rmi_driver.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273
  1. /*
  2. * Copyright (c) 2011-2016 Synaptics Incorporated
  3. * Copyright (c) 2011 Unixphere
  4. *
  5. * This driver provides the core support for a single RMI4-based device.
  6. *
  7. * The RMI4 specification can be found here (URL split for line length):
  8. *
  9. * http://www.synaptics.com/sites/default/files/
  10. * 511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf
  11. *
  12. * This program is free software; you can redistribute it and/or modify it
  13. * under the terms of the GNU General Public License version 2 as published by
  14. * the Free Software Foundation.
  15. */
  16. #include <linux/bitmap.h>
  17. #include <linux/delay.h>
  18. #include <linux/fs.h>
  19. #include <linux/irq.h>
  20. #include <linux/pm.h>
  21. #include <linux/slab.h>
  22. #include <linux/of.h>
  23. #include <uapi/linux/input.h>
  24. #include <linux/rmi.h>
  25. #include "rmi_bus.h"
  26. #include "rmi_driver.h"
  27. #define HAS_NONSTANDARD_PDT_MASK 0x40
  28. #define RMI4_MAX_PAGE 0xff
  29. #define RMI4_PAGE_SIZE 0x100
  30. #define RMI4_PAGE_MASK 0xFF00
  31. #define RMI_DEVICE_RESET_CMD 0x01
  32. #define DEFAULT_RESET_DELAY_MS 100
  33. void rmi_free_function_list(struct rmi_device *rmi_dev)
  34. {
  35. struct rmi_function *fn, *tmp;
  36. struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
  37. rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n");
  38. devm_kfree(&rmi_dev->dev, data->irq_memory);
  39. data->irq_memory = NULL;
  40. data->irq_status = NULL;
  41. data->fn_irq_bits = NULL;
  42. data->current_irq_mask = NULL;
  43. data->new_irq_mask = NULL;
  44. data->f01_container = NULL;
  45. data->f34_container = NULL;
  46. /* Doing it in the reverse order so F01 will be removed last */
  47. list_for_each_entry_safe_reverse(fn, tmp,
  48. &data->function_list, node) {
  49. list_del(&fn->node);
  50. rmi_unregister_function(fn);
  51. }
  52. }
  53. static int reset_one_function(struct rmi_function *fn)
  54. {
  55. struct rmi_function_handler *fh;
  56. int retval = 0;
  57. if (!fn || !fn->dev.driver)
  58. return 0;
  59. fh = to_rmi_function_handler(fn->dev.driver);
  60. if (fh->reset) {
  61. retval = fh->reset(fn);
  62. if (retval < 0)
  63. dev_err(&fn->dev, "Reset failed with code %d.\n",
  64. retval);
  65. }
  66. return retval;
  67. }
  68. static int configure_one_function(struct rmi_function *fn)
  69. {
  70. struct rmi_function_handler *fh;
  71. int retval = 0;
  72. if (!fn || !fn->dev.driver)
  73. return 0;
  74. fh = to_rmi_function_handler(fn->dev.driver);
  75. if (fh->config) {
  76. retval = fh->config(fn);
  77. if (retval < 0)
  78. dev_err(&fn->dev, "Config failed with code %d.\n",
  79. retval);
  80. }
  81. return retval;
  82. }
  83. static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev)
  84. {
  85. struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
  86. struct rmi_function *entry;
  87. int retval;
  88. list_for_each_entry(entry, &data->function_list, node) {
  89. retval = reset_one_function(entry);
  90. if (retval < 0)
  91. return retval;
  92. }
  93. return 0;
  94. }
  95. static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev)
  96. {
  97. struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
  98. struct rmi_function *entry;
  99. int retval;
  100. list_for_each_entry(entry, &data->function_list, node) {
  101. retval = configure_one_function(entry);
  102. if (retval < 0)
  103. return retval;
  104. }
  105. return 0;
  106. }
  107. static void process_one_interrupt(struct rmi_driver_data *data,
  108. struct rmi_function *fn)
  109. {
  110. struct rmi_function_handler *fh;
  111. if (!fn || !fn->dev.driver)
  112. return;
  113. fh = to_rmi_function_handler(fn->dev.driver);
  114. if (fh->attention) {
  115. bitmap_and(data->fn_irq_bits, data->irq_status, fn->irq_mask,
  116. data->irq_count);
  117. if (!bitmap_empty(data->fn_irq_bits, data->irq_count))
  118. fh->attention(fn, data->fn_irq_bits);
  119. }
  120. }
  121. static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev)
  122. {
  123. struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
  124. struct device *dev = &rmi_dev->dev;
  125. struct rmi_function *entry;
  126. int error;
  127. if (!data)
  128. return 0;
  129. if (!data->attn_data.data) {
  130. error = rmi_read_block(rmi_dev,
  131. data->f01_container->fd.data_base_addr + 1,
  132. data->irq_status, data->num_of_irq_regs);
  133. if (error < 0) {
  134. dev_err(dev, "Failed to read irqs, code=%d\n", error);
  135. return error;
  136. }
  137. }
  138. mutex_lock(&data->irq_mutex);
  139. bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask,
  140. data->irq_count);
  141. /*
  142. * At this point, irq_status has all bits that are set in the
  143. * interrupt status register and are enabled.
  144. */
  145. mutex_unlock(&data->irq_mutex);
  146. /*
  147. * It would be nice to be able to use irq_chip to handle these
  148. * nested IRQs. Unfortunately, most of the current customers for
  149. * this driver are using older kernels (3.0.x) that don't support
  150. * the features required for that. Once they've shifted to more
  151. * recent kernels (say, 3.3 and higher), this should be switched to
  152. * use irq_chip.
  153. */
  154. list_for_each_entry(entry, &data->function_list, node)
  155. process_one_interrupt(data, entry);
  156. if (data->input)
  157. input_sync(data->input);
  158. return 0;
  159. }
  160. void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status,
  161. void *data, size_t size)
  162. {
  163. struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
  164. struct rmi4_attn_data attn_data;
  165. void *fifo_data;
  166. if (!drvdata->enabled)
  167. return;
  168. fifo_data = kmemdup(data, size, GFP_ATOMIC);
  169. if (!fifo_data)
  170. return;
  171. attn_data.irq_status = irq_status;
  172. attn_data.size = size;
  173. attn_data.data = fifo_data;
  174. kfifo_put(&drvdata->attn_fifo, attn_data);
  175. }
  176. EXPORT_SYMBOL_GPL(rmi_set_attn_data);
  177. static irqreturn_t rmi_irq_fn(int irq, void *dev_id)
  178. {
  179. struct rmi_device *rmi_dev = dev_id;
  180. struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev);
  181. struct rmi4_attn_data attn_data = {0};
  182. int ret, count;
  183. count = kfifo_get(&drvdata->attn_fifo, &attn_data);
  184. if (count) {
  185. *(drvdata->irq_status) = attn_data.irq_status;
  186. drvdata->attn_data = attn_data;
  187. }
  188. ret = rmi_process_interrupt_requests(rmi_dev);
  189. if (ret)
  190. rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev,
  191. "Failed to process interrupt request: %d\n", ret);
  192. if (count)
  193. kfree(attn_data.data);
  194. if (!kfifo_is_empty(&drvdata->attn_fifo))
  195. return rmi_irq_fn(irq, dev_id);
  196. return IRQ_HANDLED;
  197. }
  198. static int rmi_irq_init(struct rmi_device *rmi_dev)
  199. {
  200. struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
  201. struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
  202. int irq_flags = irq_get_trigger_type(pdata->irq);
  203. int ret;
  204. if (!irq_flags)
  205. irq_flags = IRQF_TRIGGER_LOW;
  206. ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL,
  207. rmi_irq_fn, irq_flags | IRQF_ONESHOT,
  208. dev_name(rmi_dev->xport->dev),
  209. rmi_dev);
  210. if (ret < 0) {
  211. dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n",
  212. pdata->irq);
  213. return ret;
  214. }
  215. data->enabled = true;
  216. return 0;
  217. }
  218. static int suspend_one_function(struct rmi_function *fn)
  219. {
  220. struct rmi_function_handler *fh;
  221. int retval = 0;
  222. if (!fn || !fn->dev.driver)
  223. return 0;
  224. fh = to_rmi_function_handler(fn->dev.driver);
  225. if (fh->suspend) {
  226. retval = fh->suspend(fn);
  227. if (retval < 0)
  228. dev_err(&fn->dev, "Suspend failed with code %d.\n",
  229. retval);
  230. }
  231. return retval;
  232. }
  233. static int rmi_suspend_functions(struct rmi_device *rmi_dev)
  234. {
  235. struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
  236. struct rmi_function *entry;
  237. int retval;
  238. list_for_each_entry(entry, &data->function_list, node) {
  239. retval = suspend_one_function(entry);
  240. if (retval < 0)
  241. return retval;
  242. }
  243. return 0;
  244. }
  245. static int resume_one_function(struct rmi_function *fn)
  246. {
  247. struct rmi_function_handler *fh;
  248. int retval = 0;
  249. if (!fn || !fn->dev.driver)
  250. return 0;
  251. fh = to_rmi_function_handler(fn->dev.driver);
  252. if (fh->resume) {
  253. retval = fh->resume(fn);
  254. if (retval < 0)
  255. dev_err(&fn->dev, "Resume failed with code %d.\n",
  256. retval);
  257. }
  258. return retval;
  259. }
  260. static int rmi_resume_functions(struct rmi_device *rmi_dev)
  261. {
  262. struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
  263. struct rmi_function *entry;
  264. int retval;
  265. list_for_each_entry(entry, &data->function_list, node) {
  266. retval = resume_one_function(entry);
  267. if (retval < 0)
  268. return retval;
  269. }
  270. return 0;
  271. }
  272. int rmi_enable_sensor(struct rmi_device *rmi_dev)
  273. {
  274. int retval = 0;
  275. retval = rmi_driver_process_config_requests(rmi_dev);
  276. if (retval < 0)
  277. return retval;
  278. return rmi_process_interrupt_requests(rmi_dev);
  279. }
  280. /**
  281. * rmi_driver_set_input_params - set input device id and other data.
  282. *
  283. * @rmi_dev: Pointer to an RMI device
  284. * @input: Pointer to input device
  285. *
  286. */
  287. static int rmi_driver_set_input_params(struct rmi_device *rmi_dev,
  288. struct input_dev *input)
  289. {
  290. input->name = SYNAPTICS_INPUT_DEVICE_NAME;
  291. input->id.vendor = SYNAPTICS_VENDOR_ID;
  292. input->id.bustype = BUS_RMI;
  293. return 0;
  294. }
  295. static void rmi_driver_set_input_name(struct rmi_device *rmi_dev,
  296. struct input_dev *input)
  297. {
  298. struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
  299. char *device_name = rmi_f01_get_product_ID(data->f01_container);
  300. char *name;
  301. name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL,
  302. "Synaptics %s", device_name);
  303. if (!name)
  304. return;
  305. input->name = name;
  306. }
  307. static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev,
  308. unsigned long *mask)
  309. {
  310. int error = 0;
  311. struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
  312. struct device *dev = &rmi_dev->dev;
  313. mutex_lock(&data->irq_mutex);
  314. bitmap_or(data->new_irq_mask,
  315. data->current_irq_mask, mask, data->irq_count);
  316. error = rmi_write_block(rmi_dev,
  317. data->f01_container->fd.control_base_addr + 1,
  318. data->new_irq_mask, data->num_of_irq_regs);
  319. if (error < 0) {
  320. dev_err(dev, "%s: Failed to change enabled interrupts!",
  321. __func__);
  322. goto error_unlock;
  323. }
  324. bitmap_copy(data->current_irq_mask, data->new_irq_mask,
  325. data->num_of_irq_regs);
  326. error_unlock:
  327. mutex_unlock(&data->irq_mutex);
  328. return error;
  329. }
  330. static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev,
  331. unsigned long *mask)
  332. {
  333. int error = 0;
  334. struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
  335. struct device *dev = &rmi_dev->dev;
  336. mutex_lock(&data->irq_mutex);
  337. bitmap_andnot(data->new_irq_mask,
  338. data->current_irq_mask, mask, data->irq_count);
  339. error = rmi_write_block(rmi_dev,
  340. data->f01_container->fd.control_base_addr + 1,
  341. data->new_irq_mask, data->num_of_irq_regs);
  342. if (error < 0) {
  343. dev_err(dev, "%s: Failed to change enabled interrupts!",
  344. __func__);
  345. goto error_unlock;
  346. }
  347. bitmap_copy(data->current_irq_mask, data->new_irq_mask,
  348. data->num_of_irq_regs);
  349. error_unlock:
  350. mutex_unlock(&data->irq_mutex);
  351. return error;
  352. }
  353. static int rmi_driver_reset_handler(struct rmi_device *rmi_dev)
  354. {
  355. struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
  356. int error;
  357. /*
  358. * Can get called before the driver is fully ready to deal with
  359. * this situation.
  360. */
  361. if (!data || !data->f01_container) {
  362. dev_warn(&rmi_dev->dev,
  363. "Not ready to handle reset yet!\n");
  364. return 0;
  365. }
  366. error = rmi_read_block(rmi_dev,
  367. data->f01_container->fd.control_base_addr + 1,
  368. data->current_irq_mask, data->num_of_irq_regs);
  369. if (error < 0) {
  370. dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n",
  371. __func__);
  372. return error;
  373. }
  374. error = rmi_driver_process_reset_requests(rmi_dev);
  375. if (error < 0)
  376. return error;
  377. error = rmi_driver_process_config_requests(rmi_dev);
  378. if (error < 0)
  379. return error;
  380. return 0;
  381. }
  382. static int rmi_read_pdt_entry(struct rmi_device *rmi_dev,
  383. struct pdt_entry *entry, u16 pdt_address)
  384. {
  385. u8 buf[RMI_PDT_ENTRY_SIZE];
  386. int error;
  387. error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE);
  388. if (error) {
  389. dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n",
  390. pdt_address, error);
  391. return error;
  392. }
  393. entry->page_start = pdt_address & RMI4_PAGE_MASK;
  394. entry->query_base_addr = buf[0];
  395. entry->command_base_addr = buf[1];
  396. entry->control_base_addr = buf[2];
  397. entry->data_base_addr = buf[3];
  398. entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK;
  399. entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5;
  400. entry->function_number = buf[5];
  401. return 0;
  402. }
  403. static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt,
  404. struct rmi_function_descriptor *fd)
  405. {
  406. fd->query_base_addr = pdt->query_base_addr + pdt->page_start;
  407. fd->command_base_addr = pdt->command_base_addr + pdt->page_start;
  408. fd->control_base_addr = pdt->control_base_addr + pdt->page_start;
  409. fd->data_base_addr = pdt->data_base_addr + pdt->page_start;
  410. fd->function_number = pdt->function_number;
  411. fd->interrupt_source_count = pdt->interrupt_source_count;
  412. fd->function_version = pdt->function_version;
  413. }
  414. #define RMI_SCAN_CONTINUE 0
  415. #define RMI_SCAN_DONE 1
  416. static int rmi_scan_pdt_page(struct rmi_device *rmi_dev,
  417. int page,
  418. int *empty_pages,
  419. void *ctx,
  420. int (*callback)(struct rmi_device *rmi_dev,
  421. void *ctx,
  422. const struct pdt_entry *entry))
  423. {
  424. struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
  425. struct pdt_entry pdt_entry;
  426. u16 page_start = RMI4_PAGE_SIZE * page;
  427. u16 pdt_start = page_start + PDT_START_SCAN_LOCATION;
  428. u16 pdt_end = page_start + PDT_END_SCAN_LOCATION;
  429. u16 addr;
  430. int error;
  431. int retval;
  432. for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) {
  433. error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr);
  434. if (error)
  435. return error;
  436. if (RMI4_END_OF_PDT(pdt_entry.function_number))
  437. break;
  438. retval = callback(rmi_dev, ctx, &pdt_entry);
  439. if (retval != RMI_SCAN_CONTINUE)
  440. return retval;
  441. }
  442. /*
  443. * Count number of empty PDT pages. If a gap of two pages
  444. * or more is found, stop scanning.
  445. */
  446. if (addr == pdt_start)
  447. ++*empty_pages;
  448. else
  449. *empty_pages = 0;
  450. return (data->bootloader_mode || *empty_pages >= 2) ?
  451. RMI_SCAN_DONE : RMI_SCAN_CONTINUE;
  452. }
  453. int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx,
  454. int (*callback)(struct rmi_device *rmi_dev,
  455. void *ctx, const struct pdt_entry *entry))
  456. {
  457. int page;
  458. int empty_pages = 0;
  459. int retval = RMI_SCAN_DONE;
  460. for (page = 0; page <= RMI4_MAX_PAGE; page++) {
  461. retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages,
  462. ctx, callback);
  463. if (retval != RMI_SCAN_CONTINUE)
  464. break;
  465. }
  466. return retval < 0 ? retval : 0;
  467. }
  468. int rmi_read_register_desc(struct rmi_device *d, u16 addr,
  469. struct rmi_register_descriptor *rdesc)
  470. {
  471. int ret;
  472. u8 size_presence_reg;
  473. u8 buf[35];
  474. int presense_offset = 1;
  475. u8 *struct_buf;
  476. int reg;
  477. int offset = 0;
  478. int map_offset = 0;
  479. int i;
  480. int b;
  481. /*
  482. * The first register of the register descriptor is the size of
  483. * the register descriptor's presense register.
  484. */
  485. ret = rmi_read(d, addr, &size_presence_reg);
  486. if (ret)
  487. return ret;
  488. ++addr;
  489. if (size_presence_reg < 0 || size_presence_reg > 35)
  490. return -EIO;
  491. memset(buf, 0, sizeof(buf));
  492. /*
  493. * The presence register contains the size of the register structure
  494. * and a bitmap which identified which packet registers are present
  495. * for this particular register type (ie query, control, or data).
  496. */
  497. ret = rmi_read_block(d, addr, buf, size_presence_reg);
  498. if (ret)
  499. return ret;
  500. ++addr;
  501. if (buf[0] == 0) {
  502. presense_offset = 3;
  503. rdesc->struct_size = buf[1] | (buf[2] << 8);
  504. } else {
  505. rdesc->struct_size = buf[0];
  506. }
  507. for (i = presense_offset; i < size_presence_reg; i++) {
  508. for (b = 0; b < 8; b++) {
  509. if (buf[i] & (0x1 << b))
  510. bitmap_set(rdesc->presense_map, map_offset, 1);
  511. ++map_offset;
  512. }
  513. }
  514. rdesc->num_registers = bitmap_weight(rdesc->presense_map,
  515. RMI_REG_DESC_PRESENSE_BITS);
  516. rdesc->registers = devm_kzalloc(&d->dev, rdesc->num_registers *
  517. sizeof(struct rmi_register_desc_item),
  518. GFP_KERNEL);
  519. if (!rdesc->registers)
  520. return -ENOMEM;
  521. /*
  522. * Allocate a temporary buffer to hold the register structure.
  523. * I'm not using devm_kzalloc here since it will not be retained
  524. * after exiting this function
  525. */
  526. struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL);
  527. if (!struct_buf)
  528. return -ENOMEM;
  529. /*
  530. * The register structure contains information about every packet
  531. * register of this type. This includes the size of the packet
  532. * register and a bitmap of all subpackets contained in the packet
  533. * register.
  534. */
  535. ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size);
  536. if (ret)
  537. goto free_struct_buff;
  538. reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS);
  539. for (i = 0; i < rdesc->num_registers; i++) {
  540. struct rmi_register_desc_item *item = &rdesc->registers[i];
  541. int reg_size = struct_buf[offset];
  542. ++offset;
  543. if (reg_size == 0) {
  544. reg_size = struct_buf[offset] |
  545. (struct_buf[offset + 1] << 8);
  546. offset += 2;
  547. }
  548. if (reg_size == 0) {
  549. reg_size = struct_buf[offset] |
  550. (struct_buf[offset + 1] << 8) |
  551. (struct_buf[offset + 2] << 16) |
  552. (struct_buf[offset + 3] << 24);
  553. offset += 4;
  554. }
  555. item->reg = reg;
  556. item->reg_size = reg_size;
  557. map_offset = 0;
  558. do {
  559. for (b = 0; b < 7; b++) {
  560. if (struct_buf[offset] & (0x1 << b))
  561. bitmap_set(item->subpacket_map,
  562. map_offset, 1);
  563. ++map_offset;
  564. }
  565. } while (struct_buf[offset++] & 0x80);
  566. item->num_subpackets = bitmap_weight(item->subpacket_map,
  567. RMI_REG_DESC_SUBPACKET_BITS);
  568. rmi_dbg(RMI_DEBUG_CORE, &d->dev,
  569. "%s: reg: %d reg size: %ld subpackets: %d\n", __func__,
  570. item->reg, item->reg_size, item->num_subpackets);
  571. reg = find_next_bit(rdesc->presense_map,
  572. RMI_REG_DESC_PRESENSE_BITS, reg + 1);
  573. }
  574. free_struct_buff:
  575. kfree(struct_buf);
  576. return ret;
  577. }
  578. const struct rmi_register_desc_item *rmi_get_register_desc_item(
  579. struct rmi_register_descriptor *rdesc, u16 reg)
  580. {
  581. const struct rmi_register_desc_item *item;
  582. int i;
  583. for (i = 0; i < rdesc->num_registers; i++) {
  584. item = &rdesc->registers[i];
  585. if (item->reg == reg)
  586. return item;
  587. }
  588. return NULL;
  589. }
  590. size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc)
  591. {
  592. const struct rmi_register_desc_item *item;
  593. int i;
  594. size_t size = 0;
  595. for (i = 0; i < rdesc->num_registers; i++) {
  596. item = &rdesc->registers[i];
  597. size += item->reg_size;
  598. }
  599. return size;
  600. }
  601. /* Compute the register offset relative to the base address */
  602. int rmi_register_desc_calc_reg_offset(
  603. struct rmi_register_descriptor *rdesc, u16 reg)
  604. {
  605. const struct rmi_register_desc_item *item;
  606. int offset = 0;
  607. int i;
  608. for (i = 0; i < rdesc->num_registers; i++) {
  609. item = &rdesc->registers[i];
  610. if (item->reg == reg)
  611. return offset;
  612. ++offset;
  613. }
  614. return -1;
  615. }
  616. bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item,
  617. u8 subpacket)
  618. {
  619. return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS,
  620. subpacket) == subpacket;
  621. }
  622. static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev,
  623. const struct pdt_entry *pdt)
  624. {
  625. struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
  626. int ret;
  627. u8 status;
  628. if (pdt->function_number == 0x34 && pdt->function_version > 1) {
  629. ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
  630. if (ret) {
  631. dev_err(&rmi_dev->dev,
  632. "Failed to read F34 status: %d.\n", ret);
  633. return ret;
  634. }
  635. if (status & BIT(7))
  636. data->bootloader_mode = true;
  637. } else if (pdt->function_number == 0x01) {
  638. ret = rmi_read(rmi_dev, pdt->data_base_addr, &status);
  639. if (ret) {
  640. dev_err(&rmi_dev->dev,
  641. "Failed to read F01 status: %d.\n", ret);
  642. return ret;
  643. }
  644. if (status & BIT(6))
  645. data->bootloader_mode = true;
  646. }
  647. return 0;
  648. }
  649. static int rmi_count_irqs(struct rmi_device *rmi_dev,
  650. void *ctx, const struct pdt_entry *pdt)
  651. {
  652. int *irq_count = ctx;
  653. int ret;
  654. *irq_count += pdt->interrupt_source_count;
  655. ret = rmi_check_bootloader_mode(rmi_dev, pdt);
  656. if (ret < 0)
  657. return ret;
  658. return RMI_SCAN_CONTINUE;
  659. }
  660. int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx,
  661. const struct pdt_entry *pdt)
  662. {
  663. int error;
  664. if (pdt->function_number == 0x01) {
  665. u16 cmd_addr = pdt->page_start + pdt->command_base_addr;
  666. u8 cmd_buf = RMI_DEVICE_RESET_CMD;
  667. const struct rmi_device_platform_data *pdata =
  668. rmi_get_platform_data(rmi_dev);
  669. if (rmi_dev->xport->ops->reset) {
  670. error = rmi_dev->xport->ops->reset(rmi_dev->xport,
  671. cmd_addr);
  672. if (error)
  673. return error;
  674. return RMI_SCAN_DONE;
  675. }
  676. rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n");
  677. error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1);
  678. if (error) {
  679. dev_err(&rmi_dev->dev,
  680. "Initial reset failed. Code = %d.\n", error);
  681. return error;
  682. }
  683. mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS);
  684. return RMI_SCAN_DONE;
  685. }
  686. /* F01 should always be on page 0. If we don't find it there, fail. */
  687. return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV;
  688. }
  689. static int rmi_create_function(struct rmi_device *rmi_dev,
  690. void *ctx, const struct pdt_entry *pdt)
  691. {
  692. struct device *dev = &rmi_dev->dev;
  693. struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
  694. int *current_irq_count = ctx;
  695. struct rmi_function *fn;
  696. int i;
  697. int error;
  698. rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n",
  699. pdt->function_number);
  700. fn = kzalloc(sizeof(struct rmi_function) +
  701. BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long),
  702. GFP_KERNEL);
  703. if (!fn) {
  704. dev_err(dev, "Failed to allocate memory for F%02X\n",
  705. pdt->function_number);
  706. return -ENOMEM;
  707. }
  708. INIT_LIST_HEAD(&fn->node);
  709. rmi_driver_copy_pdt_to_fd(pdt, &fn->fd);
  710. fn->rmi_dev = rmi_dev;
  711. fn->num_of_irqs = pdt->interrupt_source_count;
  712. fn->irq_pos = *current_irq_count;
  713. *current_irq_count += fn->num_of_irqs;
  714. for (i = 0; i < fn->num_of_irqs; i++)
  715. set_bit(fn->irq_pos + i, fn->irq_mask);
  716. error = rmi_register_function(fn);
  717. if (error)
  718. goto err_put_fn;
  719. if (pdt->function_number == 0x01)
  720. data->f01_container = fn;
  721. else if (pdt->function_number == 0x34)
  722. data->f34_container = fn;
  723. list_add_tail(&fn->node, &data->function_list);
  724. return RMI_SCAN_CONTINUE;
  725. err_put_fn:
  726. put_device(&fn->dev);
  727. return error;
  728. }
  729. void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake)
  730. {
  731. struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
  732. struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
  733. int irq = pdata->irq;
  734. int irq_flags;
  735. int retval;
  736. mutex_lock(&data->enabled_mutex);
  737. if (data->enabled)
  738. goto out;
  739. enable_irq(irq);
  740. data->enabled = true;
  741. if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) {
  742. retval = disable_irq_wake(irq);
  743. if (!retval)
  744. dev_warn(&rmi_dev->dev,
  745. "Failed to disable irq for wake: %d\n",
  746. retval);
  747. }
  748. /*
  749. * Call rmi_process_interrupt_requests() after enabling irq,
  750. * otherwise we may lose interrupt on edge-triggered systems.
  751. */
  752. irq_flags = irq_get_trigger_type(pdata->irq);
  753. if (irq_flags & IRQ_TYPE_EDGE_BOTH)
  754. rmi_process_interrupt_requests(rmi_dev);
  755. out:
  756. mutex_unlock(&data->enabled_mutex);
  757. }
  758. void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake)
  759. {
  760. struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
  761. struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev);
  762. struct rmi4_attn_data attn_data = {0};
  763. int irq = pdata->irq;
  764. int retval, count;
  765. mutex_lock(&data->enabled_mutex);
  766. if (!data->enabled)
  767. goto out;
  768. data->enabled = false;
  769. disable_irq(irq);
  770. if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) {
  771. retval = enable_irq_wake(irq);
  772. if (!retval)
  773. dev_warn(&rmi_dev->dev,
  774. "Failed to enable irq for wake: %d\n",
  775. retval);
  776. }
  777. /* make sure the fifo is clean */
  778. while (!kfifo_is_empty(&data->attn_fifo)) {
  779. count = kfifo_get(&data->attn_fifo, &attn_data);
  780. if (count)
  781. kfree(attn_data.data);
  782. }
  783. out:
  784. mutex_unlock(&data->enabled_mutex);
  785. }
  786. int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake)
  787. {
  788. int retval;
  789. retval = rmi_suspend_functions(rmi_dev);
  790. if (retval)
  791. dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
  792. retval);
  793. rmi_disable_irq(rmi_dev, enable_wake);
  794. return retval;
  795. }
  796. EXPORT_SYMBOL_GPL(rmi_driver_suspend);
  797. int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake)
  798. {
  799. int retval;
  800. rmi_enable_irq(rmi_dev, clear_wake);
  801. retval = rmi_resume_functions(rmi_dev);
  802. if (retval)
  803. dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n",
  804. retval);
  805. return retval;
  806. }
  807. EXPORT_SYMBOL_GPL(rmi_driver_resume);
  808. static int rmi_driver_remove(struct device *dev)
  809. {
  810. struct rmi_device *rmi_dev = to_rmi_device(dev);
  811. rmi_disable_irq(rmi_dev, false);
  812. rmi_f34_remove_sysfs(rmi_dev);
  813. rmi_free_function_list(rmi_dev);
  814. return 0;
  815. }
  816. #ifdef CONFIG_OF
  817. static int rmi_driver_of_probe(struct device *dev,
  818. struct rmi_device_platform_data *pdata)
  819. {
  820. int retval;
  821. retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms,
  822. "syna,reset-delay-ms", 1);
  823. if (retval)
  824. return retval;
  825. return 0;
  826. }
  827. #else
  828. static inline int rmi_driver_of_probe(struct device *dev,
  829. struct rmi_device_platform_data *pdata)
  830. {
  831. return -ENODEV;
  832. }
  833. #endif
  834. int rmi_probe_interrupts(struct rmi_driver_data *data)
  835. {
  836. struct rmi_device *rmi_dev = data->rmi_dev;
  837. struct device *dev = &rmi_dev->dev;
  838. int irq_count;
  839. size_t size;
  840. int retval;
  841. /*
  842. * We need to count the IRQs and allocate their storage before scanning
  843. * the PDT and creating the function entries, because adding a new
  844. * function can trigger events that result in the IRQ related storage
  845. * being accessed.
  846. */
  847. rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__);
  848. irq_count = 0;
  849. data->bootloader_mode = false;
  850. retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs);
  851. if (retval < 0) {
  852. dev_err(dev, "IRQ counting failed with code %d.\n", retval);
  853. return retval;
  854. }
  855. if (data->bootloader_mode)
  856. dev_warn(&rmi_dev->dev, "Device in bootloader mode.\n");
  857. data->irq_count = irq_count;
  858. data->num_of_irq_regs = (data->irq_count + 7) / 8;
  859. size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long);
  860. data->irq_memory = devm_kzalloc(dev, size * 4, GFP_KERNEL);
  861. if (!data->irq_memory) {
  862. dev_err(dev, "Failed to allocate memory for irq masks.\n");
  863. return retval;
  864. }
  865. data->irq_status = data->irq_memory + size * 0;
  866. data->fn_irq_bits = data->irq_memory + size * 1;
  867. data->current_irq_mask = data->irq_memory + size * 2;
  868. data->new_irq_mask = data->irq_memory + size * 3;
  869. return retval;
  870. }
  871. int rmi_init_functions(struct rmi_driver_data *data)
  872. {
  873. struct rmi_device *rmi_dev = data->rmi_dev;
  874. struct device *dev = &rmi_dev->dev;
  875. int irq_count;
  876. int retval;
  877. irq_count = 0;
  878. rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__);
  879. retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function);
  880. if (retval < 0) {
  881. dev_err(dev, "Function creation failed with code %d.\n",
  882. retval);
  883. goto err_destroy_functions;
  884. }
  885. if (!data->f01_container) {
  886. dev_err(dev, "Missing F01 container!\n");
  887. retval = -EINVAL;
  888. goto err_destroy_functions;
  889. }
  890. retval = rmi_read_block(rmi_dev,
  891. data->f01_container->fd.control_base_addr + 1,
  892. data->current_irq_mask, data->num_of_irq_regs);
  893. if (retval < 0) {
  894. dev_err(dev, "%s: Failed to read current IRQ mask.\n",
  895. __func__);
  896. goto err_destroy_functions;
  897. }
  898. return 0;
  899. err_destroy_functions:
  900. rmi_free_function_list(rmi_dev);
  901. return retval;
  902. }
  903. static int rmi_driver_probe(struct device *dev)
  904. {
  905. struct rmi_driver *rmi_driver;
  906. struct rmi_driver_data *data;
  907. struct rmi_device_platform_data *pdata;
  908. struct rmi_device *rmi_dev;
  909. int retval;
  910. rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n",
  911. __func__);
  912. if (!rmi_is_physical_device(dev)) {
  913. rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n");
  914. return -ENODEV;
  915. }
  916. rmi_dev = to_rmi_device(dev);
  917. rmi_driver = to_rmi_driver(dev->driver);
  918. rmi_dev->driver = rmi_driver;
  919. pdata = rmi_get_platform_data(rmi_dev);
  920. if (rmi_dev->xport->dev->of_node) {
  921. retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata);
  922. if (retval)
  923. return retval;
  924. }
  925. data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL);
  926. if (!data)
  927. return -ENOMEM;
  928. INIT_LIST_HEAD(&data->function_list);
  929. data->rmi_dev = rmi_dev;
  930. dev_set_drvdata(&rmi_dev->dev, data);
  931. /*
  932. * Right before a warm boot, the sensor might be in some unusual state,
  933. * such as F54 diagnostics, or F34 bootloader mode after a firmware
  934. * or configuration update. In order to clear the sensor to a known
  935. * state and/or apply any updates, we issue a initial reset to clear any
  936. * previous settings and force it into normal operation.
  937. *
  938. * We have to do this before actually building the PDT because
  939. * the reflash updates (if any) might cause various registers to move
  940. * around.
  941. *
  942. * For a number of reasons, this initial reset may fail to return
  943. * within the specified time, but we'll still be able to bring up the
  944. * driver normally after that failure. This occurs most commonly in
  945. * a cold boot situation (where then firmware takes longer to come up
  946. * than from a warm boot) and the reset_delay_ms in the platform data
  947. * has been set too short to accommodate that. Since the sensor will
  948. * eventually come up and be usable, we don't want to just fail here
  949. * and leave the customer's device unusable. So we warn them, and
  950. * continue processing.
  951. */
  952. retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset);
  953. if (retval < 0)
  954. dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n");
  955. retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props);
  956. if (retval < 0) {
  957. /*
  958. * we'll print out a warning and continue since
  959. * failure to get the PDT properties is not a cause to fail
  960. */
  961. dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n",
  962. PDT_PROPERTIES_LOCATION, retval);
  963. }
  964. mutex_init(&data->irq_mutex);
  965. mutex_init(&data->enabled_mutex);
  966. retval = rmi_probe_interrupts(data);
  967. if (retval)
  968. goto err;
  969. if (rmi_dev->xport->input) {
  970. /*
  971. * The transport driver already has an input device.
  972. * In some cases it is preferable to reuse the transport
  973. * devices input device instead of creating a new one here.
  974. * One example is some HID touchpads report "pass-through"
  975. * button events are not reported by rmi registers.
  976. */
  977. data->input = rmi_dev->xport->input;
  978. } else {
  979. data->input = devm_input_allocate_device(dev);
  980. if (!data->input) {
  981. dev_err(dev, "%s: Failed to allocate input device.\n",
  982. __func__);
  983. retval = -ENOMEM;
  984. goto err;
  985. }
  986. rmi_driver_set_input_params(rmi_dev, data->input);
  987. data->input->phys = devm_kasprintf(dev, GFP_KERNEL,
  988. "%s/input0", dev_name(dev));
  989. }
  990. retval = rmi_init_functions(data);
  991. if (retval)
  992. goto err;
  993. retval = rmi_f34_create_sysfs(rmi_dev);
  994. if (retval)
  995. goto err;
  996. if (data->input) {
  997. rmi_driver_set_input_name(rmi_dev, data->input);
  998. if (!rmi_dev->xport->input) {
  999. if (input_register_device(data->input)) {
  1000. dev_err(dev, "%s: Failed to register input device.\n",
  1001. __func__);
  1002. goto err_destroy_functions;
  1003. }
  1004. }
  1005. }
  1006. retval = rmi_irq_init(rmi_dev);
  1007. if (retval < 0)
  1008. goto err_destroy_functions;
  1009. if (data->f01_container->dev.driver)
  1010. /* Driver already bound, so enable ATTN now. */
  1011. return rmi_enable_sensor(rmi_dev);
  1012. return 0;
  1013. err_destroy_functions:
  1014. rmi_free_function_list(rmi_dev);
  1015. err:
  1016. return retval < 0 ? retval : 0;
  1017. }
  1018. static struct rmi_driver rmi_physical_driver = {
  1019. .driver = {
  1020. .owner = THIS_MODULE,
  1021. .name = "rmi4_physical",
  1022. .bus = &rmi_bus_type,
  1023. .probe = rmi_driver_probe,
  1024. .remove = rmi_driver_remove,
  1025. },
  1026. .reset_handler = rmi_driver_reset_handler,
  1027. .clear_irq_bits = rmi_driver_clear_irq_bits,
  1028. .set_irq_bits = rmi_driver_set_irq_bits,
  1029. .set_input_params = rmi_driver_set_input_params,
  1030. };
  1031. bool rmi_is_physical_driver(struct device_driver *drv)
  1032. {
  1033. return drv == &rmi_physical_driver.driver;
  1034. }
  1035. int __init rmi_register_physical_driver(void)
  1036. {
  1037. int error;
  1038. error = driver_register(&rmi_physical_driver.driver);
  1039. if (error) {
  1040. pr_err("%s: driver register failed, code=%d.\n", __func__,
  1041. error);
  1042. return error;
  1043. }
  1044. return 0;
  1045. }
  1046. void __exit rmi_unregister_physical_driver(void)
  1047. {
  1048. driver_unregister(&rmi_physical_driver.driver);
  1049. }