1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705 |
- ;(function (root, factory) {
- if (typeof define === 'function' && define.amd) {
- define(factory.bind(root, root.crypto || root.msCrypto))
- } else if (typeof module !== 'undefined' && module.exports) {
- module.exports = factory(require('crypto'))
- } else {
- root.BigInt = factory(root.crypto || root.msCrypto)
- }
- }(this, function (crypto) {
- ////////////////////////////////////////////////////////////////////////////////////////
- // Big Integer Library v. 5.5
- // Created 2000, last modified 2013
- // Leemon Baird
- // www.leemon.com
- //
- // Version history:
- // v 5.5 17 Mar 2013
- // - two lines of a form like "if (x<0) x+=n" had the "if" changed to "while" to
- // handle the case when x<-n. (Thanks to James Ansell for finding that bug)
- // v 5.4 3 Oct 2009
- // - added "var i" to greaterShift() so i is not global. (Thanks to Péter Szabó for finding that bug)
- //
- // v 5.3 21 Sep 2009
- // - added randProbPrime(k) for probable primes
- // - unrolled loop in mont_ (slightly faster)
- // - millerRabin now takes a bigInt parameter rather than an int
- //
- // v 5.2 15 Sep 2009
- // - fixed capitalization in call to int2bigInt in randBigInt
- // (thanks to Emili Evripidou, Reinhold Behringer, and Samuel Macaleese for finding that bug)
- //
- // v 5.1 8 Oct 2007
- // - renamed inverseModInt_ to inverseModInt since it doesn't change its parameters
- // - added functions GCD and randBigInt, which call GCD_ and randBigInt_
- // - fixed a bug found by Rob Visser (see comment with his name below)
- // - improved comments
- //
- // This file is public domain. You can use it for any purpose without restriction.
- // I do not guarantee that it is correct, so use it at your own risk. If you use
- // it for something interesting, I'd appreciate hearing about it. If you find
- // any bugs or make any improvements, I'd appreciate hearing about those too.
- // It would also be nice if my name and URL were left in the comments. But none
- // of that is required.
- //
- // This code defines a bigInt library for arbitrary-precision integers.
- // A bigInt is an array of integers storing the value in chunks of bpe bits,
- // little endian (buff[0] is the least significant word).
- // Negative bigInts are stored two's complement. Almost all the functions treat
- // bigInts as nonnegative. The few that view them as two's complement say so
- // in their comments. Some functions assume their parameters have at least one
- // leading zero element. Functions with an underscore at the end of the name put
- // their answer into one of the arrays passed in, and have unpredictable behavior
- // in case of overflow, so the caller must make sure the arrays are big enough to
- // hold the answer. But the average user should never have to call any of the
- // underscored functions. Each important underscored function has a wrapper function
- // of the same name without the underscore that takes care of the details for you.
- // For each underscored function where a parameter is modified, that same variable
- // must not be used as another argument too. So, you cannot square x by doing
- // multMod_(x,x,n). You must use squareMod_(x,n) instead, or do y=dup(x); multMod_(x,y,n).
- // Or simply use the multMod(x,x,n) function without the underscore, where
- // such issues never arise, because non-underscored functions never change
- // their parameters; they always allocate new memory for the answer that is returned.
- //
- // These functions are designed to avoid frequent dynamic memory allocation in the inner loop.
- // For most functions, if it needs a BigInt as a local variable it will actually use
- // a global, and will only allocate to it only when it's not the right size. This ensures
- // that when a function is called repeatedly with same-sized parameters, it only allocates
- // memory on the first call.
- //
- // Note that for cryptographic purposes, the calls to Math.random() must
- // be replaced with calls to a better pseudorandom number generator.
- //
- // In the following, "bigInt" means a bigInt with at least one leading zero element,
- // and "integer" means a nonnegative integer less than radix. In some cases, integer
- // can be negative. Negative bigInts are 2s complement.
- //
- // The following functions do not modify their inputs.
- // Those returning a bigInt, string, or Array will dynamically allocate memory for that value.
- // Those returning a boolean will return the integer 0 (false) or 1 (true).
- // Those returning boolean or int will not allocate memory except possibly on the first
- // time they're called with a given parameter size.
- //
- // bigInt add(x,y) //return (x+y) for bigInts x and y.
- // bigInt addInt(x,n) //return (x+n) where x is a bigInt and n is an integer.
- // string bigInt2str(x,base) //return a string form of bigInt x in a given base, with 2 <= base <= 95
- // int bitSize(x) //return how many bits long the bigInt x is, not counting leading zeros
- // bigInt dup(x) //return a copy of bigInt x
- // boolean equals(x,y) //is the bigInt x equal to the bigint y?
- // boolean equalsInt(x,y) //is bigint x equal to integer y?
- // bigInt expand(x,n) //return a copy of x with at least n elements, adding leading zeros if needed
- // Array findPrimes(n) //return array of all primes less than integer n
- // bigInt GCD(x,y) //return greatest common divisor of bigInts x and y (each with same number of elements).
- // boolean greater(x,y) //is x>y? (x and y are nonnegative bigInts)
- // boolean greaterShift(x,y,shift)//is (x <<(shift*bpe)) > y?
- // bigInt int2bigInt(t,n,m) //return a bigInt equal to integer t, with at least n bits and m array elements
- // bigInt inverseMod(x,n) //return (x**(-1) mod n) for bigInts x and n. If no inverse exists, it returns null
- // int inverseModInt(x,n) //return x**(-1) mod n, for integers x and n. Return 0 if there is no inverse
- // boolean isZero(x) //is the bigInt x equal to zero?
- // boolean millerRabin(x,b) //does one round of Miller-Rabin base integer b say that bigInt x is possibly prime? (b is bigInt, 1<b<x)
- // boolean millerRabinInt(x,b) //does one round of Miller-Rabin base integer b say that bigInt x is possibly prime? (b is int, 1<b<x)
- // bigInt mod(x,n) //return a new bigInt equal to (x mod n) for bigInts x and n.
- // int modInt(x,n) //return x mod n for bigInt x and integer n.
- // bigInt mult(x,y) //return x*y for bigInts x and y. This is faster when y<x.
- // bigInt multMod(x,y,n) //return (x*y mod n) for bigInts x,y,n. For greater speed, let y<x.
- // boolean negative(x) //is bigInt x negative?
- // bigInt powMod(x,y,n) //return (x**y mod n) where x,y,n are bigInts and ** is exponentiation. 0**0=1. Faster for odd n.
- // bigInt randBigInt(n,s) //return an n-bit random BigInt (n>=1). If s=1, then the most significant of those n bits is set to 1.
- // bigInt randTruePrime(k) //return a new, random, k-bit, true prime bigInt using Maurer's algorithm.
- // bigInt randProbPrime(k) //return a new, random, k-bit, probable prime bigInt (probability it's composite less than 2^-80).
- // bigInt str2bigInt(s,b,n,m) //return a bigInt for number represented in string s in base b with at least n bits and m array elements
- // bigInt sub(x,y) //return (x-y) for bigInts x and y. Negative answers will be 2s complement
- // bigInt trim(x,k) //return a copy of x with exactly k leading zero elements
- //
- //
- // The following functions each have a non-underscored version, which most users should call instead.
- // These functions each write to a single parameter, and the caller is responsible for ensuring the array
- // passed in is large enough to hold the result.
- //
- // void addInt_(x,n) //do x=x+n where x is a bigInt and n is an integer
- // void add_(x,y) //do x=x+y for bigInts x and y
- // void copy_(x,y) //do x=y on bigInts x and y
- // void copyInt_(x,n) //do x=n on bigInt x and integer n
- // void GCD_(x,y) //set x to the greatest common divisor of bigInts x and y, (y is destroyed). (This never overflows its array).
- // boolean inverseMod_(x,n) //do x=x**(-1) mod n, for bigInts x and n. Returns 1 (0) if inverse does (doesn't) exist
- // void mod_(x,n) //do x=x mod n for bigInts x and n. (This never overflows its array).
- // void mult_(x,y) //do x=x*y for bigInts x and y.
- // void multMod_(x,y,n) //do x=x*y mod n for bigInts x,y,n.
- // void powMod_(x,y,n) //do x=x**y mod n, where x,y,n are bigInts (n is odd) and ** is exponentiation. 0**0=1.
- // void randBigInt_(b,n,s) //do b = an n-bit random BigInt. if s=1, then nth bit (most significant bit) is set to 1. n>=1.
- // void randTruePrime_(ans,k) //do ans = a random k-bit true random prime (not just probable prime) with 1 in the msb.
- // void sub_(x,y) //do x=x-y for bigInts x and y. Negative answers will be 2s complement.
- //
- // The following functions do NOT have a non-underscored version.
- // They each write a bigInt result to one or more parameters. The caller is responsible for
- // ensuring the arrays passed in are large enough to hold the results.
- //
- // void addShift_(x,y,ys) //do x=x+(y<<(ys*bpe))
- // void carry_(x) //do carries and borrows so each element of the bigInt x fits in bpe bits.
- // void divide_(x,y,q,r) //divide x by y giving quotient q and remainder r
- // int divInt_(x,n) //do x=floor(x/n) for bigInt x and integer n, and return the remainder. (This never overflows its array).
- // int eGCD_(x,y,d,a,b) //sets a,b,d to positive bigInts such that d = GCD_(x,y) = a*x-b*y
- // void halve_(x) //do x=floor(|x|/2)*sgn(x) for bigInt x in 2's complement. (This never overflows its array).
- // void leftShift_(x,n) //left shift bigInt x by n bits. n<bpe.
- // void linComb_(x,y,a,b) //do x=a*x+b*y for bigInts x and y and integers a and b
- // void linCombShift_(x,y,b,ys) //do x=x+b*(y<<(ys*bpe)) for bigInts x and y, and integers b and ys
- // void mont_(x,y,n,np) //Montgomery multiplication (see comments where the function is defined)
- // void multInt_(x,n) //do x=x*n where x is a bigInt and n is an integer.
- // void rightShift_(x,n) //right shift bigInt x by n bits. (This never overflows its array).
- // void squareMod_(x,n) //do x=x*x mod n for bigInts x,n
- // void subShift_(x,y,ys) //do x=x-(y<<(ys*bpe)). Negative answers will be 2s complement.
- //
- // The following functions are based on algorithms from the _Handbook of Applied Cryptography_
- // powMod_() = algorithm 14.94, Montgomery exponentiation
- // eGCD_,inverseMod_() = algorithm 14.61, Binary extended GCD_
- // GCD_() = algorothm 14.57, Lehmer's algorithm
- // mont_() = algorithm 14.36, Montgomery multiplication
- // divide_() = algorithm 14.20 Multiple-precision division
- // squareMod_() = algorithm 14.16 Multiple-precision squaring
- // randTruePrime_() = algorithm 4.62, Maurer's algorithm
- // millerRabin() = algorithm 4.24, Miller-Rabin algorithm
- //
- // Profiling shows:
- // randTruePrime_() spends:
- // 10% of its time in calls to powMod_()
- // 85% of its time in calls to millerRabin()
- // millerRabin() spends:
- // 99% of its time in calls to powMod_() (always with a base of 2)
- // powMod_() spends:
- // 94% of its time in calls to mont_() (almost always with x==y)
- //
- // This suggests there are several ways to speed up this library slightly:
- // - convert powMod_ to use a Montgomery form of k-ary window (or maybe a Montgomery form of sliding window)
- // -- this should especially focus on being fast when raising 2 to a power mod n
- // - convert randTruePrime_() to use a minimum r of 1/3 instead of 1/2 with the appropriate change to the test
- // - tune the parameters in randTruePrime_(), including c, m, and recLimit
- // - speed up the single loop in mont_() that takes 95% of the runtime, perhaps by reducing checking
- // within the loop when all the parameters are the same length.
- //
- // There are several ideas that look like they wouldn't help much at all:
- // - replacing trial division in randTruePrime_() with a sieve (that speeds up something taking almost no time anyway)
- // - increase bpe from 15 to 30 (that would help if we had a 32*32->64 multiplier, but not with JavaScript's 32*32->32)
- // - speeding up mont_(x,y,n,np) when x==y by doing a non-modular, non-Montgomery square
- // followed by a Montgomery reduction. The intermediate answer will be twice as long as x, so that
- // method would be slower. This is unfortunate because the code currently spends almost all of its time
- // doing mont_(x,x,...), both for randTruePrime_() and powMod_(). A faster method for Montgomery squaring
- // would have a large impact on the speed of randTruePrime_() and powMod_(). HAC has a couple of poorly-worded
- // sentences that seem to imply it's faster to do a non-modular square followed by a single
- // Montgomery reduction, but that's obviously wrong.
- ////////////////////////////////////////////////////////////////////////////////////////
- //globals
- // The number of significant bits in the fraction of a JavaScript
- // floating-point number is 52, independent of platform.
- // See: https://github.com/arlolra/otr/issues/41
- var bpe = 26; // bits stored per array element
- var radix = 1 << bpe; // equals 2^bpe
- var mask = radix - 1; // AND this with an array element to chop it down to bpe bits
- //the digits for converting to different bases
- var digitsStr='0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_=!@#$%^&*()[]{}|;:,.<>/?`~ \\\'\"+-';
- var one=int2bigInt(1,1,1); //constant used in powMod_()
- //the following global variables are scratchpad memory to
- //reduce dynamic memory allocation in the inner loop
- var t=new Array(0);
- var ss=t; //used in mult_()
- var s0=t; //used in multMod_(), squareMod_()
- var s1=t; //used in powMod_(), multMod_(), squareMod_()
- var s2=t; //used in powMod_(), multMod_()
- var s3=t; //used in powMod_()
- var s4=t, s5=t; //used in mod_()
- var s6=t; //used in bigInt2str()
- var s7=t; //used in powMod_()
- var T=t; //used in GCD_()
- var sa=t; //used in mont_()
- var mr_x1=t, mr_r=t, mr_a=t; //used in millerRabin()
- var eg_v=t, eg_u=t, eg_A=t, eg_B=t, eg_C=t, eg_D=t; //used in eGCD_(), inverseMod_()
- var md_q1=t, md_q2=t, md_q3=t, md_r=t, md_r1=t, md_r2=t, md_tt=t; //used in mod_()
- var primes=t, pows=t, s_i=t, s_i2=t, s_R=t, s_rm=t, s_q=t, s_n1=t;
- var s_a=t, s_r2=t, s_n=t, s_b=t, s_d=t, s_x1=t, s_x2=t, s_aa=t; //used in randTruePrime_()
-
- var rpprb=t; //used in randProbPrimeRounds() (which also uses "primes")
- ////////////////////////////////////////////////////////////////////////////////////////
- //return array of all primes less than integer n
- function findPrimes(n) {
- var i,s,p,ans;
- s=new Array(n);
- for (i=0;i<n;i++)
- s[i]=0;
- s[0]=2;
- p=0; //first p elements of s are primes, the rest are a sieve
- for(;s[p]<n;) { //s[p] is the pth prime
- for(i=s[p]*s[p]; i<n; i+=s[p]) //mark multiples of s[p]
- s[i]=1;
- p++;
- s[p]=s[p-1]+1;
- for(; s[p]<n && s[s[p]]; s[p]++); //find next prime (where s[p]==0)
- }
- ans=new Array(p);
- for(i=0;i<p;i++)
- ans[i]=s[i];
- return ans;
- }
- //does a single round of Miller-Rabin base b consider x to be a possible prime?
- //x is a bigInt, and b is an integer, with b<x
- function millerRabinInt(x,b) {
- if (mr_x1.length!=x.length) {
- mr_x1=dup(x);
- mr_r=dup(x);
- mr_a=dup(x);
- }
- copyInt_(mr_a,b);
- return millerRabin(x,mr_a);
- }
- //does a single round of Miller-Rabin base b consider x to be a possible prime?
- //x and b are bigInts with b<x
- function millerRabin(x,b) {
- var i,j,k,s;
- if (mr_x1.length!=x.length) {
- mr_x1=dup(x);
- mr_r=dup(x);
- mr_a=dup(x);
- }
- copy_(mr_a,b);
- copy_(mr_r,x);
- copy_(mr_x1,x);
- addInt_(mr_r,-1);
- addInt_(mr_x1,-1);
- //s=the highest power of two that divides mr_r
- /*
- k=0;
- for (i=0;i<mr_r.length;i++)
- for (j=1;j<mask;j<<=1)
- if (x[i] & j) {
- s=(k<mr_r.length+bpe ? k : 0);
- i=mr_r.length;
- j=mask;
- } else
- k++;
- */
- /* http://www.javascripter.net/math/primes/millerrabinbug-bigint54.htm */
- if (isZero(mr_r)) return 0;
- for (k=0; mr_r[k]==0; k++);
- for (i=1,j=2; mr_r[k]%j==0; j*=2,i++ );
- s = k*bpe + i - 1;
- /* end */
- if (s)
- rightShift_(mr_r,s);
- powMod_(mr_a,mr_r,x);
- if (!equalsInt(mr_a,1) && !equals(mr_a,mr_x1)) {
- j=1;
- while (j<=s-1 && !equals(mr_a,mr_x1)) {
- squareMod_(mr_a,x);
- if (equalsInt(mr_a,1)) {
- return 0;
- }
- j++;
- }
- if (!equals(mr_a,mr_x1)) {
- return 0;
- }
- }
- return 1;
- }
- //returns how many bits long the bigInt is, not counting leading zeros.
- function bitSize(x) {
- var j,z,w;
- for (j=x.length-1; (x[j]==0) && (j>0); j--);
- for (z=0,w=x[j]; w; (w>>=1),z++);
- z+=bpe*j;
- return z;
- }
- //return a copy of x with at least n elements, adding leading zeros if needed
- function expand(x,n) {
- var ans=int2bigInt(0,(x.length>n ? x.length : n)*bpe,0);
- copy_(ans,x);
- return ans;
- }
- //return a k-bit true random prime using Maurer's algorithm.
- function randTruePrime(k) {
- var ans=int2bigInt(0,k,0);
- randTruePrime_(ans,k);
- return trim(ans,1);
- }
- //return a k-bit random probable prime with probability of error < 2^-80
- function randProbPrime(k) {
- if (k>=600) return randProbPrimeRounds(k,2); //numbers from HAC table 4.3
- if (k>=550) return randProbPrimeRounds(k,4);
- if (k>=500) return randProbPrimeRounds(k,5);
- if (k>=400) return randProbPrimeRounds(k,6);
- if (k>=350) return randProbPrimeRounds(k,7);
- if (k>=300) return randProbPrimeRounds(k,9);
- if (k>=250) return randProbPrimeRounds(k,12); //numbers from HAC table 4.4
- if (k>=200) return randProbPrimeRounds(k,15);
- if (k>=150) return randProbPrimeRounds(k,18);
- if (k>=100) return randProbPrimeRounds(k,27);
- return randProbPrimeRounds(k,40); //number from HAC remark 4.26 (only an estimate)
- }
- //return a k-bit probable random prime using n rounds of Miller Rabin (after trial division with small primes)
- function randProbPrimeRounds(k,n) {
- var ans, i, divisible, B;
- B=30000; //B is largest prime to use in trial division
- ans=int2bigInt(0,k,0);
-
- //optimization: try larger and smaller B to find the best limit.
-
- if (primes.length==0)
- primes=findPrimes(30000); //check for divisibility by primes <=30000
- if (rpprb.length!=ans.length)
- rpprb=dup(ans);
- for (;;) { //keep trying random values for ans until one appears to be prime
- //optimization: pick a random number times L=2*3*5*...*p, plus a
- // random element of the list of all numbers in [0,L) not divisible by any prime up to p.
- // This can reduce the amount of random number generation.
-
- randBigInt_(ans,k,0); //ans = a random odd number to check
- ans[0] |= 1;
- divisible=0;
-
- //check ans for divisibility by small primes up to B
- for (i=0; (i<primes.length) && (primes[i]<=B); i++)
- if (modInt(ans,primes[i])==0 && !equalsInt(ans,primes[i])) {
- divisible=1;
- break;
- }
-
- //optimization: change millerRabin so the base can be bigger than the number being checked, then eliminate the while here.
-
- //do n rounds of Miller Rabin, with random bases less than ans
- for (i=0; i<n && !divisible; i++) {
- randBigInt_(rpprb,k,0);
- while(!greater(ans,rpprb)) //pick a random rpprb that's < ans
- randBigInt_(rpprb,k,0);
- if (!millerRabin(ans,rpprb))
- divisible=1;
- }
-
- if(!divisible)
- return ans;
- }
- }
- //return a new bigInt equal to (x mod n) for bigInts x and n.
- function mod(x,n) {
- var ans=dup(x);
- mod_(ans,n);
- return trim(ans,1);
- }
- //return (x+n) where x is a bigInt and n is an integer.
- function addInt(x,n) {
- var ans=expand(x,x.length+1);
- addInt_(ans,n);
- return trim(ans,1);
- }
- //return x*y for bigInts x and y. This is faster when y<x.
- function mult(x,y) {
- var ans=expand(x,x.length+y.length);
- mult_(ans,y);
- return trim(ans,1);
- }
- //return (x**y mod n) where x,y,n are bigInts and ** is exponentiation. 0**0=1. Faster for odd n.
- function powMod(x,y,n) {
- var ans=expand(x,n.length);
- powMod_(ans,trim(y,2),trim(n,2),0); //this should work without the trim, but doesn't
- return trim(ans,1);
- }
- //return (x-y) for bigInts x and y. Negative answers will be 2s complement
- function sub(x,y) {
- var ans=expand(x,(x.length>y.length ? x.length+1 : y.length+1));
- sub_(ans,y);
- return trim(ans,1);
- }
- //return (x+y) for bigInts x and y.
- function add(x,y) {
- var ans=expand(x,(x.length>y.length ? x.length+1 : y.length+1));
- add_(ans,y);
- return trim(ans,1);
- }
- //return (x**(-1) mod n) for bigInts x and n. If no inverse exists, it returns null
- function inverseMod(x,n) {
- var ans=expand(x,n.length);
- var s;
- s=inverseMod_(ans,n);
- return s ? trim(ans,1) : null;
- }
- //return (x*y mod n) for bigInts x,y,n. For greater speed, let y<x.
- function multMod(x,y,n) {
- var ans=expand(x,n.length);
- multMod_(ans,y,n);
- return trim(ans,1);
- }
- //generate a k-bit true random prime using Maurer's algorithm,
- //and put it into ans. The bigInt ans must be large enough to hold it.
- function randTruePrime_(ans,k) {
- var c,w,m,pm,dd,j,r,B,divisible,z,zz,recSize,recLimit;
- if (primes.length==0)
- primes=findPrimes(30000); //check for divisibility by primes <=30000
- if (pows.length==0) {
- pows=new Array(512);
- for (j=0;j<512;j++) {
- pows[j]=Math.pow(2,j/511.0-1.0);
- }
- }
- //c and m should be tuned for a particular machine and value of k, to maximize speed
- c=0.1; //c=0.1 in HAC
- m=20; //generate this k-bit number by first recursively generating a number that has between k/2 and k-m bits
- recLimit=20; //stop recursion when k <=recLimit. Must have recLimit >= 2
- if (s_i2.length!=ans.length) {
- s_i2=dup(ans);
- s_R =dup(ans);
- s_n1=dup(ans);
- s_r2=dup(ans);
- s_d =dup(ans);
- s_x1=dup(ans);
- s_x2=dup(ans);
- s_b =dup(ans);
- s_n =dup(ans);
- s_i =dup(ans);
- s_rm=dup(ans);
- s_q =dup(ans);
- s_a =dup(ans);
- s_aa=dup(ans);
- }
- if (k <= recLimit) { //generate small random primes by trial division up to its square root
- pm=(1<<((k+2)>>1))-1; //pm is binary number with all ones, just over sqrt(2^k)
- copyInt_(ans,0);
- for (dd=1;dd;) {
- dd=0;
- ans[0]= 1 | (1<<(k-1)) | randomBitInt(k); //random, k-bit, odd integer, with msb 1
- for (j=1;(j<primes.length) && ((primes[j]&pm)==primes[j]);j++) { //trial division by all primes 3...sqrt(2^k)
- if (0==(ans[0]%primes[j])) {
- dd=1;
- break;
- }
- }
- }
- carry_(ans);
- return;
- }
- B=c*k*k; //try small primes up to B (or all the primes[] array if the largest is less than B).
- if (k>2*m) //generate this k-bit number by first recursively generating a number that has between k/2 and k-m bits
- for (r=1; k-k*r<=m; )
- r=pows[randomBitInt(9)]; //r=Math.pow(2,Math.random()-1);
- else
- r=0.5;
- //simulation suggests the more complex algorithm using r=.333 is only slightly faster.
- recSize=Math.floor(r*k)+1;
- randTruePrime_(s_q,recSize);
- copyInt_(s_i2,0);
- s_i2[Math.floor((k-2)/bpe)] |= (1<<((k-2)%bpe)); //s_i2=2^(k-2)
- divide_(s_i2,s_q,s_i,s_rm); //s_i=floor((2^(k-1))/(2q))
- z=bitSize(s_i);
- for (;;) {
- for (;;) { //generate z-bit numbers until one falls in the range [0,s_i-1]
- randBigInt_(s_R,z,0);
- if (greater(s_i,s_R))
- break;
- } //now s_R is in the range [0,s_i-1]
- addInt_(s_R,1); //now s_R is in the range [1,s_i]
- add_(s_R,s_i); //now s_R is in the range [s_i+1,2*s_i]
- copy_(s_n,s_q);
- mult_(s_n,s_R);
- multInt_(s_n,2);
- addInt_(s_n,1); //s_n=2*s_R*s_q+1
-
- copy_(s_r2,s_R);
- multInt_(s_r2,2); //s_r2=2*s_R
- //check s_n for divisibility by small primes up to B
- for (divisible=0,j=0; (j<primes.length) && (primes[j]<B); j++)
- if (modInt(s_n,primes[j])==0 && !equalsInt(s_n,primes[j])) {
- divisible=1;
- break;
- }
- if (!divisible) //if it passes small primes check, then try a single Miller-Rabin base 2
- if (!millerRabinInt(s_n,2)) //this line represents 75% of the total runtime for randTruePrime_
- divisible=1;
- if (!divisible) { //if it passes that test, continue checking s_n
- addInt_(s_n,-3);
- for (j=s_n.length-1;(s_n[j]==0) && (j>0); j--); //strip leading zeros
- for (zz=0,w=s_n[j]; w; (w>>=1),zz++);
- zz+=bpe*j; //zz=number of bits in s_n, ignoring leading zeros
- for (;;) { //generate z-bit numbers until one falls in the range [0,s_n-1]
- randBigInt_(s_a,zz,0);
- if (greater(s_n,s_a))
- break;
- } //now s_a is in the range [0,s_n-1]
- addInt_(s_n,3); //now s_a is in the range [0,s_n-4]
- addInt_(s_a,2); //now s_a is in the range [2,s_n-2]
- copy_(s_b,s_a);
- copy_(s_n1,s_n);
- addInt_(s_n1,-1);
- powMod_(s_b,s_n1,s_n); //s_b=s_a^(s_n-1) modulo s_n
- addInt_(s_b,-1);
- if (isZero(s_b)) {
- copy_(s_b,s_a);
- powMod_(s_b,s_r2,s_n);
- addInt_(s_b,-1);
- copy_(s_aa,s_n);
- copy_(s_d,s_b);
- GCD_(s_d,s_n); //if s_b and s_n are relatively prime, then s_n is a prime
- if (equalsInt(s_d,1)) {
- copy_(ans,s_aa);
- return; //if we've made it this far, then s_n is absolutely guaranteed to be prime
- }
- }
- }
- }
- }
- //Return an n-bit random BigInt (n>=1). If s=1, then the most significant of those n bits is set to 1.
- function randBigInt(n,s) {
- var a,b;
- a=Math.floor((n-1)/bpe)+2; //# array elements to hold the BigInt with a leading 0 element
- b=int2bigInt(0,0,a);
- randBigInt_(b,n,s);
- return b;
- }
- //Set b to an n-bit random BigInt. If s=1, then the most significant of those n bits is set to 1.
- //Array b must be big enough to hold the result. Must have n>=1
- function randBigInt_(b,n,s) {
- var i,a;
- for (i=0;i<b.length;i++)
- b[i]=0;
- a=Math.floor((n-1)/bpe)+1; //# array elements to hold the BigInt
- for (i=0;i<a;i++) {
- b[i]=randomBitInt(bpe);
- }
- b[a-1] &= (2<<((n-1)%bpe))-1;
- if (s==1)
- b[a-1] |= (1<<((n-1)%bpe));
- }
- //Return the greatest common divisor of bigInts x and y (each with same number of elements).
- function GCD(x,y) {
- var xc,yc;
- xc=dup(x);
- yc=dup(y);
- GCD_(xc,yc);
- return xc;
- }
- //set x to the greatest common divisor of bigInts x and y (each with same number of elements).
- //y is destroyed.
- function GCD_(x,y) {
- var i,xp,yp,A,B,C,D,q,sing,qp;
- if (T.length!=x.length)
- T=dup(x);
- sing=1;
- while (sing) { //while y has nonzero elements other than y[0]
- sing=0;
- for (i=1;i<y.length;i++) //check if y has nonzero elements other than 0
- if (y[i]) {
- sing=1;
- break;
- }
- if (!sing) break; //quit when y all zero elements except possibly y[0]
- for (i=x.length;!x[i] && i>=0;i--); //find most significant element of x
- xp=x[i];
- yp=y[i];
- A=1; B=0; C=0; D=1;
- while ((yp+C) && (yp+D)) {
- q =Math.floor((xp+A)/(yp+C));
- qp=Math.floor((xp+B)/(yp+D));
- if (q!=qp)
- break;
- t= A-q*C; A=C; C=t; // do (A,B,xp, C,D,yp) = (C,D,yp, A,B,xp) - q*(0,0,0, C,D,yp)
- t= B-q*D; B=D; D=t;
- t=xp-q*yp; xp=yp; yp=t;
- }
- if (B) {
- copy_(T,x);
- linComb_(x,y,A,B); //x=A*x+B*y
- linComb_(y,T,D,C); //y=D*y+C*T
- } else {
- mod_(x,y);
- copy_(T,x);
- copy_(x,y);
- copy_(y,T);
- }
- }
- if (y[0]==0)
- return;
- t=modInt(x,y[0]);
- copyInt_(x,y[0]);
- y[0]=t;
- while (y[0]) {
- x[0]%=y[0];
- t=x[0]; x[0]=y[0]; y[0]=t;
- }
- }
- //do x=x**(-1) mod n, for bigInts x and n.
- //If no inverse exists, it sets x to zero and returns 0, else it returns 1.
- //The x array must be at least as large as the n array.
- function inverseMod_(x,n) {
- var k=1+2*Math.max(x.length,n.length);
- if(!(x[0]&1) && !(n[0]&1)) { //if both inputs are even, then inverse doesn't exist
- copyInt_(x,0);
- return 0;
- }
- if (eg_u.length!=k) {
- eg_u=new Array(k);
- eg_v=new Array(k);
- eg_A=new Array(k);
- eg_B=new Array(k);
- eg_C=new Array(k);
- eg_D=new Array(k);
- }
- copy_(eg_u,x);
- copy_(eg_v,n);
- copyInt_(eg_A,1);
- copyInt_(eg_B,0);
- copyInt_(eg_C,0);
- copyInt_(eg_D,1);
- for (;;) {
- while(!(eg_u[0]&1)) { //while eg_u is even
- halve_(eg_u);
- if (!(eg_A[0]&1) && !(eg_B[0]&1)) { //if eg_A==eg_B==0 mod 2
- halve_(eg_A);
- halve_(eg_B);
- } else {
- add_(eg_A,n); halve_(eg_A);
- sub_(eg_B,x); halve_(eg_B);
- }
- }
- while (!(eg_v[0]&1)) { //while eg_v is even
- halve_(eg_v);
- if (!(eg_C[0]&1) && !(eg_D[0]&1)) { //if eg_C==eg_D==0 mod 2
- halve_(eg_C);
- halve_(eg_D);
- } else {
- add_(eg_C,n); halve_(eg_C);
- sub_(eg_D,x); halve_(eg_D);
- }
- }
- if (!greater(eg_v,eg_u)) { //eg_v <= eg_u
- sub_(eg_u,eg_v);
- sub_(eg_A,eg_C);
- sub_(eg_B,eg_D);
- } else { //eg_v > eg_u
- sub_(eg_v,eg_u);
- sub_(eg_C,eg_A);
- sub_(eg_D,eg_B);
- }
- if (equalsInt(eg_u,0)) {
- while (negative(eg_C)) //make sure answer is nonnegative
- add_(eg_C,n);
- copy_(x,eg_C);
- if (!equalsInt(eg_v,1)) { //if GCD_(x,n)!=1, then there is no inverse
- copyInt_(x,0);
- return 0;
- }
- return 1;
- }
- }
- }
- //return x**(-1) mod n, for integers x and n. Return 0 if there is no inverse
- function inverseModInt(x,n) {
- var a=1,b=0,t;
- for (;;) {
- if (x==1) return a;
- if (x==0) return 0;
- b-=a*Math.floor(n/x);
- n%=x;
- if (n==1) return b; //to avoid negatives, change this b to n-b, and each -= to +=
- if (n==0) return 0;
- a-=b*Math.floor(x/n);
- x%=n;
- }
- }
- //this deprecated function is for backward compatibility only.
- function inverseModInt_(x,n) {
- return inverseModInt(x,n);
- }
- //Given positive bigInts x and y, change the bigints v, a, and b to positive bigInts such that:
- // v = GCD_(x,y) = a*x-b*y
- //The bigInts v, a, b, must have exactly as many elements as the larger of x and y.
- function eGCD_(x,y,v,a,b) {
- var g=0;
- var k=Math.max(x.length,y.length);
- if (eg_u.length!=k) {
- eg_u=new Array(k);
- eg_A=new Array(k);
- eg_B=new Array(k);
- eg_C=new Array(k);
- eg_D=new Array(k);
- }
- while(!(x[0]&1) && !(y[0]&1)) { //while x and y both even
- halve_(x);
- halve_(y);
- g++;
- }
- copy_(eg_u,x);
- copy_(v,y);
- copyInt_(eg_A,1);
- copyInt_(eg_B,0);
- copyInt_(eg_C,0);
- copyInt_(eg_D,1);
- for (;;) {
- while(!(eg_u[0]&1)) { //while u is even
- halve_(eg_u);
- if (!(eg_A[0]&1) && !(eg_B[0]&1)) { //if A==B==0 mod 2
- halve_(eg_A);
- halve_(eg_B);
- } else {
- add_(eg_A,y); halve_(eg_A);
- sub_(eg_B,x); halve_(eg_B);
- }
- }
- while (!(v[0]&1)) { //while v is even
- halve_(v);
- if (!(eg_C[0]&1) && !(eg_D[0]&1)) { //if C==D==0 mod 2
- halve_(eg_C);
- halve_(eg_D);
- } else {
- add_(eg_C,y); halve_(eg_C);
- sub_(eg_D,x); halve_(eg_D);
- }
- }
- if (!greater(v,eg_u)) { //v<=u
- sub_(eg_u,v);
- sub_(eg_A,eg_C);
- sub_(eg_B,eg_D);
- } else { //v>u
- sub_(v,eg_u);
- sub_(eg_C,eg_A);
- sub_(eg_D,eg_B);
- }
- if (equalsInt(eg_u,0)) {
- while (negative(eg_C)) { //make sure a (C) is nonnegative
- add_(eg_C,y);
- sub_(eg_D,x);
- }
- multInt_(eg_D,-1); ///make sure b (D) is nonnegative
- copy_(a,eg_C);
- copy_(b,eg_D);
- leftShift_(v,g);
- return;
- }
- }
- }
- //is bigInt x negative?
- function negative(x) {
- return ((x[x.length-1]>>(bpe-1))&1);
- }
- //is (x << (shift*bpe)) > y?
- //x and y are nonnegative bigInts
- //shift is a nonnegative integer
- function greaterShift(x,y,shift) {
- var i, kx=x.length, ky=y.length;
- var k=((kx+shift)<ky) ? (kx+shift) : ky;
- for (i=ky-1-shift; i<kx && i>=0; i++)
- if (x[i]>0)
- return 1; //if there are nonzeros in x to the left of the first column of y, then x is bigger
- for (i=kx-1+shift; i<ky; i++)
- if (y[i]>0)
- return 0; //if there are nonzeros in y to the left of the first column of x, then x is not bigger
- for (i=k-1; i>=shift; i--)
- if (x[i-shift]>y[i]) return 1;
- else if (x[i-shift]<y[i]) return 0;
- return 0;
- }
- //is x > y? (x and y both nonnegative)
- function greater(x,y) {
- var i;
- var k=(x.length<y.length) ? x.length : y.length;
- for (i=x.length;i<y.length;i++)
- if (y[i])
- return 0; //y has more digits
- for (i=y.length;i<x.length;i++)
- if (x[i])
- return 1; //x has more digits
- for (i=k-1;i>=0;i--)
- if (x[i]>y[i])
- return 1;
- else if (x[i]<y[i])
- return 0;
- return 0;
- }
- //divide x by y giving quotient q and remainder r. (q=floor(x/y), r=x mod y). All 4 are bigints.
- //x must have at least one leading zero element.
- //y must be nonzero.
- //q and r must be arrays that are exactly the same length as x. (Or q can have more).
- //Must have x.length >= y.length >= 2.
- function divide_(x,y,q,r) {
- var kx, ky;
- var i,j,y1,y2,c,a,b;
- copy_(r,x);
- for (ky=y.length;y[ky-1]==0;ky--); //ky is number of elements in y, not including leading zeros
- //normalize: ensure the most significant element of y has its highest bit set
- b=y[ky-1];
- for (a=0; b; a++)
- b>>=1;
- a=bpe-a; //a is how many bits to shift so that the high order bit of y is leftmost in its array element
- leftShift_(y,a); //multiply both by 1<<a now, then divide both by that at the end
- leftShift_(r,a);
- //Rob Visser discovered a bug: the following line was originally just before the normalization.
- for (kx=r.length;r[kx-1]==0 && kx>ky;kx--); //kx is number of elements in normalized x, not including leading zeros
- copyInt_(q,0); // q=0
- while (!greaterShift(y,r,kx-ky)) { // while (leftShift_(y,kx-ky) <= r) {
- subShift_(r,y,kx-ky); // r=r-leftShift_(y,kx-ky)
- q[kx-ky]++; // q[kx-ky]++;
- } // }
- for (i=kx-1; i>=ky; i--) {
- if (r[i]==y[ky-1])
- q[i-ky]=mask;
- else
- q[i-ky]=Math.floor((r[i]*radix+r[i-1])/y[ky-1]);
- //The following for(;;) loop is equivalent to the commented while loop,
- //except that the uncommented version avoids overflow.
- //The commented loop comes from HAC, which assumes r[-1]==y[-1]==0
- // while (q[i-ky]*(y[ky-1]*radix+y[ky-2]) > r[i]*radix*radix+r[i-1]*radix+r[i-2])
- // q[i-ky]--;
- for (;;) {
- y2=(ky>1 ? y[ky-2] : 0)*q[i-ky];
- c=y2;
- y2=y2 & mask;
- c = (c - y2) / radix;
- y1=c+q[i-ky]*y[ky-1];
- c=y1;
- y1=y1 & mask;
- c = (c - y1) / radix;
- if (c==r[i] ? y1==r[i-1] ? y2>(i>1 ? r[i-2] : 0) : y1>r[i-1] : c>r[i])
- q[i-ky]--;
- else
- break;
- }
- linCombShift_(r,y,-q[i-ky],i-ky); //r=r-q[i-ky]*leftShift_(y,i-ky)
- if (negative(r)) {
- addShift_(r,y,i-ky); //r=r+leftShift_(y,i-ky)
- q[i-ky]--;
- }
- }
- rightShift_(y,a); //undo the normalization step
- rightShift_(r,a); //undo the normalization step
- }
- //do carries and borrows so each element of the bigInt x fits in bpe bits.
- function carry_(x) {
- var i,k,c,b;
- k=x.length;
- c=0;
- for (i=0;i<k;i++) {
- c+=x[i];
- b=0;
- if (c<0) {
- b = c & mask;
- b = -((c - b) / radix);
- c+=b*radix;
- }
- x[i]=c & mask;
- c = ((c - x[i]) / radix) - b;
- }
- }
- //return x mod n for bigInt x and integer n.
- function modInt(x,n) {
- var i,c=0;
- for (i=x.length-1; i>=0; i--)
- c=(c*radix+x[i])%n;
- return c;
- }
- //convert the integer t into a bigInt with at least the given number of bits.
- //the returned array stores the bigInt in bpe-bit chunks, little endian (buff[0] is least significant word)
- //Pad the array with leading zeros so that it has at least minSize elements.
- //There will always be at least one leading 0 element.
- function int2bigInt(t,bits,minSize) {
- var i,k, buff;
- k=Math.ceil(bits/bpe)+1;
- k=minSize>k ? minSize : k;
- buff=new Array(k);
- copyInt_(buff,t);
- return buff;
- }
- //return the bigInt given a string representation in a given base.
- //Pad the array with leading zeros so that it has at least minSize elements.
- //If base=-1, then it reads in a space-separated list of array elements in decimal.
- //The array will always have at least one leading zero, unless base=-1.
- function str2bigInt(s,base,minSize) {
- var d, i, j, x, y, kk;
- var k=s.length;
- if (base==-1) { //comma-separated list of array elements in decimal
- x=new Array(0);
- for (;;) {
- y=new Array(x.length+1);
- for (i=0;i<x.length;i++)
- y[i+1]=x[i];
- y[0]=parseInt(s,10);
- x=y;
- d=s.indexOf(',',0);
- if (d<1)
- break;
- s=s.substring(d+1);
- if (s.length==0)
- break;
- }
- if (x.length<minSize) {
- y=new Array(minSize);
- copy_(y,x);
- return y;
- }
- return x;
- }
- // log2(base)*k
- var bb = base, p = 0;
- var b = base == 1 ? k : 0;
- while (bb > 1) {
- if (bb & 1) p = 1;
- b += k;
- bb >>= 1;
- }
- b += p*k;
- x=int2bigInt(0,b,0);
- for (i=0;i<k;i++) {
- d=digitsStr.indexOf(s.substring(i,i+1),0);
- if (base<=36 && d>=36) //convert lowercase to uppercase if base<=36
- d-=26;
- if (d>=base || d<0) { //stop at first illegal character
- break;
- }
- multInt_(x,base);
- addInt_(x,d);
- }
- for (k=x.length;k>0 && !x[k-1];k--); //strip off leading zeros
- k=minSize>k+1 ? minSize : k+1;
- y=new Array(k);
- kk=k<x.length ? k : x.length;
- for (i=0;i<kk;i++)
- y[i]=x[i];
- for (;i<k;i++)
- y[i]=0;
- return y;
- }
- //is bigint x equal to integer y?
- //y must have less than bpe bits
- function equalsInt(x,y) {
- var i;
- if (x[0]!=y)
- return 0;
- for (i=1;i<x.length;i++)
- if (x[i])
- return 0;
- return 1;
- }
- //are bigints x and y equal?
- //this works even if x and y are different lengths and have arbitrarily many leading zeros
- function equals(x,y) {
- var i;
- var k=x.length<y.length ? x.length : y.length;
- for (i=0;i<k;i++)
- if (x[i]!=y[i])
- return 0;
- if (x.length>y.length) {
- for (;i<x.length;i++)
- if (x[i])
- return 0;
- } else {
- for (;i<y.length;i++)
- if (y[i])
- return 0;
- }
- return 1;
- }
- //is the bigInt x equal to zero?
- function isZero(x) {
- var i;
- for (i=0;i<x.length;i++)
- if (x[i])
- return 0;
- return 1;
- }
- //convert a bigInt into a string in a given base, from base 2 up to base 95.
- //Base -1 prints the contents of the array representing the number.
- function bigInt2str(x,base) {
- var i,t,s="";
- if (s6.length!=x.length)
- s6=dup(x);
- else
- copy_(s6,x);
- if (base==-1) { //return the list of array contents
- for (i=x.length-1;i>0;i--)
- s+=x[i]+',';
- s+=x[0];
- }
- else { //return it in the given base
- while (!isZero(s6)) {
- t=divInt_(s6,base); //t=s6 % base; s6=floor(s6/base);
- s=digitsStr.substring(t,t+1)+s;
- }
- }
- if (s.length==0)
- s="0";
- return s;
- }
- //returns a duplicate of bigInt x
- function dup(x) {
- var i, buff;
- buff=new Array(x.length);
- copy_(buff,x);
- return buff;
- }
- //do x=y on bigInts x and y. x must be an array at least as big as y (not counting the leading zeros in y).
- function copy_(x,y) {
- var i;
- var k=x.length<y.length ? x.length : y.length;
- for (i=0;i<k;i++)
- x[i]=y[i];
- for (i=k;i<x.length;i++)
- x[i]=0;
- }
- //do x=y on bigInt x and integer y.
- function copyInt_(x,n) {
- var i,c;
- for (c=n,i=0;i<x.length;i++) {
- x[i]=c & mask;
- c>>=bpe;
- }
- }
- //do x=x+n where x is a bigInt and n is an integer.
- //x must be large enough to hold the result.
- function addInt_(x,n) {
- var i,k,c,b;
- x[0]+=n;
- k=x.length;
- c=0;
- for (i=0;i<k;i++) {
- c+=x[i];
- b=0;
- if (c<0) {
- b = c & mask;
- b = -((c - b) / radix);
- c+=b*radix;
- }
- x[i]=c & mask;
- c = ((c - x[i]) / radix) - b;
- if (!c) return; //stop carrying as soon as the carry is zero
- }
- }
- //right shift bigInt x by n bits.
- function rightShift_(x,n) {
- var i;
- var k=Math.floor(n/bpe);
- if (k) {
- for (i=0;i<x.length-k;i++) //right shift x by k elements
- x[i]=x[i+k];
- for (;i<x.length;i++)
- x[i]=0;
- n%=bpe;
- }
- for (i=0;i<x.length-1;i++) {
- x[i]=mask & ((x[i+1]<<(bpe-n)) | (x[i]>>n));
- }
- x[i]>>=n;
- }
- //do x=floor(|x|/2)*sgn(x) for bigInt x in 2's complement
- function halve_(x) {
- var i;
- for (i=0;i<x.length-1;i++) {
- x[i]=mask & ((x[i+1]<<(bpe-1)) | (x[i]>>1));
- }
- x[i]=(x[i]>>1) | (x[i] & (radix>>1)); //most significant bit stays the same
- }
- //left shift bigInt x by n bits.
- function leftShift_(x,n) {
- var i;
- var k=Math.floor(n/bpe);
- if (k) {
- for (i=x.length; i>=k; i--) //left shift x by k elements
- x[i]=x[i-k];
- for (;i>=0;i--)
- x[i]=0;
- n%=bpe;
- }
- if (!n)
- return;
- for (i=x.length-1;i>0;i--) {
- x[i]=mask & ((x[i]<<n) | (x[i-1]>>(bpe-n)));
- }
- x[i]=mask & (x[i]<<n);
- }
- //do x=x*n where x is a bigInt and n is an integer.
- //x must be large enough to hold the result.
- function multInt_(x,n) {
- var i,k,c,b;
- if (!n)
- return;
- k=x.length;
- c=0;
- for (i=0;i<k;i++) {
- c+=x[i]*n;
- b=0;
- if (c<0) {
- b = c & mask;
- b = -((c - b) / radix);
- c+=b*radix;
- }
- x[i]=c & mask;
- c = ((c - x[i]) / radix) - b;
- }
- }
- //do x=floor(x/n) for bigInt x and integer n, and return the remainder
- function divInt_(x,n) {
- var i,r=0,s;
- for (i=x.length-1;i>=0;i--) {
- s=r*radix+x[i];
- x[i]=Math.floor(s/n);
- r=s%n;
- }
- return r;
- }
- //do the linear combination x=a*x+b*y for bigInts x and y, and integers a and b.
- //x must be large enough to hold the answer.
- function linComb_(x,y,a,b) {
- var i,c,k,kk;
- k=x.length<y.length ? x.length : y.length;
- kk=x.length;
- for (c=0,i=0;i<k;i++) {
- c+=a*x[i]+b*y[i];
- x[i]=c & mask;
- c = (c - x[i]) / radix;
- }
- for (i=k;i<kk;i++) {
- c+=a*x[i];
- x[i]=c & mask;
- c = (c - x[i]) / radix;
- }
- }
- //do the linear combination x=a*x+b*(y<<(ys*bpe)) for bigInts x and y, and integers a, b and ys.
- //x must be large enough to hold the answer.
- function linCombShift_(x,y,b,ys) {
- var i,c,k,kk;
- k=x.length<ys+y.length ? x.length : ys+y.length;
- kk=x.length;
- for (c=0,i=ys;i<k;i++) {
- c+=x[i]+b*y[i-ys];
- x[i]=c & mask;
- c = (c - x[i]) / radix;
- }
- for (i=k;c && i<kk;i++) {
- c+=x[i];
- x[i]=c & mask;
- c = (c - x[i]) / radix;
- }
- }
- //do x=x+(y<<(ys*bpe)) for bigInts x and y, and integers a,b and ys.
- //x must be large enough to hold the answer.
- function addShift_(x,y,ys) {
- var i,c,k,kk;
- k=x.length<ys+y.length ? x.length : ys+y.length;
- kk=x.length;
- for (c=0,i=ys;i<k;i++) {
- c+=x[i]+y[i-ys];
- x[i]=c & mask;
- c = (c - x[i]) / radix;
- }
- for (i=k;c && i<kk;i++) {
- c+=x[i];
- x[i]=c & mask;
- c = (c - x[i]) / radix;
- }
- }
- //do x=x-(y<<(ys*bpe)) for bigInts x and y, and integers a,b and ys.
- //x must be large enough to hold the answer.
- function subShift_(x,y,ys) {
- var i,c,k,kk;
- k=x.length<ys+y.length ? x.length : ys+y.length;
- kk=x.length;
- for (c=0,i=ys;i<k;i++) {
- c+=x[i]-y[i-ys];
- x[i]=c & mask;
- c = (c - x[i]) / radix;
- }
- for (i=k;c && i<kk;i++) {
- c+=x[i];
- x[i]=c & mask;
- c = (c - x[i]) / radix;
- }
- }
- //do x=x-y for bigInts x and y.
- //x must be large enough to hold the answer.
- //negative answers will be 2s complement
- function sub_(x,y) {
- var i,c,k,kk;
- k=x.length<y.length ? x.length : y.length;
- for (c=0,i=0;i<k;i++) {
- c+=x[i]-y[i];
- x[i]=c & mask;
- c = (c - x[i]) / radix;
- }
- for (i=k;c && i<x.length;i++) {
- c+=x[i];
- x[i]=c & mask;
- c = (c - x[i]) / radix;
- }
- }
- //do x=x+y for bigInts x and y.
- //x must be large enough to hold the answer.
- function add_(x,y) {
- var i,c,k,kk;
- k=x.length<y.length ? x.length : y.length;
- for (c=0,i=0;i<k;i++) {
- c+=x[i]+y[i];
- x[i]=c & mask;
- c = (c - x[i]) / radix;
- }
- for (i=k;c && i<x.length;i++) {
- c+=x[i];
- x[i]=c & mask;
- c = (c - x[i]) / radix;
- }
- }
- //do x=x*y for bigInts x and y. This is faster when y<x.
- function mult_(x,y) {
- var i;
- if (ss.length!=2*x.length)
- ss=new Array(2*x.length);
- copyInt_(ss,0);
- for (i=0;i<y.length;i++)
- if (y[i])
- linCombShift_(ss,x,y[i],i); //ss=1*ss+y[i]*(x<<(i*bpe))
- copy_(x,ss);
- }
- //do x=x mod n for bigInts x and n.
- function mod_(x,n) {
- if (s4.length!=x.length)
- s4=dup(x);
- else
- copy_(s4,x);
- if (s5.length!=x.length)
- s5=dup(x);
- divide_(s4,n,s5,x); //x = remainder of s4 / n
- }
- //do x=x*y mod n for bigInts x,y,n.
- //for greater speed, let y<x.
- function multMod_(x,y,n) {
- var i;
- if (s0.length!=2*x.length)
- s0=new Array(2*x.length);
- copyInt_(s0,0);
- for (i=0;i<y.length;i++)
- if (y[i])
- linCombShift_(s0,x,y[i],i); //s0=1*s0+y[i]*(x<<(i*bpe))
- mod_(s0,n);
- copy_(x,s0);
- }
- //do x=x*x mod n for bigInts x,n.
- function squareMod_(x,n) {
- var i,j,d,c,kx,kn,k;
- for (kx=x.length; kx>0 && !x[kx-1]; kx--); //ignore leading zeros in x
- k=kx>n.length ? 2*kx : 2*n.length; //k=# elements in the product, which is twice the elements in the larger of x and n
- if (s0.length!=k)
- s0=new Array(k);
- copyInt_(s0,0);
- for (i=0;i<kx;i++) {
- c=s0[2*i]+x[i]*x[i];
- s0[2*i]=c & mask;
- c = (c - s0[2*i]) / radix;
- for (j=i+1;j<kx;j++) {
- c=s0[i+j]+2*x[i]*x[j]+c;
- s0[i+j]=(c & mask);
- c = (c - s0[i+j]) / radix;
- }
- s0[i+kx]=c;
- }
- mod_(s0,n);
- copy_(x,s0);
- }
- //return x with exactly k leading zero elements
- function trim(x,k) {
- var i,y;
- for (i=x.length; i>0 && !x[i-1]; i--);
- y=new Array(i+k);
- copy_(y,x);
- return y;
- }
- //do x=x**y mod n, where x,y,n are bigInts and ** is exponentiation. 0**0=1.
- //this is faster when n is odd. x usually needs to have as many elements as n.
- function powMod_(x,y,n) {
- var k1,k2,kn,np;
- if(s7.length!=n.length)
- s7=dup(n);
- //for even modulus, use a simple square-and-multiply algorithm,
- //rather than using the more complex Montgomery algorithm.
- if ((n[0]&1)==0) {
- copy_(s7,x);
- copyInt_(x,1);
- while(!equalsInt(y,0)) {
- if (y[0]&1)
- multMod_(x,s7,n);
- divInt_(y,2);
- squareMod_(s7,n);
- }
- return;
- }
- //calculate np from n for the Montgomery multiplications
- copyInt_(s7,0);
- for (kn=n.length;kn>0 && !n[kn-1];kn--);
- np=radix-inverseModInt(modInt(n,radix),radix);
- s7[kn]=1;
- multMod_(x ,s7,n); // x = x * 2**(kn*bp) mod n
- if (s3.length!=x.length)
- s3=dup(x);
- else
- copy_(s3,x);
- for (k1=y.length-1;k1>0 & !y[k1]; k1--); //k1=first nonzero element of y
- if (y[k1]==0) { //anything to the 0th power is 1
- copyInt_(x,1);
- return;
- }
- for (k2=1<<(bpe-1);k2 && !(y[k1] & k2); k2>>=1); //k2=position of first 1 bit in y[k1]
- for (;;) {
- if (!(k2>>=1)) { //look at next bit of y
- k1--;
- if (k1<0) {
- mont_(x,one,n,np);
- return;
- }
- k2=1<<(bpe-1);
- }
- mont_(x,x,n,np);
- if (k2 & y[k1]) //if next bit is a 1
- mont_(x,s3,n,np);
- }
- }
- //do x=x*y*Ri mod n for bigInts x,y,n,
- // where Ri = 2**(-kn*bpe) mod n, and kn is the
- // number of elements in the n array, not
- // counting leading zeros.
- //x array must have at least as many elemnts as the n array
- //It's OK if x and y are the same variable.
- //must have:
- // x,y < n
- // n is odd
- // np = -(n^(-1)) mod radix
- function mont_(x,y,n,np) {
- var i,j,c,ui,t,t2,ks;
- var kn=n.length;
- var ky=y.length;
- if (sa.length!=kn)
- sa=new Array(kn);
-
- copyInt_(sa,0);
- for (;kn>0 && n[kn-1]==0;kn--); //ignore leading zeros of n
- for (;ky>0 && y[ky-1]==0;ky--); //ignore leading zeros of y
- ks=sa.length-1; //sa will never have more than this many nonzero elements.
- //the following loop consumes 95% of the runtime for randTruePrime_() and powMod_() for large numbers
- for (i=0; i<kn; i++) {
- t=sa[0]+x[i]*y[0];
- ui=((t & mask) * np) & mask; //the inner "& mask" was needed on Safari (but not MSIE) at one time
- c=(t+ui*n[0]);
- c = (c - (c & mask)) / radix;
- t=x[i];
-
- //do sa=(sa+x[i]*y+ui*n)/b where b=2**bpe. Loop is unrolled 5-fold for speed
- j=1;
- for (;j<ky-4;) {
- c+=sa[j]+ui*n[j]+t*y[j]; t2=sa[j-1]=c & mask; c=(c-t2)/radix; j++;
- c+=sa[j]+ui*n[j]+t*y[j]; t2=sa[j-1]=c & mask; c=(c-t2)/radix; j++;
- c+=sa[j]+ui*n[j]+t*y[j]; t2=sa[j-1]=c & mask; c=(c-t2)/radix; j++;
- c+=sa[j]+ui*n[j]+t*y[j]; t2=sa[j-1]=c & mask; c=(c-t2)/radix; j++;
- c+=sa[j]+ui*n[j]+t*y[j]; t2=sa[j-1]=c & mask; c=(c-t2)/radix; j++;
- }
- for (;j<ky;) {
- c+=sa[j]+ui*n[j]+t*y[j]; t2=sa[j-1]=c & mask; c=(c-t2)/radix; j++;
- }
- for (;j<kn-4;) {
- c+=sa[j]+ui*n[j]; t2=sa[j-1]=c & mask; c=(c-t2)/radix; j++;
- c+=sa[j]+ui*n[j]; t2=sa[j-1]=c & mask; c=(c-t2)/radix; j++;
- c+=sa[j]+ui*n[j]; t2=sa[j-1]=c & mask; c=(c-t2)/radix; j++;
- c+=sa[j]+ui*n[j]; t2=sa[j-1]=c & mask; c=(c-t2)/radix; j++;
- c+=sa[j]+ui*n[j]; t2=sa[j-1]=c & mask; c=(c-t2)/radix; j++;
- }
- for (;j<kn;) {
- c+=sa[j]+ui*n[j]; t2=sa[j-1]=c & mask; c=(c-t2)/radix; j++;
- }
- for (;j<ks;) {
- c+=sa[j]; t2=sa[j-1]=c & mask; c=(c-t2)/radix; j++;
- }
- sa[j-1]=c & mask;
- }
- if (!greater(n,sa))
- sub_(sa,n);
- copy_(x,sa);
- }
- // otr.js additions
- // computes num / den mod n
- function divMod(num, den, n) {
- return multMod(num, inverseMod(den, n), n)
- }
- // computes one - two mod n
- function subMod(one, two, n) {
- one = mod(one, n)
- two = mod(two, n)
- if (greater(two, one)) one = add(one, n)
- return sub(one, two)
- }
- // computes 2^m as a bigInt
- function twoToThe(m) {
- var b = Math.floor(m / bpe) + 2
- var t = new Array(b)
- for (var i = 0; i < b; i++) t[i] = 0
- t[b - 2] = 1 << (m % bpe)
- return t
- }
- // cache these results for faster lookup
- var _num2bin = (function () {
- var i = 0, _num2bin= {}
- for (; i < 0x100; ++i) {
- _num2bin[i] = String.fromCharCode(i) // 0 -> "\00"
- }
- return _num2bin
- }())
- // serialize a bigInt to an ascii string
- // padded up to pad length
- function bigInt2bits(bi, pad) {
- pad || (pad = 0)
- bi = dup(bi)
- var ba = ''
- while (!isZero(bi)) {
- ba = _num2bin[bi[0] & 0xff] + ba
- rightShift_(bi, 8)
- }
- while (ba.length < pad) {
- ba = '\x00' + ba
- }
- return ba
- }
- // converts a byte array to a bigInt
- function ba2bigInt(data) {
- var mpi = str2bigInt('0', 10, data.length)
- data.forEach(function (d, i) {
- if (i) leftShift_(mpi, 8)
- mpi[0] |= d
- })
- return mpi
- }
- // returns a function that returns an array of n bytes
- var randomBytes = (function () {
- // in node
- if ( typeof crypto !== 'undefined' &&
- typeof crypto.randomBytes === 'function' ) {
- return function (n) {
- try {
- var buf = crypto.randomBytes(n)
- } catch (e) { throw e }
- return Array.prototype.slice.call(buf, 0)
- }
- }
- // in browser
- else if ( typeof crypto !== 'undefined' &&
- typeof crypto.getRandomValues === 'function' ) {
- return function (n) {
- var buf = new Uint8Array(n)
- crypto.getRandomValues(buf)
- return Array.prototype.slice.call(buf, 0)
- }
- }
- // err
- else {
- throw new Error('Keys should not be generated without CSPRNG.')
- }
- }())
- // Salsa 20 in webworker needs a 40 byte seed
- function getSeed() {
- return randomBytes(40)
- }
- // returns a single random byte
- function randomByte() {
- return randomBytes(1)[0]
- }
- // returns a k-bit random integer
- function randomBitInt(k) {
- if (k > 31) throw new Error("Too many bits.")
- var i = 0, r = 0
- var b = Math.floor(k / 8)
- var mask = (1 << (k % 8)) - 1
- if (mask) r = randomByte() & mask
- for (; i < b; i++)
- r = (256 * r) + randomByte()
- return r
- }
- return {
- str2bigInt : str2bigInt
- , bigInt2str : bigInt2str
- , int2bigInt : int2bigInt
- , multMod : multMod
- , powMod : powMod
- , inverseMod : inverseMod
- , randBigInt : randBigInt
- , randBigInt_ : randBigInt_
- , equals : equals
- , equalsInt : equalsInt
- , sub : sub
- , mod : mod
- , modInt : modInt
- , mult : mult
- , divInt_ : divInt_
- , rightShift_ : rightShift_
- , dup : dup
- , greater : greater
- , add : add
- , isZero : isZero
- , bitSize : bitSize
- , millerRabin : millerRabin
- , divide_ : divide_
- , trim : trim
- , primes : primes
- , findPrimes : findPrimes
- , getSeed : getSeed
- , divMod : divMod
- , subMod : subMod
- , twoToThe : twoToThe
- , bigInt2bits : bigInt2bits
- , ba2bigInt : ba2bigInt
- }
- }))
|