dm-verity-fec.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817
  1. /*
  2. * Copyright (C) 2015 Google, Inc.
  3. *
  4. * Author: Sami Tolvanen <samitolvanen@google.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License as published by the Free
  8. * Software Foundation; either version 2 of the License, or (at your option)
  9. * any later version.
  10. */
  11. #include "dm-verity-fec.h"
  12. #include <linux/math64.h>
  13. #define DM_MSG_PREFIX "verity-fec"
  14. /*
  15. * If error correction has been configured, returns true.
  16. */
  17. bool verity_fec_is_enabled(struct dm_verity *v)
  18. {
  19. return v->fec && v->fec->dev;
  20. }
  21. /*
  22. * Return a pointer to dm_verity_fec_io after dm_verity_io and its variable
  23. * length fields.
  24. */
  25. static inline struct dm_verity_fec_io *fec_io(struct dm_verity_io *io)
  26. {
  27. return (struct dm_verity_fec_io *) verity_io_digest_end(io->v, io);
  28. }
  29. /*
  30. * Return an interleaved offset for a byte in RS block.
  31. */
  32. static inline u64 fec_interleave(struct dm_verity *v, u64 offset)
  33. {
  34. u32 mod;
  35. mod = do_div(offset, v->fec->rsn);
  36. return offset + mod * (v->fec->rounds << v->data_dev_block_bits);
  37. }
  38. /*
  39. * Decode an RS block using Reed-Solomon.
  40. */
  41. static int fec_decode_rs8(struct dm_verity *v, struct dm_verity_fec_io *fio,
  42. u8 *data, u8 *fec, int neras)
  43. {
  44. int i;
  45. uint16_t par[DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN];
  46. for (i = 0; i < v->fec->roots; i++)
  47. par[i] = fec[i];
  48. return decode_rs8(fio->rs, data, par, v->fec->rsn, NULL, neras,
  49. fio->erasures, 0, NULL);
  50. }
  51. /*
  52. * Read error-correcting codes for the requested RS block. Returns a pointer
  53. * to the data block. Caller is responsible for releasing buf.
  54. */
  55. static u8 *fec_read_parity(struct dm_verity *v, u64 rsb, int index,
  56. unsigned *offset, struct dm_buffer **buf)
  57. {
  58. u64 position, block;
  59. u8 *res;
  60. position = (index + rsb) * v->fec->roots;
  61. block = position >> v->data_dev_block_bits;
  62. *offset = (unsigned)(position - (block << v->data_dev_block_bits));
  63. res = dm_bufio_read(v->fec->bufio, v->fec->start + block, buf);
  64. if (unlikely(IS_ERR(res))) {
  65. DMERR("%s: FEC %llu: parity read failed (block %llu): %ld",
  66. v->data_dev->name, (unsigned long long)rsb,
  67. (unsigned long long)(v->fec->start + block),
  68. PTR_ERR(res));
  69. *buf = NULL;
  70. }
  71. return res;
  72. }
  73. /* Loop over each preallocated buffer slot. */
  74. #define fec_for_each_prealloc_buffer(__i) \
  75. for (__i = 0; __i < DM_VERITY_FEC_BUF_PREALLOC; __i++)
  76. /* Loop over each extra buffer slot. */
  77. #define fec_for_each_extra_buffer(io, __i) \
  78. for (__i = DM_VERITY_FEC_BUF_PREALLOC; __i < DM_VERITY_FEC_BUF_MAX; __i++)
  79. /* Loop over each allocated buffer. */
  80. #define fec_for_each_buffer(io, __i) \
  81. for (__i = 0; __i < (io)->nbufs; __i++)
  82. /* Loop over each RS block in each allocated buffer. */
  83. #define fec_for_each_buffer_rs_block(io, __i, __j) \
  84. fec_for_each_buffer(io, __i) \
  85. for (__j = 0; __j < 1 << DM_VERITY_FEC_BUF_RS_BITS; __j++)
  86. /*
  87. * Return a pointer to the current RS block when called inside
  88. * fec_for_each_buffer_rs_block.
  89. */
  90. static inline u8 *fec_buffer_rs_block(struct dm_verity *v,
  91. struct dm_verity_fec_io *fio,
  92. unsigned i, unsigned j)
  93. {
  94. return &fio->bufs[i][j * v->fec->rsn];
  95. }
  96. /*
  97. * Return an index to the current RS block when called inside
  98. * fec_for_each_buffer_rs_block.
  99. */
  100. static inline unsigned fec_buffer_rs_index(unsigned i, unsigned j)
  101. {
  102. return (i << DM_VERITY_FEC_BUF_RS_BITS) + j;
  103. }
  104. /*
  105. * Decode all RS blocks from buffers and copy corrected bytes into fio->output
  106. * starting from block_offset.
  107. */
  108. static int fec_decode_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio,
  109. u64 rsb, int byte_index, unsigned block_offset,
  110. int neras)
  111. {
  112. int r, corrected = 0, res;
  113. struct dm_buffer *buf;
  114. unsigned n, i, offset;
  115. u8 *par, *block;
  116. par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
  117. if (IS_ERR(par))
  118. return PTR_ERR(par);
  119. /*
  120. * Decode the RS blocks we have in bufs. Each RS block results in
  121. * one corrected target byte and consumes fec->roots parity bytes.
  122. */
  123. fec_for_each_buffer_rs_block(fio, n, i) {
  124. block = fec_buffer_rs_block(v, fio, n, i);
  125. res = fec_decode_rs8(v, fio, block, &par[offset], neras);
  126. if (res < 0) {
  127. dm_bufio_release(buf);
  128. r = res;
  129. goto error;
  130. }
  131. corrected += res;
  132. fio->output[block_offset] = block[byte_index];
  133. block_offset++;
  134. if (block_offset >= 1 << v->data_dev_block_bits)
  135. goto done;
  136. /* read the next block when we run out of parity bytes */
  137. offset += v->fec->roots;
  138. if (offset >= 1 << v->data_dev_block_bits) {
  139. dm_bufio_release(buf);
  140. par = fec_read_parity(v, rsb, block_offset, &offset, &buf);
  141. if (unlikely(IS_ERR(par)))
  142. return PTR_ERR(par);
  143. }
  144. }
  145. done:
  146. r = corrected;
  147. error:
  148. if (r < 0 && neras)
  149. DMERR_LIMIT("%s: FEC %llu: failed to correct: %d",
  150. v->data_dev->name, (unsigned long long)rsb, r);
  151. else if (r > 0)
  152. DMWARN_LIMIT("%s: FEC %llu: corrected %d errors",
  153. v->data_dev->name, (unsigned long long)rsb, r);
  154. return r;
  155. }
  156. /*
  157. * Locate data block erasures using verity hashes.
  158. */
  159. static int fec_is_erasure(struct dm_verity *v, struct dm_verity_io *io,
  160. u8 *want_digest, u8 *data)
  161. {
  162. if (unlikely(verity_hash(v, verity_io_hash_desc(v, io),
  163. data, 1 << v->data_dev_block_bits,
  164. verity_io_real_digest(v, io))))
  165. return 0;
  166. return memcmp(verity_io_real_digest(v, io), want_digest,
  167. v->digest_size) != 0;
  168. }
  169. /*
  170. * Read data blocks that are part of the RS block and deinterleave as much as
  171. * fits into buffers. Check for erasure locations if @neras is non-NULL.
  172. */
  173. static int fec_read_bufs(struct dm_verity *v, struct dm_verity_io *io,
  174. u64 rsb, u64 target, unsigned block_offset,
  175. int *neras)
  176. {
  177. bool is_zero;
  178. int i, j, target_index = -1;
  179. struct dm_buffer *buf;
  180. struct dm_bufio_client *bufio;
  181. struct dm_verity_fec_io *fio = fec_io(io);
  182. u64 block, ileaved;
  183. u8 *bbuf, *rs_block;
  184. u8 want_digest[v->digest_size];
  185. unsigned n, k;
  186. if (neras)
  187. *neras = 0;
  188. /*
  189. * read each of the rsn data blocks that are part of the RS block, and
  190. * interleave contents to available bufs
  191. */
  192. for (i = 0; i < v->fec->rsn; i++) {
  193. ileaved = fec_interleave(v, rsb * v->fec->rsn + i);
  194. /*
  195. * target is the data block we want to correct, target_index is
  196. * the index of this block within the rsn RS blocks
  197. */
  198. if (ileaved == target)
  199. target_index = i;
  200. block = ileaved >> v->data_dev_block_bits;
  201. bufio = v->fec->data_bufio;
  202. if (block >= v->data_blocks) {
  203. block -= v->data_blocks;
  204. /*
  205. * blocks outside the area were assumed to contain
  206. * zeros when encoding data was generated
  207. */
  208. if (unlikely(block >= v->fec->hash_blocks))
  209. continue;
  210. block += v->hash_start;
  211. bufio = v->bufio;
  212. }
  213. bbuf = dm_bufio_read(bufio, block, &buf);
  214. if (unlikely(IS_ERR(bbuf))) {
  215. DMWARN_LIMIT("%s: FEC %llu: read failed (%llu): %ld",
  216. v->data_dev->name,
  217. (unsigned long long)rsb,
  218. (unsigned long long)block, PTR_ERR(bbuf));
  219. /* assume the block is corrupted */
  220. if (neras && *neras <= v->fec->roots)
  221. fio->erasures[(*neras)++] = i;
  222. continue;
  223. }
  224. /* locate erasures if the block is on the data device */
  225. if (bufio == v->fec->data_bufio &&
  226. verity_hash_for_block(v, io, block, want_digest,
  227. &is_zero) == 0) {
  228. /* skip known zero blocks entirely */
  229. if (is_zero)
  230. continue;
  231. /*
  232. * skip if we have already found the theoretical
  233. * maximum number (i.e. fec->roots) of erasures
  234. */
  235. if (neras && *neras <= v->fec->roots &&
  236. fec_is_erasure(v, io, want_digest, bbuf))
  237. fio->erasures[(*neras)++] = i;
  238. }
  239. /*
  240. * deinterleave and copy the bytes that fit into bufs,
  241. * starting from block_offset
  242. */
  243. fec_for_each_buffer_rs_block(fio, n, j) {
  244. k = fec_buffer_rs_index(n, j) + block_offset;
  245. if (k >= 1 << v->data_dev_block_bits)
  246. goto done;
  247. rs_block = fec_buffer_rs_block(v, fio, n, j);
  248. rs_block[i] = bbuf[k];
  249. }
  250. done:
  251. dm_bufio_release(buf);
  252. }
  253. return target_index;
  254. }
  255. /*
  256. * Allocate RS control structure and FEC buffers from preallocated mempools,
  257. * and attempt to allocate as many extra buffers as available.
  258. */
  259. static int fec_alloc_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
  260. {
  261. unsigned n;
  262. if (!fio->rs) {
  263. fio->rs = mempool_alloc(v->fec->rs_pool, 0);
  264. if (unlikely(!fio->rs)) {
  265. DMERR("failed to allocate RS");
  266. return -ENOMEM;
  267. }
  268. }
  269. fec_for_each_prealloc_buffer(n) {
  270. if (fio->bufs[n])
  271. continue;
  272. fio->bufs[n] = mempool_alloc(v->fec->prealloc_pool, GFP_NOIO);
  273. if (unlikely(!fio->bufs[n])) {
  274. DMERR("failed to allocate FEC buffer");
  275. return -ENOMEM;
  276. }
  277. }
  278. /* try to allocate the maximum number of buffers */
  279. fec_for_each_extra_buffer(fio, n) {
  280. if (fio->bufs[n])
  281. continue;
  282. fio->bufs[n] = mempool_alloc(v->fec->extra_pool, GFP_NOIO);
  283. /* we can manage with even one buffer if necessary */
  284. if (unlikely(!fio->bufs[n]))
  285. break;
  286. }
  287. fio->nbufs = n;
  288. if (!fio->output) {
  289. fio->output = mempool_alloc(v->fec->output_pool, GFP_NOIO);
  290. if (!fio->output) {
  291. DMERR("failed to allocate FEC page");
  292. return -ENOMEM;
  293. }
  294. }
  295. return 0;
  296. }
  297. /*
  298. * Initialize buffers and clear erasures. fec_read_bufs() assumes buffers are
  299. * zeroed before deinterleaving.
  300. */
  301. static void fec_init_bufs(struct dm_verity *v, struct dm_verity_fec_io *fio)
  302. {
  303. unsigned n;
  304. fec_for_each_buffer(fio, n)
  305. memset(fio->bufs[n], 0, v->fec->rsn << DM_VERITY_FEC_BUF_RS_BITS);
  306. memset(fio->erasures, 0, sizeof(fio->erasures));
  307. }
  308. /*
  309. * Decode all RS blocks in a single data block and return the target block
  310. * (indicated by @offset) in fio->output. If @use_erasures is non-zero, uses
  311. * hashes to locate erasures.
  312. */
  313. static int fec_decode_rsb(struct dm_verity *v, struct dm_verity_io *io,
  314. struct dm_verity_fec_io *fio, u64 rsb, u64 offset,
  315. bool use_erasures)
  316. {
  317. int r, neras = 0;
  318. unsigned pos;
  319. r = fec_alloc_bufs(v, fio);
  320. if (unlikely(r < 0))
  321. return r;
  322. for (pos = 0; pos < 1 << v->data_dev_block_bits; ) {
  323. fec_init_bufs(v, fio);
  324. r = fec_read_bufs(v, io, rsb, offset, pos,
  325. use_erasures ? &neras : NULL);
  326. if (unlikely(r < 0))
  327. return r;
  328. r = fec_decode_bufs(v, fio, rsb, r, pos, neras);
  329. if (r < 0)
  330. return r;
  331. pos += fio->nbufs << DM_VERITY_FEC_BUF_RS_BITS;
  332. }
  333. /* Always re-validate the corrected block against the expected hash */
  334. r = verity_hash(v, verity_io_hash_desc(v, io), fio->output,
  335. 1 << v->data_dev_block_bits,
  336. verity_io_real_digest(v, io));
  337. if (unlikely(r < 0))
  338. return r;
  339. if (memcmp(verity_io_real_digest(v, io), verity_io_want_digest(v, io),
  340. v->digest_size)) {
  341. DMERR_LIMIT("%s: FEC %llu: failed to correct (%d erasures)",
  342. v->data_dev->name, (unsigned long long)rsb, neras);
  343. return -EILSEQ;
  344. }
  345. return 0;
  346. }
  347. static int fec_bv_copy(struct dm_verity *v, struct dm_verity_io *io, u8 *data,
  348. size_t len)
  349. {
  350. struct dm_verity_fec_io *fio = fec_io(io);
  351. memcpy(data, &fio->output[fio->output_pos], len);
  352. fio->output_pos += len;
  353. return 0;
  354. }
  355. /*
  356. * Correct errors in a block. Copies corrected block to dest if non-NULL,
  357. * otherwise to a bio_vec starting from iter.
  358. */
  359. int verity_fec_decode(struct dm_verity *v, struct dm_verity_io *io,
  360. enum verity_block_type type, sector_t block, u8 *dest,
  361. struct bvec_iter *iter)
  362. {
  363. int r;
  364. struct dm_verity_fec_io *fio = fec_io(io);
  365. u64 offset, res, rsb;
  366. if (!verity_fec_is_enabled(v))
  367. return -EOPNOTSUPP;
  368. if (type == DM_VERITY_BLOCK_TYPE_METADATA)
  369. block += v->data_blocks;
  370. /*
  371. * For RS(M, N), the continuous FEC data is divided into blocks of N
  372. * bytes. Since block size may not be divisible by N, the last block
  373. * is zero padded when decoding.
  374. *
  375. * Each byte of the block is covered by a different RS(M, N) code,
  376. * and each code is interleaved over N blocks to make it less likely
  377. * that bursty corruption will leave us in unrecoverable state.
  378. */
  379. offset = block << v->data_dev_block_bits;
  380. res = div64_u64(offset, v->fec->rounds << v->data_dev_block_bits);
  381. /*
  382. * The base RS block we can feed to the interleaver to find out all
  383. * blocks required for decoding.
  384. */
  385. rsb = offset - res * (v->fec->rounds << v->data_dev_block_bits);
  386. /*
  387. * Locating erasures is slow, so attempt to recover the block without
  388. * them first. Do a second attempt with erasures if the corruption is
  389. * bad enough.
  390. */
  391. r = fec_decode_rsb(v, io, fio, rsb, offset, false);
  392. if (r < 0) {
  393. r = fec_decode_rsb(v, io, fio, rsb, offset, true);
  394. if (r < 0)
  395. return r;
  396. }
  397. if (dest)
  398. memcpy(dest, fio->output, 1 << v->data_dev_block_bits);
  399. else if (iter) {
  400. fio->output_pos = 0;
  401. r = verity_for_bv_block(v, io, iter, fec_bv_copy);
  402. }
  403. return r;
  404. }
  405. /*
  406. * Clean up per-bio data.
  407. */
  408. void verity_fec_finish_io(struct dm_verity_io *io)
  409. {
  410. unsigned n;
  411. struct dm_verity_fec *f = io->v->fec;
  412. struct dm_verity_fec_io *fio = fec_io(io);
  413. if (!verity_fec_is_enabled(io->v))
  414. return;
  415. mempool_free(fio->rs, f->rs_pool);
  416. fec_for_each_prealloc_buffer(n)
  417. mempool_free(fio->bufs[n], f->prealloc_pool);
  418. fec_for_each_extra_buffer(fio, n)
  419. mempool_free(fio->bufs[n], f->extra_pool);
  420. mempool_free(fio->output, f->output_pool);
  421. }
  422. /*
  423. * Initialize per-bio data.
  424. */
  425. void verity_fec_init_io(struct dm_verity_io *io)
  426. {
  427. struct dm_verity_fec_io *fio = fec_io(io);
  428. if (!verity_fec_is_enabled(io->v))
  429. return;
  430. fio->rs = NULL;
  431. memset(fio->bufs, 0, sizeof(fio->bufs));
  432. fio->nbufs = 0;
  433. fio->output = NULL;
  434. }
  435. /*
  436. * Append feature arguments and values to the status table.
  437. */
  438. unsigned verity_fec_status_table(struct dm_verity *v, unsigned sz,
  439. char *result, unsigned maxlen)
  440. {
  441. if (!verity_fec_is_enabled(v))
  442. return sz;
  443. DMEMIT(" " DM_VERITY_OPT_FEC_DEV " %s "
  444. DM_VERITY_OPT_FEC_BLOCKS " %llu "
  445. DM_VERITY_OPT_FEC_START " %llu "
  446. DM_VERITY_OPT_FEC_ROOTS " %d",
  447. v->fec->dev->name,
  448. (unsigned long long)v->fec->blocks,
  449. (unsigned long long)v->fec->start,
  450. v->fec->roots);
  451. return sz;
  452. }
  453. void verity_fec_dtr(struct dm_verity *v)
  454. {
  455. struct dm_verity_fec *f = v->fec;
  456. if (!verity_fec_is_enabled(v))
  457. goto out;
  458. mempool_destroy(f->rs_pool);
  459. mempool_destroy(f->prealloc_pool);
  460. mempool_destroy(f->extra_pool);
  461. kmem_cache_destroy(f->cache);
  462. if (f->data_bufio)
  463. dm_bufio_client_destroy(f->data_bufio);
  464. if (f->bufio)
  465. dm_bufio_client_destroy(f->bufio);
  466. if (f->dev)
  467. dm_put_device(v->ti, f->dev);
  468. out:
  469. kfree(f);
  470. v->fec = NULL;
  471. }
  472. static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data)
  473. {
  474. struct dm_verity *v = (struct dm_verity *)pool_data;
  475. return init_rs(8, 0x11d, 0, 1, v->fec->roots);
  476. }
  477. static void fec_rs_free(void *element, void *pool_data)
  478. {
  479. struct rs_control *rs = (struct rs_control *)element;
  480. if (rs)
  481. free_rs(rs);
  482. }
  483. bool verity_is_fec_opt_arg(const char *arg_name)
  484. {
  485. return (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV) ||
  486. !strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS) ||
  487. !strcasecmp(arg_name, DM_VERITY_OPT_FEC_START) ||
  488. !strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS));
  489. }
  490. int verity_fec_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
  491. unsigned *argc, const char *arg_name)
  492. {
  493. int r;
  494. struct dm_target *ti = v->ti;
  495. const char *arg_value;
  496. unsigned long long num_ll;
  497. unsigned char num_c;
  498. char dummy;
  499. if (!*argc) {
  500. ti->error = "FEC feature arguments require a value";
  501. return -EINVAL;
  502. }
  503. arg_value = dm_shift_arg(as);
  504. (*argc)--;
  505. if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_DEV)) {
  506. r = dm_get_device(ti, arg_value, FMODE_READ, &v->fec->dev);
  507. if (r) {
  508. ti->error = "FEC device lookup failed";
  509. return r;
  510. }
  511. } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_BLOCKS)) {
  512. if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
  513. ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
  514. >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
  515. ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
  516. return -EINVAL;
  517. }
  518. v->fec->blocks = num_ll;
  519. } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_START)) {
  520. if (sscanf(arg_value, "%llu%c", &num_ll, &dummy) != 1 ||
  521. ((sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT)) >>
  522. (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll)) {
  523. ti->error = "Invalid " DM_VERITY_OPT_FEC_START;
  524. return -EINVAL;
  525. }
  526. v->fec->start = num_ll;
  527. } else if (!strcasecmp(arg_name, DM_VERITY_OPT_FEC_ROOTS)) {
  528. if (sscanf(arg_value, "%hhu%c", &num_c, &dummy) != 1 || !num_c ||
  529. num_c < (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MAX_RSN) ||
  530. num_c > (DM_VERITY_FEC_RSM - DM_VERITY_FEC_MIN_RSN)) {
  531. ti->error = "Invalid " DM_VERITY_OPT_FEC_ROOTS;
  532. return -EINVAL;
  533. }
  534. v->fec->roots = num_c;
  535. } else {
  536. ti->error = "Unrecognized verity FEC feature request";
  537. return -EINVAL;
  538. }
  539. return 0;
  540. }
  541. /*
  542. * Allocate dm_verity_fec for v->fec. Must be called before verity_fec_ctr.
  543. */
  544. int verity_fec_ctr_alloc(struct dm_verity *v)
  545. {
  546. struct dm_verity_fec *f;
  547. f = kzalloc(sizeof(struct dm_verity_fec), GFP_KERNEL);
  548. if (!f) {
  549. v->ti->error = "Cannot allocate FEC structure";
  550. return -ENOMEM;
  551. }
  552. v->fec = f;
  553. return 0;
  554. }
  555. /*
  556. * Validate arguments and preallocate memory. Must be called after arguments
  557. * have been parsed using verity_fec_parse_opt_args.
  558. */
  559. int verity_fec_ctr(struct dm_verity *v)
  560. {
  561. struct dm_verity_fec *f = v->fec;
  562. struct dm_target *ti = v->ti;
  563. u64 hash_blocks;
  564. if (!verity_fec_is_enabled(v)) {
  565. verity_fec_dtr(v);
  566. return 0;
  567. }
  568. /*
  569. * FEC is computed over data blocks, possible metadata, and
  570. * hash blocks. In other words, FEC covers total of fec_blocks
  571. * blocks consisting of the following:
  572. *
  573. * data blocks | hash blocks | metadata (optional)
  574. *
  575. * We allow metadata after hash blocks to support a use case
  576. * where all data is stored on the same device and FEC covers
  577. * the entire area.
  578. *
  579. * If metadata is included, we require it to be available on the
  580. * hash device after the hash blocks.
  581. */
  582. hash_blocks = v->hash_blocks - v->hash_start;
  583. /*
  584. * Require matching block sizes for data and hash devices for
  585. * simplicity.
  586. */
  587. if (v->data_dev_block_bits != v->hash_dev_block_bits) {
  588. ti->error = "Block sizes must match to use FEC";
  589. return -EINVAL;
  590. }
  591. if (!f->roots) {
  592. ti->error = "Missing " DM_VERITY_OPT_FEC_ROOTS;
  593. return -EINVAL;
  594. }
  595. f->rsn = DM_VERITY_FEC_RSM - f->roots;
  596. if (!f->blocks) {
  597. ti->error = "Missing " DM_VERITY_OPT_FEC_BLOCKS;
  598. return -EINVAL;
  599. }
  600. f->rounds = f->blocks;
  601. if (sector_div(f->rounds, f->rsn))
  602. f->rounds++;
  603. /*
  604. * Due to optional metadata, f->blocks can be larger than
  605. * data_blocks and hash_blocks combined.
  606. */
  607. if (f->blocks < v->data_blocks + hash_blocks || !f->rounds) {
  608. ti->error = "Invalid " DM_VERITY_OPT_FEC_BLOCKS;
  609. return -EINVAL;
  610. }
  611. /*
  612. * Metadata is accessed through the hash device, so we require
  613. * it to be large enough.
  614. */
  615. f->hash_blocks = f->blocks - v->data_blocks;
  616. if (dm_bufio_get_device_size(v->bufio) < f->hash_blocks) {
  617. ti->error = "Hash device is too small for "
  618. DM_VERITY_OPT_FEC_BLOCKS;
  619. return -E2BIG;
  620. }
  621. f->bufio = dm_bufio_client_create(f->dev->bdev,
  622. 1 << v->data_dev_block_bits,
  623. 1, 0, NULL, NULL);
  624. if (IS_ERR(f->bufio)) {
  625. ti->error = "Cannot initialize FEC bufio client";
  626. return PTR_ERR(f->bufio);
  627. }
  628. if (dm_bufio_get_device_size(f->bufio) <
  629. ((f->start + f->rounds * f->roots) >> v->data_dev_block_bits)) {
  630. ti->error = "FEC device is too small";
  631. return -E2BIG;
  632. }
  633. f->data_bufio = dm_bufio_client_create(v->data_dev->bdev,
  634. 1 << v->data_dev_block_bits,
  635. 1, 0, NULL, NULL);
  636. if (IS_ERR(f->data_bufio)) {
  637. ti->error = "Cannot initialize FEC data bufio client";
  638. return PTR_ERR(f->data_bufio);
  639. }
  640. if (dm_bufio_get_device_size(f->data_bufio) < v->data_blocks) {
  641. ti->error = "Data device is too small";
  642. return -E2BIG;
  643. }
  644. /* Preallocate an rs_control structure for each worker thread */
  645. f->rs_pool = mempool_create(num_online_cpus(), fec_rs_alloc,
  646. fec_rs_free, (void *) v);
  647. if (!f->rs_pool) {
  648. ti->error = "Cannot allocate RS pool";
  649. return -ENOMEM;
  650. }
  651. f->cache = kmem_cache_create("dm_verity_fec_buffers",
  652. f->rsn << DM_VERITY_FEC_BUF_RS_BITS,
  653. 0, 0, NULL);
  654. if (!f->cache) {
  655. ti->error = "Cannot create FEC buffer cache";
  656. return -ENOMEM;
  657. }
  658. /* Preallocate DM_VERITY_FEC_BUF_PREALLOC buffers for each thread */
  659. f->prealloc_pool = mempool_create_slab_pool(num_online_cpus() *
  660. DM_VERITY_FEC_BUF_PREALLOC,
  661. f->cache);
  662. if (!f->prealloc_pool) {
  663. ti->error = "Cannot allocate FEC buffer prealloc pool";
  664. return -ENOMEM;
  665. }
  666. f->extra_pool = mempool_create_slab_pool(0, f->cache);
  667. if (!f->extra_pool) {
  668. ti->error = "Cannot allocate FEC buffer extra pool";
  669. return -ENOMEM;
  670. }
  671. /* Preallocate an output buffer for each thread */
  672. f->output_pool = mempool_create_kmalloc_pool(num_online_cpus(),
  673. 1 << v->data_dev_block_bits);
  674. if (!f->output_pool) {
  675. ti->error = "Cannot allocate FEC output pool";
  676. return -ENOMEM;
  677. }
  678. /* Reserve space for our per-bio data */
  679. ti->per_io_data_size += sizeof(struct dm_verity_fec_io);
  680. return 0;
  681. }