rmi_f12.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536
  1. /*
  2. * Copyright (c) 2012-2016 Synaptics Incorporated
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License version 2 as published by
  6. * the Free Software Foundation.
  7. */
  8. #include <linux/input.h>
  9. #include <linux/input/mt.h>
  10. #include <linux/rmi.h>
  11. #include "rmi_driver.h"
  12. #include "rmi_2d_sensor.h"
  13. enum rmi_f12_object_type {
  14. RMI_F12_OBJECT_NONE = 0x00,
  15. RMI_F12_OBJECT_FINGER = 0x01,
  16. RMI_F12_OBJECT_STYLUS = 0x02,
  17. RMI_F12_OBJECT_PALM = 0x03,
  18. RMI_F12_OBJECT_UNCLASSIFIED = 0x04,
  19. RMI_F12_OBJECT_GLOVED_FINGER = 0x06,
  20. RMI_F12_OBJECT_NARROW_OBJECT = 0x07,
  21. RMI_F12_OBJECT_HAND_EDGE = 0x08,
  22. RMI_F12_OBJECT_COVER = 0x0A,
  23. RMI_F12_OBJECT_STYLUS_2 = 0x0B,
  24. RMI_F12_OBJECT_ERASER = 0x0C,
  25. RMI_F12_OBJECT_SMALL_OBJECT = 0x0D,
  26. };
  27. #define F12_DATA1_BYTES_PER_OBJ 8
  28. struct f12_data {
  29. struct rmi_2d_sensor sensor;
  30. struct rmi_2d_sensor_platform_data sensor_pdata;
  31. bool has_dribble;
  32. u16 data_addr;
  33. struct rmi_register_descriptor query_reg_desc;
  34. struct rmi_register_descriptor control_reg_desc;
  35. struct rmi_register_descriptor data_reg_desc;
  36. /* F12 Data1 describes sensed objects */
  37. const struct rmi_register_desc_item *data1;
  38. u16 data1_offset;
  39. /* F12 Data5 describes finger ACM */
  40. const struct rmi_register_desc_item *data5;
  41. u16 data5_offset;
  42. /* F12 Data5 describes Pen */
  43. const struct rmi_register_desc_item *data6;
  44. u16 data6_offset;
  45. /* F12 Data9 reports relative data */
  46. const struct rmi_register_desc_item *data9;
  47. u16 data9_offset;
  48. const struct rmi_register_desc_item *data15;
  49. u16 data15_offset;
  50. };
  51. static int rmi_f12_read_sensor_tuning(struct f12_data *f12)
  52. {
  53. const struct rmi_register_desc_item *item;
  54. struct rmi_2d_sensor *sensor = &f12->sensor;
  55. struct rmi_function *fn = sensor->fn;
  56. struct rmi_device *rmi_dev = fn->rmi_dev;
  57. int ret;
  58. int offset;
  59. u8 buf[15];
  60. int pitch_x = 0;
  61. int pitch_y = 0;
  62. int rx_receivers = 0;
  63. int tx_receivers = 0;
  64. int sensor_flags = 0;
  65. item = rmi_get_register_desc_item(&f12->control_reg_desc, 8);
  66. if (!item) {
  67. dev_err(&fn->dev,
  68. "F12 does not have the sensor tuning control register\n");
  69. return -ENODEV;
  70. }
  71. offset = rmi_register_desc_calc_reg_offset(&f12->control_reg_desc, 8);
  72. if (item->reg_size > sizeof(buf)) {
  73. dev_err(&fn->dev,
  74. "F12 control8 should be no bigger than %zd bytes, not: %ld\n",
  75. sizeof(buf), item->reg_size);
  76. return -ENODEV;
  77. }
  78. ret = rmi_read_block(rmi_dev, fn->fd.control_base_addr + offset, buf,
  79. item->reg_size);
  80. if (ret)
  81. return ret;
  82. offset = 0;
  83. if (rmi_register_desc_has_subpacket(item, 0)) {
  84. sensor->max_x = (buf[offset + 1] << 8) | buf[offset];
  85. sensor->max_y = (buf[offset + 3] << 8) | buf[offset + 2];
  86. offset += 4;
  87. }
  88. rmi_dbg(RMI_DEBUG_FN, &fn->dev, "%s: max_x: %d max_y: %d\n", __func__,
  89. sensor->max_x, sensor->max_y);
  90. if (rmi_register_desc_has_subpacket(item, 1)) {
  91. pitch_x = (buf[offset + 1] << 8) | buf[offset];
  92. pitch_y = (buf[offset + 3] << 8) | buf[offset + 2];
  93. offset += 4;
  94. }
  95. if (rmi_register_desc_has_subpacket(item, 2)) {
  96. sensor->axis_align.clip_x_low = buf[offset];
  97. sensor->axis_align.clip_x_high = sensor->max_x
  98. - buf[offset + 1];
  99. sensor->axis_align.clip_y_low = buf[offset + 2];
  100. sensor->axis_align.clip_y_high = sensor->max_y
  101. - buf[offset + 3];
  102. offset += 4;
  103. }
  104. rmi_dbg(RMI_DEBUG_FN, &fn->dev, "%s: x low: %d x high: %d y low: %d y high: %d\n",
  105. __func__,
  106. sensor->axis_align.clip_x_low, sensor->axis_align.clip_x_high,
  107. sensor->axis_align.clip_y_low, sensor->axis_align.clip_y_high);
  108. if (rmi_register_desc_has_subpacket(item, 3)) {
  109. rx_receivers = buf[offset];
  110. tx_receivers = buf[offset + 1];
  111. offset += 2;
  112. }
  113. if (rmi_register_desc_has_subpacket(item, 4)) {
  114. sensor_flags = buf[offset];
  115. offset += 1;
  116. }
  117. sensor->x_mm = (pitch_x * rx_receivers) >> 12;
  118. sensor->y_mm = (pitch_y * tx_receivers) >> 12;
  119. rmi_dbg(RMI_DEBUG_FN, &fn->dev, "%s: x_mm: %d y_mm: %d\n", __func__,
  120. sensor->x_mm, sensor->y_mm);
  121. return 0;
  122. }
  123. static void rmi_f12_process_objects(struct f12_data *f12, u8 *data1, int size)
  124. {
  125. int i;
  126. struct rmi_2d_sensor *sensor = &f12->sensor;
  127. int objects = f12->data1->num_subpackets;
  128. if ((f12->data1->num_subpackets * F12_DATA1_BYTES_PER_OBJ) > size)
  129. objects = size / F12_DATA1_BYTES_PER_OBJ;
  130. for (i = 0; i < objects; i++) {
  131. struct rmi_2d_sensor_abs_object *obj = &sensor->objs[i];
  132. obj->type = RMI_2D_OBJECT_NONE;
  133. obj->mt_tool = MT_TOOL_FINGER;
  134. switch (data1[0]) {
  135. case RMI_F12_OBJECT_FINGER:
  136. obj->type = RMI_2D_OBJECT_FINGER;
  137. break;
  138. case RMI_F12_OBJECT_STYLUS:
  139. obj->type = RMI_2D_OBJECT_STYLUS;
  140. obj->mt_tool = MT_TOOL_PEN;
  141. break;
  142. case RMI_F12_OBJECT_PALM:
  143. obj->type = RMI_2D_OBJECT_PALM;
  144. obj->mt_tool = MT_TOOL_PALM;
  145. break;
  146. case RMI_F12_OBJECT_UNCLASSIFIED:
  147. obj->type = RMI_2D_OBJECT_UNCLASSIFIED;
  148. break;
  149. }
  150. obj->x = (data1[2] << 8) | data1[1];
  151. obj->y = (data1[4] << 8) | data1[3];
  152. obj->z = data1[5];
  153. obj->wx = data1[6];
  154. obj->wy = data1[7];
  155. rmi_2d_sensor_abs_process(sensor, obj, i);
  156. data1 += F12_DATA1_BYTES_PER_OBJ;
  157. }
  158. if (sensor->kernel_tracking)
  159. input_mt_assign_slots(sensor->input,
  160. sensor->tracking_slots,
  161. sensor->tracking_pos,
  162. sensor->nbr_fingers,
  163. sensor->dmax);
  164. for (i = 0; i < objects; i++)
  165. rmi_2d_sensor_abs_report(sensor, &sensor->objs[i], i);
  166. }
  167. static int rmi_f12_attention(struct rmi_function *fn,
  168. unsigned long *irq_nr_regs)
  169. {
  170. int retval;
  171. struct rmi_device *rmi_dev = fn->rmi_dev;
  172. struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
  173. struct f12_data *f12 = dev_get_drvdata(&fn->dev);
  174. struct rmi_2d_sensor *sensor = &f12->sensor;
  175. int valid_bytes = sensor->pkt_size;
  176. if (drvdata->attn_data.data) {
  177. if (sensor->attn_size > drvdata->attn_data.size)
  178. valid_bytes = drvdata->attn_data.size;
  179. else
  180. valid_bytes = sensor->attn_size;
  181. memcpy(sensor->data_pkt, drvdata->attn_data.data,
  182. valid_bytes);
  183. drvdata->attn_data.data += sensor->attn_size;
  184. drvdata->attn_data.size -= sensor->attn_size;
  185. } else {
  186. retval = rmi_read_block(rmi_dev, f12->data_addr,
  187. sensor->data_pkt, sensor->pkt_size);
  188. if (retval < 0) {
  189. dev_err(&fn->dev, "Failed to read object data. Code: %d.\n",
  190. retval);
  191. return retval;
  192. }
  193. }
  194. if (f12->data1)
  195. rmi_f12_process_objects(f12,
  196. &sensor->data_pkt[f12->data1_offset], valid_bytes);
  197. input_mt_sync_frame(sensor->input);
  198. return 0;
  199. }
  200. static int rmi_f12_write_control_regs(struct rmi_function *fn)
  201. {
  202. int ret;
  203. const struct rmi_register_desc_item *item;
  204. struct rmi_device *rmi_dev = fn->rmi_dev;
  205. struct f12_data *f12 = dev_get_drvdata(&fn->dev);
  206. int control_size;
  207. char buf[3];
  208. u16 control_offset = 0;
  209. u8 subpacket_offset = 0;
  210. if (f12->has_dribble
  211. && (f12->sensor.dribble != RMI_REG_STATE_DEFAULT)) {
  212. item = rmi_get_register_desc_item(&f12->control_reg_desc, 20);
  213. if (item) {
  214. control_offset = rmi_register_desc_calc_reg_offset(
  215. &f12->control_reg_desc, 20);
  216. /*
  217. * The byte containing the EnableDribble bit will be
  218. * in either byte 0 or byte 2 of control 20. Depending
  219. * on the existence of subpacket 0. If control 20 is
  220. * larger then 3 bytes, just read the first 3.
  221. */
  222. control_size = min(item->reg_size, 3UL);
  223. ret = rmi_read_block(rmi_dev, fn->fd.control_base_addr
  224. + control_offset, buf, control_size);
  225. if (ret)
  226. return ret;
  227. if (rmi_register_desc_has_subpacket(item, 0))
  228. subpacket_offset += 1;
  229. switch (f12->sensor.dribble) {
  230. case RMI_REG_STATE_OFF:
  231. buf[subpacket_offset] &= ~BIT(2);
  232. break;
  233. case RMI_REG_STATE_ON:
  234. buf[subpacket_offset] |= BIT(2);
  235. break;
  236. case RMI_REG_STATE_DEFAULT:
  237. default:
  238. break;
  239. }
  240. ret = rmi_write_block(rmi_dev,
  241. fn->fd.control_base_addr + control_offset,
  242. buf, control_size);
  243. if (ret)
  244. return ret;
  245. }
  246. }
  247. return 0;
  248. }
  249. static int rmi_f12_config(struct rmi_function *fn)
  250. {
  251. struct rmi_driver *drv = fn->rmi_dev->driver;
  252. int ret;
  253. drv->set_irq_bits(fn->rmi_dev, fn->irq_mask);
  254. ret = rmi_f12_write_control_regs(fn);
  255. if (ret)
  256. dev_warn(&fn->dev,
  257. "Failed to write F12 control registers: %d\n", ret);
  258. return 0;
  259. }
  260. static int rmi_f12_probe(struct rmi_function *fn)
  261. {
  262. struct f12_data *f12;
  263. int ret;
  264. struct rmi_device *rmi_dev = fn->rmi_dev;
  265. char buf;
  266. u16 query_addr = fn->fd.query_base_addr;
  267. const struct rmi_register_desc_item *item;
  268. struct rmi_2d_sensor *sensor;
  269. struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
  270. struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
  271. u16 data_offset = 0;
  272. rmi_dbg(RMI_DEBUG_FN, &fn->dev, "%s\n", __func__);
  273. ret = rmi_read(fn->rmi_dev, query_addr, &buf);
  274. if (ret < 0) {
  275. dev_err(&fn->dev, "Failed to read general info register: %d\n",
  276. ret);
  277. return -ENODEV;
  278. }
  279. ++query_addr;
  280. if (!(buf & BIT(0))) {
  281. dev_err(&fn->dev,
  282. "Behavior of F12 without register descriptors is undefined.\n");
  283. return -ENODEV;
  284. }
  285. f12 = devm_kzalloc(&fn->dev, sizeof(struct f12_data), GFP_KERNEL);
  286. if (!f12)
  287. return -ENOMEM;
  288. f12->has_dribble = !!(buf & BIT(3));
  289. if (fn->dev.of_node) {
  290. ret = rmi_2d_sensor_of_probe(&fn->dev, &f12->sensor_pdata);
  291. if (ret)
  292. return ret;
  293. } else {
  294. f12->sensor_pdata = pdata->sensor_pdata;
  295. }
  296. ret = rmi_read_register_desc(rmi_dev, query_addr,
  297. &f12->query_reg_desc);
  298. if (ret) {
  299. dev_err(&fn->dev,
  300. "Failed to read the Query Register Descriptor: %d\n",
  301. ret);
  302. return ret;
  303. }
  304. query_addr += 3;
  305. ret = rmi_read_register_desc(rmi_dev, query_addr,
  306. &f12->control_reg_desc);
  307. if (ret) {
  308. dev_err(&fn->dev,
  309. "Failed to read the Control Register Descriptor: %d\n",
  310. ret);
  311. return ret;
  312. }
  313. query_addr += 3;
  314. ret = rmi_read_register_desc(rmi_dev, query_addr,
  315. &f12->data_reg_desc);
  316. if (ret) {
  317. dev_err(&fn->dev,
  318. "Failed to read the Data Register Descriptor: %d\n",
  319. ret);
  320. return ret;
  321. }
  322. query_addr += 3;
  323. sensor = &f12->sensor;
  324. sensor->fn = fn;
  325. f12->data_addr = fn->fd.data_base_addr;
  326. sensor->pkt_size = rmi_register_desc_calc_size(&f12->data_reg_desc);
  327. sensor->axis_align =
  328. f12->sensor_pdata.axis_align;
  329. sensor->x_mm = f12->sensor_pdata.x_mm;
  330. sensor->y_mm = f12->sensor_pdata.y_mm;
  331. sensor->dribble = f12->sensor_pdata.dribble;
  332. if (sensor->sensor_type == rmi_sensor_default)
  333. sensor->sensor_type =
  334. f12->sensor_pdata.sensor_type;
  335. rmi_dbg(RMI_DEBUG_FN, &fn->dev, "%s: data packet size: %d\n", __func__,
  336. sensor->pkt_size);
  337. sensor->data_pkt = devm_kzalloc(&fn->dev, sensor->pkt_size, GFP_KERNEL);
  338. if (!sensor->data_pkt)
  339. return -ENOMEM;
  340. dev_set_drvdata(&fn->dev, f12);
  341. ret = rmi_f12_read_sensor_tuning(f12);
  342. if (ret)
  343. return ret;
  344. /*
  345. * Figure out what data is contained in the data registers. HID devices
  346. * may have registers defined, but their data is not reported in the
  347. * HID attention report. Registers which are not reported in the HID
  348. * attention report check to see if the device is receiving data from
  349. * HID attention reports.
  350. */
  351. item = rmi_get_register_desc_item(&f12->data_reg_desc, 0);
  352. if (item && !drvdata->attn_data.data)
  353. data_offset += item->reg_size;
  354. item = rmi_get_register_desc_item(&f12->data_reg_desc, 1);
  355. if (item) {
  356. f12->data1 = item;
  357. f12->data1_offset = data_offset;
  358. data_offset += item->reg_size;
  359. sensor->nbr_fingers = item->num_subpackets;
  360. sensor->report_abs = 1;
  361. sensor->attn_size += item->reg_size;
  362. }
  363. item = rmi_get_register_desc_item(&f12->data_reg_desc, 2);
  364. if (item && !drvdata->attn_data.data)
  365. data_offset += item->reg_size;
  366. item = rmi_get_register_desc_item(&f12->data_reg_desc, 3);
  367. if (item && !drvdata->attn_data.data)
  368. data_offset += item->reg_size;
  369. item = rmi_get_register_desc_item(&f12->data_reg_desc, 4);
  370. if (item && !drvdata->attn_data.data)
  371. data_offset += item->reg_size;
  372. item = rmi_get_register_desc_item(&f12->data_reg_desc, 5);
  373. if (item) {
  374. f12->data5 = item;
  375. f12->data5_offset = data_offset;
  376. data_offset += item->reg_size;
  377. sensor->attn_size += item->reg_size;
  378. }
  379. item = rmi_get_register_desc_item(&f12->data_reg_desc, 6);
  380. if (item && !drvdata->attn_data.data) {
  381. f12->data6 = item;
  382. f12->data6_offset = data_offset;
  383. data_offset += item->reg_size;
  384. }
  385. item = rmi_get_register_desc_item(&f12->data_reg_desc, 7);
  386. if (item && !drvdata->attn_data.data)
  387. data_offset += item->reg_size;
  388. item = rmi_get_register_desc_item(&f12->data_reg_desc, 8);
  389. if (item && !drvdata->attn_data.data)
  390. data_offset += item->reg_size;
  391. item = rmi_get_register_desc_item(&f12->data_reg_desc, 9);
  392. if (item && !drvdata->attn_data.data) {
  393. f12->data9 = item;
  394. f12->data9_offset = data_offset;
  395. data_offset += item->reg_size;
  396. if (!sensor->report_abs)
  397. sensor->report_rel = 1;
  398. }
  399. item = rmi_get_register_desc_item(&f12->data_reg_desc, 10);
  400. if (item && !drvdata->attn_data.data)
  401. data_offset += item->reg_size;
  402. item = rmi_get_register_desc_item(&f12->data_reg_desc, 11);
  403. if (item && !drvdata->attn_data.data)
  404. data_offset += item->reg_size;
  405. item = rmi_get_register_desc_item(&f12->data_reg_desc, 12);
  406. if (item && !drvdata->attn_data.data)
  407. data_offset += item->reg_size;
  408. item = rmi_get_register_desc_item(&f12->data_reg_desc, 13);
  409. if (item && !drvdata->attn_data.data)
  410. data_offset += item->reg_size;
  411. item = rmi_get_register_desc_item(&f12->data_reg_desc, 14);
  412. if (item && !drvdata->attn_data.data)
  413. data_offset += item->reg_size;
  414. item = rmi_get_register_desc_item(&f12->data_reg_desc, 15);
  415. if (item && !drvdata->attn_data.data) {
  416. f12->data15 = item;
  417. f12->data15_offset = data_offset;
  418. data_offset += item->reg_size;
  419. }
  420. /* allocate the in-kernel tracking buffers */
  421. sensor->tracking_pos = devm_kzalloc(&fn->dev,
  422. sizeof(struct input_mt_pos) * sensor->nbr_fingers,
  423. GFP_KERNEL);
  424. sensor->tracking_slots = devm_kzalloc(&fn->dev,
  425. sizeof(int) * sensor->nbr_fingers, GFP_KERNEL);
  426. sensor->objs = devm_kzalloc(&fn->dev,
  427. sizeof(struct rmi_2d_sensor_abs_object)
  428. * sensor->nbr_fingers, GFP_KERNEL);
  429. if (!sensor->tracking_pos || !sensor->tracking_slots || !sensor->objs)
  430. return -ENOMEM;
  431. ret = rmi_2d_sensor_configure_input(fn, sensor);
  432. if (ret)
  433. return ret;
  434. return 0;
  435. }
  436. struct rmi_function_handler rmi_f12_handler = {
  437. .driver = {
  438. .name = "rmi4_f12",
  439. },
  440. .func = 0x12,
  441. .probe = rmi_f12_probe,
  442. .config = rmi_f12_config,
  443. .attention = rmi_f12_attention,
  444. };