handled or
  366. * in conf->r5c_full_stripe_list)
  367. */
  368. STRIPE_R5C_PREFLUSH, /* need to flush journal device */
  369. };
  370. #define STRIPE_EXPAND_SYNC_FLAGS \
  371. ((1 << STRIPE_EXPAND_SOURCE) |\
  372. (1 << STRIPE_EXPAND_READY) |\
  373. (1 << STRIPE_EXPANDING) |\
  374. (1 << STRIPE_SYNC_REQUESTED))
  375. /*
  376. * Operation request flags
  377. */
  378. enum {
  379. STRIPE_OP_BIOFILL,
  380. STRIPE_OP_COMPUTE_BLK,
  381. STRIPE_OP_PREXOR,
  382. STRIPE_OP_BIODRAIN,
  383. STRIPE_OP_RECONSTRUCT,
  384. STRIPE_OP_CHECK,
  385. };
  386. /*
  387. * RAID parity calculation preferences
  388. */
  389. enum {
  390. PARITY_DISABLE_RMW = 0,
  391. PARITY_ENABLE_RMW,
  392. PARITY_PREFER_RMW,
  393. };
  394. /*
  395. * Pages requested from set_syndrome_sources()
  396. */
  397. enum {
  398. SYNDROME_SRC_ALL,
  399. SYNDROME_SRC_WANT_DRAIN,
  400. SYNDROME_SRC_WRITTEN,
  401. };
  402. /*
  403. * Plugging:
  404. *
  405. * To improve write throughput, we need to delay the handling of some
  406. * stripes until there has been a chance that several write requests
  407. * for the one stripe have all been collected.
  408. * In particular, any write request that would require pre-reading
  409. * is put on a "delayed" queue until there are no stripes currently
  410. * in a pre-read phase. Further, if the "delayed" queue is empty when
  411. * a stripe is put on it then we "plug" the queue and do not process it
  412. * until an unplug call is made. (the unplug_io_fn() is called).
  413. *
  414. * When preread is initiated on a stripe, we set PREREAD_ACTIVE and add
  415. * it to the count of prereading stripes.
  416. * When write is initiated, or the stripe refcnt == 0 (just in case) we
  417. * clear the PREREAD_ACTIVE flag and decrement the count
  418. * Whenever the 'handle' queue is empty and the device is not plugged, we
  419. * move any strips from delayed to handle and clear the DELAYED flag and set
  420. * PREREAD_ACTIVE.
  421. * In stripe_handle, if we find pre-reading is necessary, we do it if
  422. * PREREAD_ACTIVE is set, else we set DELAYED which will send it to the delayed queue.
  423. * HANDLE gets cleared if stripe_handle leaves nothing locked.
  424. */
  425. struct disk_info {
  426. struct md_rdev *rdev, *replacement;
  427. struct page *extra_page; /* extra page to use in prexor */
  428. };
  429. /*
  430. * Stripe cache
  431. */
  432. #define NR_STRIPES 256
  433. #define STRIPE_SIZE PAGE_SIZE
  434. #define STRIPE_SHIFT (PAGE_SHIFT - 9)
  435. #define STRIPE_SECTORS (STRIPE_SIZE>>9)
  436. #define IO_THRESHOLD 1
  437. #define BYPASS_THRESHOLD 1
  438. #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
  439. #define HASH_MASK (NR_HASH - 1)
  440. #define MAX_STRIPE_BATCH 8
  441. /* bio's attached to a stripe+device for I/O are linked together in bi_sector
  442. * order without overlap. There may be several bio's per stripe+device, and
  443. * a bio could span several devices.
  444. * When walking this list for a particular stripe+device, we must never proceed
  445. * beyond a bio that extends past this device, as the next bio might no longer
  446. * be valid.
  447. * This function is used to determine the 'next' bio in the list, given the
  448. * sector of the current stripe+device
  449. */
  450. static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
  451. {
  452. int sectors = bio_sectors(bio);
  453. if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
  454. return bio->bi_next;
  455. else
  456. return NULL;
  457. }
  458. /*
  459. * We maintain a biased count of active stripes in the bottom 16 bits of
  460. * bi_phys_segments, and a count of processed stripes in the upper 16 bits
  461. */
  462. static inline int raid5_bi_processed_stripes(struct bio *bio)
  463. {
  464. atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
  465. return (atomic_read(segments) >> 16) & 0xffff;
  466. }
  467. static inline int raid5_dec_bi_active_stripes(struct bio *bio)
  468. {
  469. atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
  470. return atomic_sub_return(1, segments) & 0xffff;
  471. }
  472. static inline void raid5_inc_bi_active_stripes(struct bio *bio)
  473. {
  474. atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
  475. atomic_inc(segments);
  476. }
  477. static inline void raid5_set_bi_processed_stripes(struct bio *bio,
  478. unsigned int cnt)
  479. {
  480. atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
  481. int old, new;
  482. do {
  483. old = atomic_read(segments);
  484. new = (old & 0xffff) | (cnt << 16);
  485. } while (atomic_cmpxchg(segments, old, new) != old);
  486. }
  487. static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
  488. {
  489. atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
  490. atomic_set(segments, cnt);
  491. }
  492. /* NOTE NR_STRIPE_HASH_LOCKS must remain below 64.
  493. * This is because we sometimes take all the spinlocks
  494. * and creating that much locking depth can cause
  495. * problems.
  496. */
  497. #define NR_STRIPE_HASH_LOCKS 8
  498. #define STRIPE_HASH_LOCKS_MASK (NR_STRIPE_HASH_LOCKS - 1)
  499. struct r5worker {
  500. struct work_struct work;
  501. struct r5worker_group *group;
  502. struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
  503. bool working;
  504. };
  505. struct r5worker_group {
  506. struct list_head handle_list;
  507. struct r5conf *conf;
  508. struct r5worker *workers;
  509. int stripes_cnt;
  510. };
  511. enum r5_cache_state {
  512. R5_INACTIVE_BLOCKED, /* release of inactive stripes blocked,
  513. * waiting for 25% to be free
  514. */
  515. R5_ALLOC_MORE, /* It might help to allocate another
  516. * stripe.
  517. */
  518. R5_DID_ALLOC, /* A stripe was allocated, don't allocate
  519. * more until at least one has been
  520. * released. This avoids flooding
  521. * the cache.
  522. */
  523. R5C_LOG_TIGHT, /* log device space tight, need to
  524. * prioritize stripes at last_checkpoint
  525. */
  526. R5C_LOG_CRITICAL, /* log device is running out of space,
  527. * only process stripes that are already
  528. * occupying the log
  529. */
  530. R5C_EXTRA_PAGE_IN_USE, /* a stripe is using disk_info.extra_page
  531. * for prexor
  532. */
  533. };
  534. struct r5conf {
  535. struct hlist_head *stripe_hashtbl;
  536. /* only protect corresponding hash list and inactive_list */
  537. spinlock_t hash_locks[NR_STRIPE_HASH_LOCKS];
  538. struct mddev *mddev;
  539. int chunk_sectors;
  540. int level, algorithm, rmw_level;
  541. int max_degraded;
  542. int raid_disks;
  543. int max_nr_stripes;
  544. int min_nr_stripes;
  545. /* reshape_progress is the leading edge of a 'reshape'
  546. * It has value MaxSector when no reshape is happening
  547. * If delta_disks < 0, it is the last sector we started work on,
  548. * else is it the next sector to work on.
  549. */
  550. sector_t reshape_progress;
  551. /* reshape_safe is the trailing edge of a reshape. We know that
  552. * before (or after) this address, all reshape has completed.
  553. */
  554. sector_t reshape_safe;
  555. int previous_raid_disks;
  556. int prev_chunk_sectors;
  557. int prev_algo;
  558. short generation; /* increments with every reshape */
  559. seqcount_t gen_lock; /* lock against generation changes */
  560. unsigned long reshape_checkpoint; /* Time we last updated
  561. * metadata */
  562. long long min_offset_diff; /* minimum difference between
  563. * data_offset and
  564. * new_data_offset across all
  565. * devices. May be negative,
  566. * but is closest to zero.
  567. */
  568. struct list_head handle_list; /* stripes needing handling */
  569. struct list_head hold_list; /* preread ready stripes */
  570. struct list_head delayed_list; /* stripes that have plugged requests */
  571. struct list_head bitmap_list; /* stripes delaying awaiting bitmap update */
  572. struct bio *retry_read_aligned; /* currently retrying aligned bios */
  573. struct bio *retry_read_aligned_list; /* aligned bios retry list */
  574. atomic_t preread_active_stripes; /* stripes with scheduled io */
  575. atomic_t active_aligned_reads;
  576. atomic_t pending_full_writes; /* full write backlog */
  577. int bypass_count; /* bypassed prereads */
  578. int bypass_threshold; /* preread nice */
  579. int skip_copy; /* Don't copy data from bio to stripe cache */
  580. struct list_head *last_hold; /* detect hold_list promotions */
  581. /* bios to have bi_end_io called after metadata is synced */
  582. struct bio_list return_bi;
  583. atomic_t reshape_stripes; /* stripes with pending writes for reshape */
  584. /* unfortunately we need two cache names as we temporarily have
  585. * two caches.
  586. */
  587. int active_name;
  588. char cache_name[2][32];
  589. struct kmem_cache *slab_cache; /* for allocating stripes */
  590. struct mutex cache_size_mutex; /* Protect changes to cache size */
  591. int seq_flush, seq_write;
  592. int quiesce;
  593. int fullsync; /* set to 1 if a full sync is needed,
  594. * (fresh device added).
  595. * Cleared when a sync completes.
  596. */
  597. int recovery_disabled;
  598. /* per cpu variables */
  599. struct raid5_percpu {
  600. struct page *spare_page; /* Used when checking P/Q in raid6 */
  601. struct flex_array *scribble; /* space for constructing buffer
  602. * lists and performing address
  603. * conversions
  604. */
  605. } __percpu *percpu;
  606. int scribble_disks;
  607. int scribble_sectors;
  608. struct hlist_node node;
  609. /*
  610. * Free stripes pool
  611. */
  612. atomic_t active_stripes;
  613. struct list_head inactive_list[NR_STRIPE_HASH_LOCKS];
  614. atomic_t r5c_cached_full_stripes;
  615. struct list_head r5c_full_stripe_list;
  616. atomic_t r5c_cached_partial_stripes;
  617. struct list_head r5c_partial_stripe_list;
  618. atomic_t empty_inactive_list_nr;
  619. struct llist_head released_stripes;
  620. wait_queue_head_t wait_for_quiescent;
  621. wait_queue_head_t wait_for_stripe;
  622. wait_queue_head_t wait_for_overlap;
  623. unsigned long cache_state;
  624. struct shrinker shrinker;
  625. int pool_size; /* number of disks in stripeheads in pool */
  626. spinlock_t device_lock;
  627. struct disk_info *disks;
  628. /* When taking over an array from a different personality, we store
  629. * the new thread here until we fully activate the array.
  630. */
  631. struct md_thread *thread;
  632. struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
  633. struct r5worker_group *worker_groups;
  634. int group_cnt;
  635. int worker_cnt_per_group;
  636. struct r5l_log *log;
  637. };
  638. /*
  639. * Our supported algorithms
  640. */
  641. #define ALGORITHM_LEFT_ASYMMETRIC 0 /* Rotating Parity N with Data Restart */
  642. #define ALGORITHM_RIGHT_ASYMMETRIC 1 /* Rotating Parity 0 with Data Restart */
  643. #define ALGORITHM_LEFT_SYMMETRIC 2 /* Rotating Parity N with Data Continuation */
  644. #define ALGORITHM_RIGHT_SYMMETRIC 3 /* Rotating Parity 0 with Data Continuation */
  645. /* Define non-rotating (raid4) algorithms. These allow
  646. * conversion of raid4 to raid5.
  647. */
  648. #define ALGORITHM_PARITY_0 4 /* P or P,Q are initial devices */
  649. #define ALGORITHM_PARITY_N 5 /* P or P,Q are final devices. */
  650. /* DDF RAID6 layouts differ from md/raid6 layouts in two ways.
  651. * Firstly, the exact positioning of the parity block is slightly
  652. * different between the 'LEFT_*' modes of md and the "_N_*" modes
  653. * of DDF.
  654. * Secondly, or order of datablocks over which the Q syndrome is computed
  655. * is different.
  656. * Consequently we have different layouts for DDF/raid6 than md/raid6.
  657. * These layouts are from the DDFv1.2 spec.
  658. * Interestingly DDFv1.2-Errata-A does not specify N_CONTINUE but
  659. * leaves RLQ=3 as 'Vendor Specific'
  660. */
  661. #define ALGORITHM_ROTATING_ZERO_RESTART 8 /* DDF PRL=6 RLQ=1 */
  662. #define ALGORITHM_ROTATING_N_RESTART 9 /* DDF PRL=6 RLQ=2 */
  663. #define ALGORITHM_ROTATING_N_CONTINUE 10 /*DDF PRL=6 RLQ=3 */
  664. /* For every RAID5 algorithm we define a RAID6 algorithm
  665. * with exactly the same layout for data and parity, and
  666. * with the Q block always on the last device (N-1).
  667. * This allows trivial conversion from RAID5 to RAID6
  668. */
  669. #define ALGORITHM_LEFT_ASYMMETRIC_6 16
  670. #define ALGORITHM_RIGHT_ASYMMETRIC_6 17
  671. #define ALGORITHM_LEFT_SYMMETRIC_6 18
  672. #define ALGORITHM_RIGHT_SYMMETRIC_6 19
  673. #define ALGORITHM_PARITY_0_6 20
  674. #define ALGORITHM_PARITY_N_6 ALGORITHM_PARITY_N
  675. static inline int algorithm_valid_raid5(int layout)
  676. {
  677. return (layout >= 0) &&
  678. (layout <= 5);
  679. }
  680. static inline int algorithm_valid_raid6(int layout)
  681. {
  682. return (layout >= 0 && layout <= 5)
  683. ||
  684. (layout >= 8 && layout <= 10)
  685. ||
  686. (layout >= 16 && layout <= 20);
  687. }
  688. static inline int algorithm_is_DDF(int layout)
  689. {
  690. return layout >= 8 && layout <= 10;
  691. }
  692. extern void md_raid5_kick_device(struct r5conf *conf);
  693. extern int raid5_set_cache_size(struct mddev *mddev, int size);
  694. extern sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous);
  695. extern void raid5_release_stripe(struct stripe_head *sh);
  696. extern sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
  697. int previous, int *dd_idx,
  698. struct stripe_head *sh);
  699. extern struct stripe_head *
  700. raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
  701. int previous, int noblock, int noquiesce);
  702. extern int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev);
  703. extern void r5l_exit_log(struct r5l_log *log);
  704. extern int r5l_write_stripe(struct r5l_log *log, struct stripe_head *head_sh);
  705. extern void r5l_write_stripe_run(struct r5l_log *log);
  706. extern void r5l_flush_stripe_to_raid(struct r5l_log *log);
  707. extern void r5l_stripe_write_finished(struct stripe_head *sh);
  708. extern int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio);
  709. extern void r5l_quiesce(struct r5l_log *log, int state);
  710. extern bool r5l_log_disk_error(struct r5conf *conf);
  711. extern bool r5c_is_writeback(struct r5l_log *log);
  712. extern int
  713. r5c_try_caching_write(struct r5conf *conf, struct stripe_head *sh,
  714. struct stripe_head_state *s, int disks);
  715. extern void
  716. r5c_finish_stripe_write_out(struct r5conf *conf, struct stripe_head *sh,
  717. struct stripe_head_state *s);
  718. extern void r5c_release_extra_page(struct stripe_head *sh);
  719. extern void r5c_use_extra_page(struct stripe_head *sh);
  720. extern void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
  721. extern void r5c_handle_cached_data_endio(struct r5conf *conf,
  722. struct stripe_head *sh, int disks, struct bio_list *return_bi);
  723. extern int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh,
  724. struct stripe_head_state *s);
  725. extern void r5c_make_stripe_write_out(struct stripe_head *sh);
  726. extern void r5c_flush_cache(struct r5conf *conf, int num);
  727. extern void r5c_check_stripe_cache_usage(struct r5conf *conf);
  728. extern void r5c_check_cached_full_stripe(struct r5conf *conf);
  729. extern struct md_sysfs_entry r5c_journal_mode;
  730. #endif