123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265 |
- // Copyright (C) 2002-2012 Nikolaus Gebhardt
- // This file is part of the "Irrlicht Engine".
- // For conditions of distribution and use, see copyright notice in irrlicht.h
- #pragma once
- #include <cstring> // memset, memcpy
- #include "irrMath.h"
- #include "vector3d.h"
- #include "vector2d.h"
- #include "plane3d.h"
- #include "aabbox3d.h"
- #include "rect.h"
- #include "IrrCompileConfig.h" // for IRRLICHT_API
- // enable this to keep track of changes to the matrix
- // and make simpler identity check for seldom changing matrices
- // otherwise identity check will always compare the elements
- // #define USE_MATRIX_TEST
- namespace irr
- {
- namespace core
- {
- //! 4x4 matrix. Mostly used as transformation matrix for 3d calculations.
- /** Conventions: Matrices are considered to be in row-major order.
- * Multiplication of a matrix A with a row vector v is the premultiplication vA.
- * Translations are thus in the 4th row.
- * The matrix product AB yields a matrix C such that vC = (vB)A:
- * B is applied first, then A.
- */
- template <class T>
- class CMatrix4
- {
- public:
- //! Constructor Flags
- enum eConstructor
- {
- EM4CONST_NOTHING = 0,
- EM4CONST_COPY,
- EM4CONST_IDENTITY,
- EM4CONST_TRANSPOSED,
- EM4CONST_INVERSE,
- EM4CONST_INVERSE_TRANSPOSED
- };
- //! Default constructor
- /** \param constructor Choose the initialization style */
- CMatrix4(eConstructor constructor = EM4CONST_IDENTITY);
- //! Constructor with value initialization
- constexpr CMatrix4(const T &r0c0, const T &r0c1, const T &r0c2, const T &r0c3,
- const T &r1c0, const T &r1c1, const T &r1c2, const T &r1c3,
- const T &r2c0, const T &r2c1, const T &r2c2, const T &r2c3,
- const T &r3c0, const T &r3c1, const T &r3c2, const T &r3c3)
- {
- M[0] = r0c0;
- M[1] = r0c1;
- M[2] = r0c2;
- M[3] = r0c3;
- M[4] = r1c0;
- M[5] = r1c1;
- M[6] = r1c2;
- M[7] = r1c3;
- M[8] = r2c0;
- M[9] = r2c1;
- M[10] = r2c2;
- M[11] = r2c3;
- M[12] = r3c0;
- M[13] = r3c1;
- M[14] = r3c2;
- M[15] = r3c3;
- }
- //! Copy constructor
- /** \param other Other matrix to copy from
- \param constructor Choose the initialization style */
- CMatrix4(const CMatrix4<T> &other, eConstructor constructor = EM4CONST_COPY);
- //! Simple operator for directly accessing every element of the matrix.
- T &operator()(const s32 row, const s32 col)
- {
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = false;
- #endif
- return M[row * 4 + col];
- }
- //! Simple operator for directly accessing every element of the matrix.
- const T &operator()(const s32 row, const s32 col) const { return M[row * 4 + col]; }
- //! Simple operator for linearly accessing every element of the matrix.
- T &operator[](u32 index)
- {
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = false;
- #endif
- return M[index];
- }
- //! Simple operator for linearly accessing every element of the matrix.
- const T &operator[](u32 index) const { return M[index]; }
- //! Sets this matrix equal to the other matrix.
- CMatrix4<T> &operator=(const CMatrix4<T> &other) = default;
- //! Sets all elements of this matrix to the value.
- inline CMatrix4<T> &operator=(const T &scalar);
- //! Returns pointer to internal array
- const T *pointer() const { return M; }
- T *pointer()
- {
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = false;
- #endif
- return M;
- }
- //! Returns true if other matrix is equal to this matrix.
- constexpr bool operator==(const CMatrix4<T> &other) const
- {
- #if defined(USE_MATRIX_TEST)
- if (definitelyIdentityMatrix && other.definitelyIdentityMatrix)
- return true;
- #endif
- for (s32 i = 0; i < 16; ++i)
- if (M[i] != other.M[i])
- return false;
- return true;
- }
- //! Returns true if other matrix is not equal to this matrix.
- constexpr bool operator!=(const CMatrix4<T> &other) const
- {
- return !(*this == other);
- }
- //! Add another matrix.
- CMatrix4<T> operator+(const CMatrix4<T> &other) const;
- //! Add another matrix.
- CMatrix4<T> &operator+=(const CMatrix4<T> &other);
- //! Subtract another matrix.
- CMatrix4<T> operator-(const CMatrix4<T> &other) const;
- //! Subtract another matrix.
- CMatrix4<T> &operator-=(const CMatrix4<T> &other);
- //! set this matrix to the product of two matrices
- /** Calculate b*a */
- inline CMatrix4<T> &setbyproduct(const CMatrix4<T> &other_a, const CMatrix4<T> &other_b);
- //! Set this matrix to the product of two matrices
- /** Calculate b*a, no optimization used,
- use it if you know you never have an identity matrix */
- CMatrix4<T> &setbyproduct_nocheck(const CMatrix4<T> &other_a, const CMatrix4<T> &other_b);
- //! Multiply by another matrix.
- /** Calculate other*this */
- CMatrix4<T> operator*(const CMatrix4<T> &other) const;
- //! Multiply by another matrix.
- /** Like calling: (*this) = (*this) * other
- */
- CMatrix4<T> &operator*=(const CMatrix4<T> &other);
- //! Multiply by scalar.
- CMatrix4<T> operator*(const T &scalar) const;
- //! Multiply by scalar.
- CMatrix4<T> &operator*=(const T &scalar);
- //! Set matrix to identity.
- inline CMatrix4<T> &makeIdentity();
- //! Returns true if the matrix is the identity matrix
- inline bool isIdentity() const;
- //! Returns true if the matrix is orthogonal
- inline bool isOrthogonal() const;
- //! Returns true if the matrix is the identity matrix
- bool isIdentity_integer_base() const;
- //! Set the translation of the current matrix. Will erase any previous values.
- CMatrix4<T> &setTranslation(const vector3d<T> &translation);
- //! Gets the current translation
- vector3d<T> getTranslation() const;
- //! Set the inverse translation of the current matrix. Will erase any previous values.
- CMatrix4<T> &setInverseTranslation(const vector3d<T> &translation);
- //! Make a rotation matrix from Euler angles. The 4th row and column are unmodified.
- inline CMatrix4<T> &setRotationRadians(const vector3d<T> &rotation);
- //! Make a rotation matrix from Euler angles. The 4th row and column are unmodified.
- CMatrix4<T> &setRotationDegrees(const vector3d<T> &rotation);
- //! Get the rotation, as set by setRotation() when you already know the scale used to create the matrix
- /** NOTE: The scale needs to be the correct one used to create this matrix.
- You can _not_ use the result of getScale(), but have to save your scale
- variable in another place (like ISceneNode does).
- NOTE: No scale value can be 0 or the result is undefined.
- NOTE: It does not necessarily return the *same* Euler angles as those set by setRotationDegrees(),
- but the rotation will be equivalent, i.e. will have the same result when used to rotate a vector or node.
- NOTE: It will (usually) give wrong results when further transformations have been added in the matrix (like shear).
- WARNING: There have been troubles with this function over the years and we may still have missed some corner cases.
- It's generally safer to keep the rotation and scale you used to create the matrix around and work with those.
- */
- core::vector3d<T> getRotationDegrees(const vector3d<T> &scale) const;
- //! Returns the rotation, as set by setRotation().
- /** NOTE: You will have the same end-rotation as used in setRotation, but it might not use the same axis values.
- NOTE: This only works correct if no other matrix operations have been done on the inner 3x3 matrix besides
- setting rotation (so no scale/shear). Thought it (probably) works as long as scale doesn't flip handedness.
- NOTE: It does not necessarily return the *same* Euler angles as those set by setRotationDegrees(),
- but the rotation will be equivalent, i.e. will have the same result when used to rotate a vector or node.
- */
- core::vector3d<T> getRotationDegrees() const;
- //! Make an inverted rotation matrix from Euler angles.
- /** The 4th row and column are unmodified. */
- inline CMatrix4<T> &setInverseRotationRadians(const vector3d<T> &rotation);
- //! Make an inverted rotation matrix from Euler angles.
- /** The 4th row and column are unmodified. */
- inline CMatrix4<T> &setInverseRotationDegrees(const vector3d<T> &rotation);
- //! Make a rotation matrix from angle and axis, assuming left handed rotation.
- /** The 4th row and column are unmodified. */
- inline CMatrix4<T> &setRotationAxisRadians(const T &angle, const vector3d<T> &axis);
- //! Set Scale
- CMatrix4<T> &setScale(const vector3d<T> &scale);
- //! Set Scale
- CMatrix4<T> &setScale(const T scale) { return setScale(core::vector3d<T>(scale, scale, scale)); }
- //! Get Scale
- core::vector3d<T> getScale() const;
- //! Translate a vector by the inverse of the translation part of this matrix.
- void inverseTranslateVect(vector3df &vect) const;
- //! Scale a vector, then rotate by the inverse of the rotation part of this matrix.
- [[nodiscard]] vector3d<T> scaleThenInvRotVect(const vector3d<T> &vect) const;
- //! Rotate and scale a vector. Applies both rotation & scale part of the matrix.
- [[nodiscard]] vector3d<T> rotateAndScaleVect(const vector3d<T> &vect) const;
- //! Transforms the vector by this matrix
- /** This operation is performed as if the vector was 4d with the 4th component =1 */
- void transformVect(vector3df &vect) const;
- //! Transforms input vector by this matrix and stores result in output vector
- /** This operation is performed as if the vector was 4d with the 4th component =1 */
- void transformVect(vector3df &out, const vector3df &in) const;
- //! An alternate transform vector method, writing into an array of 4 floats
- /** This operation is performed as if the vector was 4d with the 4th component =1.
- NOTE: out[3] will be written to (4th vector component)*/
- void transformVect(T *out, const core::vector3df &in) const;
- //! An alternate transform vector method, reading from and writing to an array of 3 floats
- /** This operation is performed as if the vector was 4d with the 4th component =1
- NOTE: out[3] will be written to (4th vector component)*/
- void transformVec3(T *out, const T *in) const;
- //! An alternate transform vector method, reading from and writing to an array of 4 floats
- void transformVec4(T *out, const T *in) const;
- //! Translate a vector by the translation part of this matrix.
- /** This operation is performed as if the vector was 4d with the 4th component =1 */
- void translateVect(vector3df &vect) const;
- //! Transforms a plane by this matrix
- void transformPlane(core::plane3d<f32> &plane) const;
- //! Transforms a plane by this matrix
- void transformPlane(const core::plane3d<f32> &in, core::plane3d<f32> &out) const;
- //! Transforms a axis aligned bounding box
- void transformBoxEx(core::aabbox3d<f32> &box) const;
- //! Multiplies this matrix by a 1x4 matrix
- void multiplyWith1x4Matrix(T *matrix) const;
- //! Calculates inverse of matrix. Slow.
- /** \return Returns false if there is no inverse matrix.*/
- bool makeInverse();
- //! Inverts a primitive matrix which only contains a translation and a rotation
- /** \param out: where result matrix is written to. */
- bool getInversePrimitive(CMatrix4<T> &out) const;
- //! Gets the inverse matrix of this one
- /** \param out: where result matrix is written to.
- \return Returns false if there is no inverse matrix. */
- bool getInverse(CMatrix4<T> &out) const;
- //! Builds a right-handed perspective projection matrix based on a field of view
- //\param zClipFromZero: Clipping of z can be projected from 0 to w when true (D3D style) and from -w to w when false (OGL style).
- CMatrix4<T> &buildProjectionMatrixPerspectiveFovRH(f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 zFar, bool zClipFromZero = true);
- //! Builds a left-handed perspective projection matrix based on a field of view
- CMatrix4<T> &buildProjectionMatrixPerspectiveFovLH(f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 zFar, bool zClipFromZero = true);
- //! Builds a left-handed perspective projection matrix based on a field of view, with far plane at infinity
- CMatrix4<T> &buildProjectionMatrixPerspectiveFovInfinityLH(f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 epsilon = 0);
- //! Builds a right-handed perspective projection matrix.
- CMatrix4<T> &buildProjectionMatrixPerspectiveRH(f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero = true);
- //! Builds a left-handed perspective projection matrix.
- CMatrix4<T> &buildProjectionMatrixPerspectiveLH(f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero = true);
- //! Builds a left-handed orthogonal projection matrix.
- //\param zClipFromZero: Clipping of z can be projected from 0 to 1 when true (D3D style) and from -1 to 1 when false (OGL style).
- CMatrix4<T> &buildProjectionMatrixOrthoLH(f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero = true);
- //! Builds a right-handed orthogonal projection matrix.
- CMatrix4<T> &buildProjectionMatrixOrthoRH(f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero = true);
- //! Builds a left-handed look-at matrix.
- CMatrix4<T> &buildCameraLookAtMatrixLH(
- const vector3df &position,
- const vector3df &target,
- const vector3df &upVector);
- //! Builds a right-handed look-at matrix.
- CMatrix4<T> &buildCameraLookAtMatrixRH(
- const vector3df &position,
- const vector3df &target,
- const vector3df &upVector);
- //! Builds a matrix that flattens geometry into a plane.
- /** \param light: light source
- \param plane: plane into which the geometry if flattened into
- \param point: value between 0 and 1, describing the light source.
- If this is 1, it is a point light, if it is 0, it is a directional light. */
- CMatrix4<T> &buildShadowMatrix(const core::vector3df &light, core::plane3df plane, f32 point = 1.0f);
- //! Builds a matrix which transforms a normalized Device Coordinate to Device Coordinates.
- /** Used to scale <-1,-1><1,1> to viewport, for example from <-1,-1> <1,1> to the viewport <0,0><0,640> */
- CMatrix4<T> &buildNDCToDCMatrix(const core::rect<s32> &area, f32 zScale);
- //! Creates a new matrix as interpolated matrix from two other ones.
- /** \param b: other matrix to interpolate with
- \param time: Must be a value between 0 and 1. */
- CMatrix4<T> interpolate(const core::CMatrix4<T> &b, f32 time) const;
- //! Gets transposed matrix
- CMatrix4<T> getTransposed() const;
- //! Gets transposed matrix
- inline void getTransposed(CMatrix4<T> &dest) const;
- //! Builds a matrix that rotates from one vector to another
- /** \param from: vector to rotate from
- \param to: vector to rotate to
- */
- CMatrix4<T> &buildRotateFromTo(const core::vector3df &from, const core::vector3df &to);
- //! Builds a combined matrix which translates to a center before rotation and translates from origin afterwards
- /** \param center Position to rotate around
- \param translate Translation applied after the rotation
- */
- void setRotationCenter(const core::vector3df ¢er, const core::vector3df &translate);
- //! Builds a matrix which rotates a source vector to a look vector over an arbitrary axis
- /** \param camPos: viewer position in world coo
- \param center: object position in world-coo and rotation pivot
- \param translation: object final translation from center
- \param axis: axis to rotate about
- \param from: source vector to rotate from
- */
- void buildAxisAlignedBillboard(const core::vector3df &camPos,
- const core::vector3df ¢er,
- const core::vector3df &translation,
- const core::vector3df &axis,
- const core::vector3df &from);
- /*
- construct 2D Texture transformations
- rotate about center, scale, and transform.
- */
- //! Set to a texture transformation matrix with the given parameters.
- CMatrix4<T> &buildTextureTransform(f32 rotateRad,
- const core::vector2df &rotatecenter,
- const core::vector2df &translate,
- const core::vector2df &scale);
- //! Set texture transformation rotation
- /** Rotate about z axis, recenter at (0.5,0.5).
- Doesn't clear other elements than those affected
- \param radAngle Angle in radians
- \return Altered matrix */
- CMatrix4<T> &setTextureRotationCenter(f32 radAngle);
- //! Set texture transformation translation
- /** Doesn't clear other elements than those affected.
- \param x Offset on x axis
- \param y Offset on y axis
- \return Altered matrix */
- CMatrix4<T> &setTextureTranslate(f32 x, f32 y);
- //! Get texture transformation translation
- /** \param x returns offset on x axis
- \param y returns offset on y axis */
- void getTextureTranslate(f32 &x, f32 &y) const;
- //! Set texture transformation translation, using a transposed representation
- /** Doesn't clear other elements than those affected.
- \param x Offset on x axis
- \param y Offset on y axis
- \return Altered matrix */
- CMatrix4<T> &setTextureTranslateTransposed(f32 x, f32 y);
- //! Set texture transformation scale
- /** Doesn't clear other elements than those affected.
- \param sx Scale factor on x axis
- \param sy Scale factor on y axis
- \return Altered matrix. */
- CMatrix4<T> &setTextureScale(f32 sx, f32 sy);
- //! Get texture transformation scale
- /** \param sx Returns x axis scale factor
- \param sy Returns y axis scale factor */
- void getTextureScale(f32 &sx, f32 &sy) const;
- //! Set texture transformation scale, and recenter at (0.5,0.5)
- /** Doesn't clear other elements than those affected.
- \param sx Scale factor on x axis
- \param sy Scale factor on y axis
- \return Altered matrix. */
- CMatrix4<T> &setTextureScaleCenter(f32 sx, f32 sy);
- //! Sets all matrix data members at once
- CMatrix4<T> &setM(const T *data);
- //! Sets if the matrix is definitely identity matrix
- void setDefinitelyIdentityMatrix(bool isDefinitelyIdentityMatrix);
- //! Gets if the matrix is definitely identity matrix
- bool getDefinitelyIdentityMatrix() const;
- //! Compare two matrices using the equal method
- bool equals(const core::CMatrix4<T> &other, const T tolerance = (T)ROUNDING_ERROR_f64) const;
- private:
- //! Matrix data, stored in row-major order
- T M[16];
- #if defined(USE_MATRIX_TEST)
- //! Flag is this matrix is identity matrix
- mutable u32 definitelyIdentityMatrix;
- #endif
- };
- // Default constructor
- template <class T>
- inline CMatrix4<T>::CMatrix4(eConstructor constructor)
- #if defined(USE_MATRIX_TEST)
- :
- definitelyIdentityMatrix(BIT_UNTESTED)
- #endif
- {
- switch (constructor) {
- case EM4CONST_NOTHING:
- case EM4CONST_COPY:
- break;
- case EM4CONST_IDENTITY:
- case EM4CONST_INVERSE:
- default:
- makeIdentity();
- break;
- }
- }
- // Copy constructor
- template <class T>
- inline CMatrix4<T>::CMatrix4(const CMatrix4<T> &other, eConstructor constructor)
- #if defined(USE_MATRIX_TEST)
- :
- definitelyIdentityMatrix(BIT_UNTESTED)
- #endif
- {
- switch (constructor) {
- case EM4CONST_IDENTITY:
- makeIdentity();
- break;
- case EM4CONST_NOTHING:
- break;
- case EM4CONST_COPY:
- *this = other;
- break;
- case EM4CONST_TRANSPOSED:
- other.getTransposed(*this);
- break;
- case EM4CONST_INVERSE:
- if (!other.getInverse(*this))
- memset(M, 0, 16 * sizeof(T));
- break;
- case EM4CONST_INVERSE_TRANSPOSED:
- if (!other.getInverse(*this))
- memset(M, 0, 16 * sizeof(T));
- else
- *this = getTransposed();
- break;
- }
- }
- //! Add another matrix.
- template <class T>
- inline CMatrix4<T> CMatrix4<T>::operator+(const CMatrix4<T> &other) const
- {
- CMatrix4<T> temp(EM4CONST_NOTHING);
- temp[0] = M[0] + other[0];
- temp[1] = M[1] + other[1];
- temp[2] = M[2] + other[2];
- temp[3] = M[3] + other[3];
- temp[4] = M[4] + other[4];
- temp[5] = M[5] + other[5];
- temp[6] = M[6] + other[6];
- temp[7] = M[7] + other[7];
- temp[8] = M[8] + other[8];
- temp[9] = M[9] + other[9];
- temp[10] = M[10] + other[10];
- temp[11] = M[11] + other[11];
- temp[12] = M[12] + other[12];
- temp[13] = M[13] + other[13];
- temp[14] = M[14] + other[14];
- temp[15] = M[15] + other[15];
- return temp;
- }
- //! Add another matrix.
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::operator+=(const CMatrix4<T> &other)
- {
- M[0] += other[0];
- M[1] += other[1];
- M[2] += other[2];
- M[3] += other[3];
- M[4] += other[4];
- M[5] += other[5];
- M[6] += other[6];
- M[7] += other[7];
- M[8] += other[8];
- M[9] += other[9];
- M[10] += other[10];
- M[11] += other[11];
- M[12] += other[12];
- M[13] += other[13];
- M[14] += other[14];
- M[15] += other[15];
- return *this;
- }
- //! Subtract another matrix.
- template <class T>
- inline CMatrix4<T> CMatrix4<T>::operator-(const CMatrix4<T> &other) const
- {
- CMatrix4<T> temp(EM4CONST_NOTHING);
- temp[0] = M[0] - other[0];
- temp[1] = M[1] - other[1];
- temp[2] = M[2] - other[2];
- temp[3] = M[3] - other[3];
- temp[4] = M[4] - other[4];
- temp[5] = M[5] - other[5];
- temp[6] = M[6] - other[6];
- temp[7] = M[7] - other[7];
- temp[8] = M[8] - other[8];
- temp[9] = M[9] - other[9];
- temp[10] = M[10] - other[10];
- temp[11] = M[11] - other[11];
- temp[12] = M[12] - other[12];
- temp[13] = M[13] - other[13];
- temp[14] = M[14] - other[14];
- temp[15] = M[15] - other[15];
- return temp;
- }
- //! Subtract another matrix.
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::operator-=(const CMatrix4<T> &other)
- {
- M[0] -= other[0];
- M[1] -= other[1];
- M[2] -= other[2];
- M[3] -= other[3];
- M[4] -= other[4];
- M[5] -= other[5];
- M[6] -= other[6];
- M[7] -= other[7];
- M[8] -= other[8];
- M[9] -= other[9];
- M[10] -= other[10];
- M[11] -= other[11];
- M[12] -= other[12];
- M[13] -= other[13];
- M[14] -= other[14];
- M[15] -= other[15];
- return *this;
- }
- //! Multiply by scalar.
- template <class T>
- inline CMatrix4<T> CMatrix4<T>::operator*(const T &scalar) const
- {
- CMatrix4<T> temp(EM4CONST_NOTHING);
- temp[0] = M[0] * scalar;
- temp[1] = M[1] * scalar;
- temp[2] = M[2] * scalar;
- temp[3] = M[3] * scalar;
- temp[4] = M[4] * scalar;
- temp[5] = M[5] * scalar;
- temp[6] = M[6] * scalar;
- temp[7] = M[7] * scalar;
- temp[8] = M[8] * scalar;
- temp[9] = M[9] * scalar;
- temp[10] = M[10] * scalar;
- temp[11] = M[11] * scalar;
- temp[12] = M[12] * scalar;
- temp[13] = M[13] * scalar;
- temp[14] = M[14] * scalar;
- temp[15] = M[15] * scalar;
- return temp;
- }
- //! Multiply by scalar.
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::operator*=(const T &scalar)
- {
- M[0] *= scalar;
- M[1] *= scalar;
- M[2] *= scalar;
- M[3] *= scalar;
- M[4] *= scalar;
- M[5] *= scalar;
- M[6] *= scalar;
- M[7] *= scalar;
- M[8] *= scalar;
- M[9] *= scalar;
- M[10] *= scalar;
- M[11] *= scalar;
- M[12] *= scalar;
- M[13] *= scalar;
- M[14] *= scalar;
- M[15] *= scalar;
- return *this;
- }
- //! Multiply by another matrix.
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::operator*=(const CMatrix4<T> &other)
- {
- #if defined(USE_MATRIX_TEST)
- // do checks on your own in order to avoid copy creation
- if (!other.isIdentity()) {
- if (this->isIdentity()) {
- return (*this = other);
- } else {
- CMatrix4<T> temp(*this);
- return setbyproduct_nocheck(temp, other);
- }
- }
- return *this;
- #else
- CMatrix4<T> temp(*this);
- return setbyproduct_nocheck(temp, other);
- #endif
- }
- //! multiply by another matrix
- // set this matrix to the product of two other matrices
- // goal is to reduce stack use and copy
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setbyproduct_nocheck(const CMatrix4<T> &other_a, const CMatrix4<T> &other_b)
- {
- const T *m1 = other_a.M;
- const T *m2 = other_b.M;
- M[0] = m1[0] * m2[0] + m1[4] * m2[1] + m1[8] * m2[2] + m1[12] * m2[3];
- M[1] = m1[1] * m2[0] + m1[5] * m2[1] + m1[9] * m2[2] + m1[13] * m2[3];
- M[2] = m1[2] * m2[0] + m1[6] * m2[1] + m1[10] * m2[2] + m1[14] * m2[3];
- M[3] = m1[3] * m2[0] + m1[7] * m2[1] + m1[11] * m2[2] + m1[15] * m2[3];
- M[4] = m1[0] * m2[4] + m1[4] * m2[5] + m1[8] * m2[6] + m1[12] * m2[7];
- M[5] = m1[1] * m2[4] + m1[5] * m2[5] + m1[9] * m2[6] + m1[13] * m2[7];
- M[6] = m1[2] * m2[4] + m1[6] * m2[5] + m1[10] * m2[6] + m1[14] * m2[7];
- M[7] = m1[3] * m2[4] + m1[7] * m2[5] + m1[11] * m2[6] + m1[15] * m2[7];
- M[8] = m1[0] * m2[8] + m1[4] * m2[9] + m1[8] * m2[10] + m1[12] * m2[11];
- M[9] = m1[1] * m2[8] + m1[5] * m2[9] + m1[9] * m2[10] + m1[13] * m2[11];
- M[10] = m1[2] * m2[8] + m1[6] * m2[9] + m1[10] * m2[10] + m1[14] * m2[11];
- M[11] = m1[3] * m2[8] + m1[7] * m2[9] + m1[11] * m2[10] + m1[15] * m2[11];
- M[12] = m1[0] * m2[12] + m1[4] * m2[13] + m1[8] * m2[14] + m1[12] * m2[15];
- M[13] = m1[1] * m2[12] + m1[5] * m2[13] + m1[9] * m2[14] + m1[13] * m2[15];
- M[14] = m1[2] * m2[12] + m1[6] * m2[13] + m1[10] * m2[14] + m1[14] * m2[15];
- M[15] = m1[3] * m2[12] + m1[7] * m2[13] + m1[11] * m2[14] + m1[15] * m2[15];
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = false;
- #endif
- return *this;
- }
- //! multiply by another matrix
- // set this matrix to the product of two other matrices
- // goal is to reduce stack use and copy
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setbyproduct(const CMatrix4<T> &other_a, const CMatrix4<T> &other_b)
- {
- #if defined(USE_MATRIX_TEST)
- if (other_a.isIdentity())
- return (*this = other_b);
- else if (other_b.isIdentity())
- return (*this = other_a);
- else
- return setbyproduct_nocheck(other_a, other_b);
- #else
- return setbyproduct_nocheck(other_a, other_b);
- #endif
- }
- //! multiply by another matrix
- template <class T>
- inline CMatrix4<T> CMatrix4<T>::operator*(const CMatrix4<T> &m2) const
- {
- #if defined(USE_MATRIX_TEST)
- // Testing purpose..
- if (this->isIdentity())
- return m2;
- if (m2.isIdentity())
- return *this;
- #endif
- CMatrix4<T> m3(EM4CONST_NOTHING);
- const T *m1 = M;
- m3[0] = m1[0] * m2[0] + m1[4] * m2[1] + m1[8] * m2[2] + m1[12] * m2[3];
- m3[1] = m1[1] * m2[0] + m1[5] * m2[1] + m1[9] * m2[2] + m1[13] * m2[3];
- m3[2] = m1[2] * m2[0] + m1[6] * m2[1] + m1[10] * m2[2] + m1[14] * m2[3];
- m3[3] = m1[3] * m2[0] + m1[7] * m2[1] + m1[11] * m2[2] + m1[15] * m2[3];
- m3[4] = m1[0] * m2[4] + m1[4] * m2[5] + m1[8] * m2[6] + m1[12] * m2[7];
- m3[5] = m1[1] * m2[4] + m1[5] * m2[5] + m1[9] * m2[6] + m1[13] * m2[7];
- m3[6] = m1[2] * m2[4] + m1[6] * m2[5] + m1[10] * m2[6] + m1[14] * m2[7];
- m3[7] = m1[3] * m2[4] + m1[7] * m2[5] + m1[11] * m2[6] + m1[15] * m2[7];
- m3[8] = m1[0] * m2[8] + m1[4] * m2[9] + m1[8] * m2[10] + m1[12] * m2[11];
- m3[9] = m1[1] * m2[8] + m1[5] * m2[9] + m1[9] * m2[10] + m1[13] * m2[11];
- m3[10] = m1[2] * m2[8] + m1[6] * m2[9] + m1[10] * m2[10] + m1[14] * m2[11];
- m3[11] = m1[3] * m2[8] + m1[7] * m2[9] + m1[11] * m2[10] + m1[15] * m2[11];
- m3[12] = m1[0] * m2[12] + m1[4] * m2[13] + m1[8] * m2[14] + m1[12] * m2[15];
- m3[13] = m1[1] * m2[12] + m1[5] * m2[13] + m1[9] * m2[14] + m1[13] * m2[15];
- m3[14] = m1[2] * m2[12] + m1[6] * m2[13] + m1[10] * m2[14] + m1[14] * m2[15];
- m3[15] = m1[3] * m2[12] + m1[7] * m2[13] + m1[11] * m2[14] + m1[15] * m2[15];
- return m3;
- }
- template <class T>
- inline vector3d<T> CMatrix4<T>::getTranslation() const
- {
- return vector3d<T>(M[12], M[13], M[14]);
- }
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setTranslation(const vector3d<T> &translation)
- {
- M[12] = translation.X;
- M[13] = translation.Y;
- M[14] = translation.Z;
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = false;
- #endif
- return *this;
- }
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setInverseTranslation(const vector3d<T> &translation)
- {
- M[12] = -translation.X;
- M[13] = -translation.Y;
- M[14] = -translation.Z;
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = false;
- #endif
- return *this;
- }
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setScale(const vector3d<T> &scale)
- {
- M[0] = scale.X;
- M[5] = scale.Y;
- M[10] = scale.Z;
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = false;
- #endif
- return *this;
- }
- //! Returns the absolute values of the scales of the matrix.
- /**
- Note: You only get back original values if the matrix only set the scale.
- Otherwise the result is a scale you can use to normalize the matrix axes,
- but it's usually no longer what you did set with setScale.
- */
- template <class T>
- inline vector3d<T> CMatrix4<T>::getScale() const
- {
- // See http://www.robertblum.com/articles/2005/02/14/decomposing-matrices
- // Deal with the 0 rotation case first
- // Prior to Irrlicht 1.6, we always returned this value.
- if (core::iszero(M[1]) && core::iszero(M[2]) &&
- core::iszero(M[4]) && core::iszero(M[6]) &&
- core::iszero(M[8]) && core::iszero(M[9]))
- return vector3d<T>(M[0], M[5], M[10]);
- // We have to do the full calculation.
- return vector3d<T>(sqrtf(M[0] * M[0] + M[1] * M[1] + M[2] * M[2]),
- sqrtf(M[4] * M[4] + M[5] * M[5] + M[6] * M[6]),
- sqrtf(M[8] * M[8] + M[9] * M[9] + M[10] * M[10]));
- }
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setRotationDegrees(const vector3d<T> &rotation)
- {
- return setRotationRadians(rotation * core::DEGTORAD);
- }
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setInverseRotationDegrees(const vector3d<T> &rotation)
- {
- return setInverseRotationRadians(rotation * core::DEGTORAD);
- }
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setRotationRadians(const vector3d<T> &rotation)
- {
- const f64 cPitch = cos(rotation.X);
- const f64 sPitch = sin(rotation.X);
- const f64 cYaw = cos(rotation.Y);
- const f64 sYaw = sin(rotation.Y);
- const f64 cRoll = cos(rotation.Z);
- const f64 sRoll = sin(rotation.Z);
- M[0] = (T)(cYaw * cRoll);
- M[1] = (T)(cYaw * sRoll);
- M[2] = (T)(-sYaw);
- const f64 sPitch_sYaw = sPitch * sYaw;
- const f64 cPitch_sYaw = cPitch * sYaw;
- M[4] = (T)(sPitch_sYaw * cRoll - cPitch * sRoll);
- M[5] = (T)(sPitch_sYaw * sRoll + cPitch * cRoll);
- M[6] = (T)(sPitch * cYaw);
- M[8] = (T)(cPitch_sYaw * cRoll + sPitch * sRoll);
- M[9] = (T)(cPitch_sYaw * sRoll - sPitch * cRoll);
- M[10] = (T)(cPitch * cYaw);
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = false;
- #endif
- return *this;
- }
- //! Returns a rotation which (mostly) works in combination with the given scale
- /**
- This code was originally written by by Chev (assuming no scaling back then,
- we can be blamed for all problems added by regarding scale)
- */
- template <class T>
- inline core::vector3d<T> CMatrix4<T>::getRotationDegrees(const vector3d<T> &scale_) const
- {
- const CMatrix4<T> &mat = *this;
- const core::vector3d<f64> scale(core::iszero(scale_.X) ? FLT_MAX : scale_.X, core::iszero(scale_.Y) ? FLT_MAX : scale_.Y, core::iszero(scale_.Z) ? FLT_MAX : scale_.Z);
- const core::vector3d<f64> invScale(core::reciprocal(scale.X), core::reciprocal(scale.Y), core::reciprocal(scale.Z));
- f64 Y = -asin(core::clamp(mat[2] * invScale.X, -1.0, 1.0));
- const f64 C = cos(Y);
- Y *= RADTODEG64;
- f64 rotx, roty, X, Z;
- if (!core::iszero((T)C)) {
- const f64 invC = core::reciprocal(C);
- rotx = mat[10] * invC * invScale.Z;
- roty = mat[6] * invC * invScale.Y;
- X = atan2(roty, rotx) * RADTODEG64;
- rotx = mat[0] * invC * invScale.X;
- roty = mat[1] * invC * invScale.X;
- Z = atan2(roty, rotx) * RADTODEG64;
- } else {
- X = 0.0;
- rotx = mat[5] * invScale.Y;
- roty = -mat[4] * invScale.Y;
- Z = atan2(roty, rotx) * RADTODEG64;
- }
- // fix values that get below zero
- if (X < 0.0)
- X += 360.0;
- if (Y < 0.0)
- Y += 360.0;
- if (Z < 0.0)
- Z += 360.0;
- return vector3d<T>((T)X, (T)Y, (T)Z);
- }
- //! Returns a rotation that is equivalent to that set by setRotationDegrees().
- template <class T>
- inline core::vector3d<T> CMatrix4<T>::getRotationDegrees() const
- {
- // Note: Using getScale() here make it look like it could do matrix decomposition.
- // It can't! It works (or should work) as long as rotation doesn't flip the handedness
- // aka scale swapping 1 or 3 axes. (I think we could catch that as well by comparing
- // crossproduct of first 2 axes to direction of third axis, but TODO)
- // And maybe it should also offer the solution for the simple calculation
- // without regarding scaling as Irrlicht did before 1.7
- core::vector3d<T> scale(getScale());
- // We assume the matrix uses rotations instead of negative scaling 2 axes.
- // Otherwise it fails even for some simple cases, like rotating around
- // 2 axes by 180° which getScale thinks is a negative scaling.
- if (scale.Y < 0 && scale.Z < 0) {
- scale.Y = -scale.Y;
- scale.Z = -scale.Z;
- } else if (scale.X < 0 && scale.Z < 0) {
- scale.X = -scale.X;
- scale.Z = -scale.Z;
- } else if (scale.X < 0 && scale.Y < 0) {
- scale.X = -scale.X;
- scale.Y = -scale.Y;
- }
- return getRotationDegrees(scale);
- }
- //! Sets matrix to rotation matrix of inverse angles given as parameters
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setInverseRotationRadians(const vector3d<T> &rotation)
- {
- f64 cPitch = cos(rotation.X);
- f64 sPitch = sin(rotation.X);
- f64 cYaw = cos(rotation.Y);
- f64 sYaw = sin(rotation.Y);
- f64 cRoll = cos(rotation.Z);
- f64 sRoll = sin(rotation.Z);
- M[0] = (T)(cYaw * cRoll);
- M[4] = (T)(cYaw * sRoll);
- M[8] = (T)(-sYaw);
- f64 sPitch_sYaw = sPitch * sYaw;
- f64 cPitch_sYaw = cPitch * sYaw;
- M[1] = (T)(sPitch_sYaw * cRoll - cPitch * sRoll);
- M[5] = (T)(sPitch_sYaw * sRoll + cPitch * cRoll);
- M[9] = (T)(sPitch * cYaw);
- M[2] = (T)(cPitch_sYaw * cRoll + sPitch * sRoll);
- M[6] = (T)(cPitch_sYaw * sRoll - sPitch * cRoll);
- M[10] = (T)(cPitch * cYaw);
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = false;
- #endif
- return *this;
- }
- //! Sets matrix to rotation matrix defined by axis and angle, assuming LH rotation
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setRotationAxisRadians(const T &angle, const vector3d<T> &axis)
- {
- const f64 c = cos(angle);
- const f64 s = sin(angle);
- const f64 t = 1.0 - c;
- const f64 tx = t * axis.X;
- const f64 ty = t * axis.Y;
- const f64 tz = t * axis.Z;
- const f64 sx = s * axis.X;
- const f64 sy = s * axis.Y;
- const f64 sz = s * axis.Z;
- M[0] = (T)(tx * axis.X + c);
- M[1] = (T)(tx * axis.Y + sz);
- M[2] = (T)(tx * axis.Z - sy);
- M[4] = (T)(ty * axis.X - sz);
- M[5] = (T)(ty * axis.Y + c);
- M[6] = (T)(ty * axis.Z + sx);
- M[8] = (T)(tz * axis.X + sy);
- M[9] = (T)(tz * axis.Y - sx);
- M[10] = (T)(tz * axis.Z + c);
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = false;
- #endif
- return *this;
- }
- /*!
- */
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::makeIdentity()
- {
- memset(M, 0, 16 * sizeof(T));
- M[0] = M[5] = M[10] = M[15] = (T)1;
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = true;
- #endif
- return *this;
- }
- /*
- check identity with epsilon
- solve floating range problems..
- */
- template <class T>
- inline bool CMatrix4<T>::isIdentity() const
- {
- #if defined(USE_MATRIX_TEST)
- if (definitelyIdentityMatrix)
- return true;
- #endif
- if (!core::equals(M[12], (T)0) || !core::equals(M[13], (T)0) || !core::equals(M[14], (T)0) || !core::equals(M[15], (T)1))
- return false;
- if (!core::equals(M[0], (T)1) || !core::equals(M[1], (T)0) || !core::equals(M[2], (T)0) || !core::equals(M[3], (T)0))
- return false;
- if (!core::equals(M[4], (T)0) || !core::equals(M[5], (T)1) || !core::equals(M[6], (T)0) || !core::equals(M[7], (T)0))
- return false;
- if (!core::equals(M[8], (T)0) || !core::equals(M[9], (T)0) || !core::equals(M[10], (T)1) || !core::equals(M[11], (T)0))
- return false;
- /*
- if (!core::equals( M[ 0], (T)1 ) ||
- !core::equals( M[ 5], (T)1 ) ||
- !core::equals( M[10], (T)1 ) ||
- !core::equals( M[15], (T)1 ))
- return false;
- for (s32 i=0; i<4; ++i)
- for (s32 j=0; j<4; ++j)
- if ((j != i) && (!iszero((*this)(i,j))))
- return false;
- */
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = true;
- #endif
- return true;
- }
- /* Check orthogonality of matrix. */
- template <class T>
- inline bool CMatrix4<T>::isOrthogonal() const
- {
- T dp = M[0] * M[4] + M[1] * M[5] + M[2] * M[6] + M[3] * M[7];
- if (!iszero(dp))
- return false;
- dp = M[0] * M[8] + M[1] * M[9] + M[2] * M[10] + M[3] * M[11];
- if (!iszero(dp))
- return false;
- dp = M[0] * M[12] + M[1] * M[13] + M[2] * M[14] + M[3] * M[15];
- if (!iszero(dp))
- return false;
- dp = M[4] * M[8] + M[5] * M[9] + M[6] * M[10] + M[7] * M[11];
- if (!iszero(dp))
- return false;
- dp = M[4] * M[12] + M[5] * M[13] + M[6] * M[14] + M[7] * M[15];
- if (!iszero(dp))
- return false;
- dp = M[8] * M[12] + M[9] * M[13] + M[10] * M[14] + M[11] * M[15];
- return (iszero(dp));
- }
- /*
- doesn't solve floating range problems..
- but takes care on +/- 0 on translation because we are changing it..
- reducing floating point branches
- but it needs the floats in memory..
- */
- template <class T>
- inline bool CMatrix4<T>::isIdentity_integer_base() const
- {
- #if defined(USE_MATRIX_TEST)
- if (definitelyIdentityMatrix)
- return true;
- #endif
- if (IR(M[0]) != F32_VALUE_1)
- return false;
- if (IR(M[1]) != 0)
- return false;
- if (IR(M[2]) != 0)
- return false;
- if (IR(M[3]) != 0)
- return false;
- if (IR(M[4]) != 0)
- return false;
- if (IR(M[5]) != F32_VALUE_1)
- return false;
- if (IR(M[6]) != 0)
- return false;
- if (IR(M[7]) != 0)
- return false;
- if (IR(M[8]) != 0)
- return false;
- if (IR(M[9]) != 0)
- return false;
- if (IR(M[10]) != F32_VALUE_1)
- return false;
- if (IR(M[11]) != 0)
- return false;
- if (IR(M[12]) != 0)
- return false;
- if (IR(M[13]) != 0)
- return false;
- if (IR(M[13]) != 0)
- return false;
- if (IR(M[15]) != F32_VALUE_1)
- return false;
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = true;
- #endif
- return true;
- }
- template <class T>
- inline vector3d<T> CMatrix4<T>::rotateAndScaleVect(const vector3d<T> &v) const
- {
- return {
- v.X * M[0] + v.Y * M[4] + v.Z * M[8],
- v.X * M[1] + v.Y * M[5] + v.Z * M[9],
- v.X * M[2] + v.Y * M[6] + v.Z * M[10]
- };
- }
- template <class T>
- inline vector3d<T> CMatrix4<T>::scaleThenInvRotVect(const vector3d<T> &v) const
- {
- return {
- v.X * M[0] + v.Y * M[1] + v.Z * M[2],
- v.X * M[4] + v.Y * M[5] + v.Z * M[6],
- v.X * M[8] + v.Y * M[9] + v.Z * M[10]
- };
- }
- template <class T>
- inline void CMatrix4<T>::transformVect(vector3df &vect) const
- {
- T vector[3];
- vector[0] = vect.X * M[0] + vect.Y * M[4] + vect.Z * M[8] + M[12];
- vector[1] = vect.X * M[1] + vect.Y * M[5] + vect.Z * M[9] + M[13];
- vector[2] = vect.X * M[2] + vect.Y * M[6] + vect.Z * M[10] + M[14];
- vect.X = static_cast<f32>(vector[0]);
- vect.Y = static_cast<f32>(vector[1]);
- vect.Z = static_cast<f32>(vector[2]);
- }
- template <class T>
- inline void CMatrix4<T>::transformVect(vector3df &out, const vector3df &in) const
- {
- out.X = in.X * M[0] + in.Y * M[4] + in.Z * M[8] + M[12];
- out.Y = in.X * M[1] + in.Y * M[5] + in.Z * M[9] + M[13];
- out.Z = in.X * M[2] + in.Y * M[6] + in.Z * M[10] + M[14];
- }
- template <class T>
- inline void CMatrix4<T>::transformVect(T *out, const core::vector3df &in) const
- {
- out[0] = in.X * M[0] + in.Y * M[4] + in.Z * M[8] + M[12];
- out[1] = in.X * M[1] + in.Y * M[5] + in.Z * M[9] + M[13];
- out[2] = in.X * M[2] + in.Y * M[6] + in.Z * M[10] + M[14];
- out[3] = in.X * M[3] + in.Y * M[7] + in.Z * M[11] + M[15];
- }
- template <class T>
- inline void CMatrix4<T>::transformVec3(T *out, const T *in) const
- {
- out[0] = in[0] * M[0] + in[1] * M[4] + in[2] * M[8] + M[12];
- out[1] = in[0] * M[1] + in[1] * M[5] + in[2] * M[9] + M[13];
- out[2] = in[0] * M[2] + in[1] * M[6] + in[2] * M[10] + M[14];
- }
- template <class T>
- inline void CMatrix4<T>::transformVec4(T *out, const T *in) const
- {
- out[0] = in[0] * M[0] + in[1] * M[4] + in[2] * M[8] + in[3] * M[12];
- out[1] = in[0] * M[1] + in[1] * M[5] + in[2] * M[9] + in[3] * M[13];
- out[2] = in[0] * M[2] + in[1] * M[6] + in[2] * M[10] + in[3] * M[14];
- out[3] = in[0] * M[3] + in[1] * M[7] + in[2] * M[11] + in[3] * M[15];
- }
- //! Transforms a plane by this matrix
- template <class T>
- inline void CMatrix4<T>::transformPlane(core::plane3d<f32> &plane) const
- {
- vector3df member;
- // Transform the plane member point, i.e. rotate, translate and scale it.
- transformVect(member, plane.getMemberPoint());
- // Transform the normal by the transposed inverse of the matrix
- CMatrix4<T> transposedInverse(*this, EM4CONST_INVERSE_TRANSPOSED);
- vector3df normal = transposedInverse.rotateAndScaleVect(plane.Normal);
- plane.setPlane(member, normal.normalize());
- }
- //! Transforms a plane by this matrix
- template <class T>
- inline void CMatrix4<T>::transformPlane(const core::plane3d<f32> &in, core::plane3d<f32> &out) const
- {
- out = in;
- transformPlane(out);
- }
- //! Transforms a axis aligned bounding box more accurately than transformBox()
- template <class T>
- inline void CMatrix4<T>::transformBoxEx(core::aabbox3d<f32> &box) const
- {
- #if defined(USE_MATRIX_TEST)
- if (isIdentity())
- return;
- #endif
- const f32 Amin[3] = {box.MinEdge.X, box.MinEdge.Y, box.MinEdge.Z};
- const f32 Amax[3] = {box.MaxEdge.X, box.MaxEdge.Y, box.MaxEdge.Z};
- f32 Bmin[3];
- f32 Bmax[3];
- Bmin[0] = Bmax[0] = M[12];
- Bmin[1] = Bmax[1] = M[13];
- Bmin[2] = Bmax[2] = M[14];
- const CMatrix4<T> &m = *this;
- for (u32 i = 0; i < 3; ++i) {
- for (u32 j = 0; j < 3; ++j) {
- const f32 a = m(j, i) * Amin[j];
- const f32 b = m(j, i) * Amax[j];
- if (a < b) {
- Bmin[i] += a;
- Bmax[i] += b;
- } else {
- Bmin[i] += b;
- Bmax[i] += a;
- }
- }
- }
- box.MinEdge.X = Bmin[0];
- box.MinEdge.Y = Bmin[1];
- box.MinEdge.Z = Bmin[2];
- box.MaxEdge.X = Bmax[0];
- box.MaxEdge.Y = Bmax[1];
- box.MaxEdge.Z = Bmax[2];
- }
- //! Multiplies this matrix by a 1x4 matrix
- template <class T>
- inline void CMatrix4<T>::multiplyWith1x4Matrix(T *matrix) const
- {
- /*
- 0 1 2 3
- 4 5 6 7
- 8 9 10 11
- 12 13 14 15
- */
- T mat[4];
- mat[0] = matrix[0];
- mat[1] = matrix[1];
- mat[2] = matrix[2];
- mat[3] = matrix[3];
- matrix[0] = M[0] * mat[0] + M[4] * mat[1] + M[8] * mat[2] + M[12] * mat[3];
- matrix[1] = M[1] * mat[0] + M[5] * mat[1] + M[9] * mat[2] + M[13] * mat[3];
- matrix[2] = M[2] * mat[0] + M[6] * mat[1] + M[10] * mat[2] + M[14] * mat[3];
- matrix[3] = M[3] * mat[0] + M[7] * mat[1] + M[11] * mat[2] + M[15] * mat[3];
- }
- template <class T>
- inline void CMatrix4<T>::inverseTranslateVect(vector3df &vect) const
- {
- vect.X = vect.X - M[12];
- vect.Y = vect.Y - M[13];
- vect.Z = vect.Z - M[14];
- }
- template <class T>
- inline void CMatrix4<T>::translateVect(vector3df &vect) const
- {
- vect.X = vect.X + M[12];
- vect.Y = vect.Y + M[13];
- vect.Z = vect.Z + M[14];
- }
- template <class T>
- inline bool CMatrix4<T>::getInverse(CMatrix4<T> &out) const
- {
- /// Calculates the inverse of this Matrix
- /// The inverse is calculated using Cramers rule.
- /// If no inverse exists then 'false' is returned.
- #if defined(USE_MATRIX_TEST)
- if (this->isIdentity()) {
- out = *this;
- return true;
- }
- #endif
- const CMatrix4<T> &m = *this;
- f32 d = (m[0] * m[5] - m[1] * m[4]) * (m[10] * m[15] - m[11] * m[14]) -
- (m[0] * m[6] - m[2] * m[4]) * (m[9] * m[15] - m[11] * m[13]) +
- (m[0] * m[7] - m[3] * m[4]) * (m[9] * m[14] - m[10] * m[13]) +
- (m[1] * m[6] - m[2] * m[5]) * (m[8] * m[15] - m[11] * m[12]) -
- (m[1] * m[7] - m[3] * m[5]) * (m[8] * m[14] - m[10] * m[12]) +
- (m[2] * m[7] - m[3] * m[6]) * (m[8] * m[13] - m[9] * m[12]);
- if (core::iszero(d, FLT_MIN))
- return false;
- d = core::reciprocal(d);
- out[0] = d * (m[5] * (m[10] * m[15] - m[11] * m[14]) +
- m[6] * (m[11] * m[13] - m[9] * m[15]) +
- m[7] * (m[9] * m[14] - m[10] * m[13]));
- out[1] = d * (m[9] * (m[2] * m[15] - m[3] * m[14]) +
- m[10] * (m[3] * m[13] - m[1] * m[15]) +
- m[11] * (m[1] * m[14] - m[2] * m[13]));
- out[2] = d * (m[13] * (m[2] * m[7] - m[3] * m[6]) +
- m[14] * (m[3] * m[5] - m[1] * m[7]) +
- m[15] * (m[1] * m[6] - m[2] * m[5]));
- out[3] = d * (m[1] * (m[7] * m[10] - m[6] * m[11]) +
- m[2] * (m[5] * m[11] - m[7] * m[9]) +
- m[3] * (m[6] * m[9] - m[5] * m[10]));
- out[4] = d * (m[6] * (m[8] * m[15] - m[11] * m[12]) +
- m[7] * (m[10] * m[12] - m[8] * m[14]) +
- m[4] * (m[11] * m[14] - m[10] * m[15]));
- out[5] = d * (m[10] * (m[0] * m[15] - m[3] * m[12]) +
- m[11] * (m[2] * m[12] - m[0] * m[14]) +
- m[8] * (m[3] * m[14] - m[2] * m[15]));
- out[6] = d * (m[14] * (m[0] * m[7] - m[3] * m[4]) +
- m[15] * (m[2] * m[4] - m[0] * m[6]) +
- m[12] * (m[3] * m[6] - m[2] * m[7]));
- out[7] = d * (m[2] * (m[7] * m[8] - m[4] * m[11]) +
- m[3] * (m[4] * m[10] - m[6] * m[8]) +
- m[0] * (m[6] * m[11] - m[7] * m[10]));
- out[8] = d * (m[7] * (m[8] * m[13] - m[9] * m[12]) +
- m[4] * (m[9] * m[15] - m[11] * m[13]) +
- m[5] * (m[11] * m[12] - m[8] * m[15]));
- out[9] = d * (m[11] * (m[0] * m[13] - m[1] * m[12]) +
- m[8] * (m[1] * m[15] - m[3] * m[13]) +
- m[9] * (m[3] * m[12] - m[0] * m[15]));
- out[10] = d * (m[15] * (m[0] * m[5] - m[1] * m[4]) +
- m[12] * (m[1] * m[7] - m[3] * m[5]) +
- m[13] * (m[3] * m[4] - m[0] * m[7]));
- out[11] = d * (m[3] * (m[5] * m[8] - m[4] * m[9]) +
- m[0] * (m[7] * m[9] - m[5] * m[11]) +
- m[1] * (m[4] * m[11] - m[7] * m[8]));
- out[12] = d * (m[4] * (m[10] * m[13] - m[9] * m[14]) +
- m[5] * (m[8] * m[14] - m[10] * m[12]) +
- m[6] * (m[9] * m[12] - m[8] * m[13]));
- out[13] = d * (m[8] * (m[2] * m[13] - m[1] * m[14]) +
- m[9] * (m[0] * m[14] - m[2] * m[12]) +
- m[10] * (m[1] * m[12] - m[0] * m[13]));
- out[14] = d * (m[12] * (m[2] * m[5] - m[1] * m[6]) +
- m[13] * (m[0] * m[6] - m[2] * m[4]) +
- m[14] * (m[1] * m[4] - m[0] * m[5]));
- out[15] = d * (m[0] * (m[5] * m[10] - m[6] * m[9]) +
- m[1] * (m[6] * m[8] - m[4] * m[10]) +
- m[2] * (m[4] * m[9] - m[5] * m[8]));
- #if defined(USE_MATRIX_TEST)
- out.definitelyIdentityMatrix = definitelyIdentityMatrix;
- #endif
- return true;
- }
- //! Inverts a primitive matrix which only contains a translation and a rotation
- //! \param out: where result matrix is written to.
- template <class T>
- inline bool CMatrix4<T>::getInversePrimitive(CMatrix4<T> &out) const
- {
- out.M[0] = M[0];
- out.M[1] = M[4];
- out.M[2] = M[8];
- out.M[3] = 0;
- out.M[4] = M[1];
- out.M[5] = M[5];
- out.M[6] = M[9];
- out.M[7] = 0;
- out.M[8] = M[2];
- out.M[9] = M[6];
- out.M[10] = M[10];
- out.M[11] = 0;
- out.M[12] = (T) - (M[12] * M[0] + M[13] * M[1] + M[14] * M[2]);
- out.M[13] = (T) - (M[12] * M[4] + M[13] * M[5] + M[14] * M[6]);
- out.M[14] = (T) - (M[12] * M[8] + M[13] * M[9] + M[14] * M[10]);
- out.M[15] = 1;
- #if defined(USE_MATRIX_TEST)
- out.definitelyIdentityMatrix = definitelyIdentityMatrix;
- #endif
- return true;
- }
- /*!
- */
- template <class T>
- inline bool CMatrix4<T>::makeInverse()
- {
- #if defined(USE_MATRIX_TEST)
- if (definitelyIdentityMatrix)
- return true;
- #endif
- CMatrix4<T> temp(EM4CONST_NOTHING);
- if (getInverse(temp)) {
- *this = temp;
- return true;
- }
- return false;
- }
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::operator=(const T &scalar)
- {
- for (s32 i = 0; i < 16; ++i)
- M[i] = scalar;
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = false;
- #endif
- return *this;
- }
- // Builds a right-handed perspective projection matrix based on a field of view
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::buildProjectionMatrixPerspectiveFovRH(
- f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 zFar, bool zClipFromZero)
- {
- const f64 h = reciprocal(tan(fieldOfViewRadians * 0.5));
- _IRR_DEBUG_BREAK_IF(aspectRatio == 0.f); // divide by zero
- const T w = static_cast<T>(h / aspectRatio);
- _IRR_DEBUG_BREAK_IF(zNear == zFar); // divide by zero
- M[0] = w;
- M[1] = 0;
- M[2] = 0;
- M[3] = 0;
- M[4] = 0;
- M[5] = (T)h;
- M[6] = 0;
- M[7] = 0;
- M[8] = 0;
- M[9] = 0;
- // M[10]
- M[11] = -1;
- M[12] = 0;
- M[13] = 0;
- // M[14]
- M[15] = 0;
- if (zClipFromZero) { // DirectX version
- M[10] = (T)(zFar / (zNear - zFar));
- M[14] = (T)(zNear * zFar / (zNear - zFar));
- } else // OpenGL version
- {
- M[10] = (T)((zFar + zNear) / (zNear - zFar));
- M[14] = (T)(2.0f * zNear * zFar / (zNear - zFar));
- }
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = false;
- #endif
- return *this;
- }
- // Builds a left-handed perspective projection matrix based on a field of view
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::buildProjectionMatrixPerspectiveFovLH(
- f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 zFar, bool zClipFromZero)
- {
- const f64 h = reciprocal(tan(fieldOfViewRadians * 0.5));
- _IRR_DEBUG_BREAK_IF(aspectRatio == 0.f); // divide by zero
- const T w = static_cast<T>(h / aspectRatio);
- _IRR_DEBUG_BREAK_IF(zNear == zFar); // divide by zero
- M[0] = w;
- M[1] = 0;
- M[2] = 0;
- M[3] = 0;
- M[4] = 0;
- M[5] = (T)h;
- M[6] = 0;
- M[7] = 0;
- M[8] = 0;
- M[9] = 0;
- // M[10]
- M[11] = 1;
- M[12] = 0;
- M[13] = 0;
- // M[14]
- M[15] = 0;
- if (zClipFromZero) { // DirectX version
- M[10] = (T)(zFar / (zFar - zNear));
- M[14] = (T)(-zNear * zFar / (zFar - zNear));
- } else // OpenGL version
- {
- M[10] = (T)((zFar + zNear) / (zFar - zNear));
- M[14] = (T)(2.0f * zNear * zFar / (zNear - zFar));
- }
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = false;
- #endif
- return *this;
- }
- // Builds a left-handed perspective projection matrix based on a field of view, with far plane culling at infinity
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::buildProjectionMatrixPerspectiveFovInfinityLH(
- f32 fieldOfViewRadians, f32 aspectRatio, f32 zNear, f32 epsilon)
- {
- const f64 h = reciprocal(tan(fieldOfViewRadians * 0.5));
- _IRR_DEBUG_BREAK_IF(aspectRatio == 0.f); // divide by zero
- const T w = static_cast<T>(h / aspectRatio);
- M[0] = w;
- M[1] = 0;
- M[2] = 0;
- M[3] = 0;
- M[4] = 0;
- M[5] = (T)h;
- M[6] = 0;
- M[7] = 0;
- M[8] = 0;
- M[9] = 0;
- M[10] = (T)(1.f - epsilon);
- M[11] = 1;
- M[12] = 0;
- M[13] = 0;
- M[14] = (T)(zNear * (epsilon - 1.f));
- M[15] = 0;
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = false;
- #endif
- return *this;
- }
- // Builds a left-handed orthogonal projection matrix.
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::buildProjectionMatrixOrthoLH(
- f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero)
- {
- _IRR_DEBUG_BREAK_IF(widthOfViewVolume == 0.f); // divide by zero
- _IRR_DEBUG_BREAK_IF(heightOfViewVolume == 0.f); // divide by zero
- _IRR_DEBUG_BREAK_IF(zNear == zFar); // divide by zero
- M[0] = (T)(2 / widthOfViewVolume);
- M[1] = 0;
- M[2] = 0;
- M[3] = 0;
- M[4] = 0;
- M[5] = (T)(2 / heightOfViewVolume);
- M[6] = 0;
- M[7] = 0;
- M[8] = 0;
- M[9] = 0;
- // M[10]
- M[11] = 0;
- M[12] = 0;
- M[13] = 0;
- // M[14]
- M[15] = 1;
- if (zClipFromZero) {
- M[10] = (T)(1 / (zFar - zNear));
- M[14] = (T)(zNear / (zNear - zFar));
- } else {
- M[10] = (T)(2 / (zFar - zNear));
- M[14] = (T) - (zFar + zNear) / (zFar - zNear);
- }
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = false;
- #endif
- return *this;
- }
- // Builds a right-handed orthogonal projection matrix.
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::buildProjectionMatrixOrthoRH(
- f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero)
- {
- _IRR_DEBUG_BREAK_IF(widthOfViewVolume == 0.f); // divide by zero
- _IRR_DEBUG_BREAK_IF(heightOfViewVolume == 0.f); // divide by zero
- _IRR_DEBUG_BREAK_IF(zNear == zFar); // divide by zero
- M[0] = (T)(2 / widthOfViewVolume);
- M[1] = 0;
- M[2] = 0;
- M[3] = 0;
- M[4] = 0;
- M[5] = (T)(2 / heightOfViewVolume);
- M[6] = 0;
- M[7] = 0;
- M[8] = 0;
- M[9] = 0;
- // M[10]
- M[11] = 0;
- M[12] = 0;
- M[13] = 0;
- // M[14]
- M[15] = 1;
- if (zClipFromZero) {
- M[10] = (T)(1 / (zNear - zFar));
- M[14] = (T)(zNear / (zNear - zFar));
- } else {
- M[10] = (T)(2 / (zNear - zFar));
- M[14] = (T) - (zFar + zNear) / (zFar - zNear);
- }
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = false;
- #endif
- return *this;
- }
- // Builds a right-handed perspective projection matrix.
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::buildProjectionMatrixPerspectiveRH(
- f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero)
- {
- _IRR_DEBUG_BREAK_IF(widthOfViewVolume == 0.f); // divide by zero
- _IRR_DEBUG_BREAK_IF(heightOfViewVolume == 0.f); // divide by zero
- _IRR_DEBUG_BREAK_IF(zNear == zFar); // divide by zero
- M[0] = (T)(2 * zNear / widthOfViewVolume);
- M[1] = 0;
- M[2] = 0;
- M[3] = 0;
- M[4] = 0;
- M[5] = (T)(2 * zNear / heightOfViewVolume);
- M[6] = 0;
- M[7] = 0;
- M[8] = 0;
- M[9] = 0;
- // M[10]
- M[11] = -1;
- M[12] = 0;
- M[13] = 0;
- // M[14]
- M[15] = 0;
- if (zClipFromZero) { // DirectX version
- M[10] = (T)(zFar / (zNear - zFar));
- M[14] = (T)(zNear * zFar / (zNear - zFar));
- } else // OpenGL version
- {
- M[10] = (T)((zFar + zNear) / (zNear - zFar));
- M[14] = (T)(2.0f * zNear * zFar / (zNear - zFar));
- }
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = false;
- #endif
- return *this;
- }
- // Builds a left-handed perspective projection matrix.
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::buildProjectionMatrixPerspectiveLH(
- f32 widthOfViewVolume, f32 heightOfViewVolume, f32 zNear, f32 zFar, bool zClipFromZero)
- {
- _IRR_DEBUG_BREAK_IF(widthOfViewVolume == 0.f); // divide by zero
- _IRR_DEBUG_BREAK_IF(heightOfViewVolume == 0.f); // divide by zero
- _IRR_DEBUG_BREAK_IF(zNear == zFar); // divide by zero
- M[0] = (T)(2 * zNear / widthOfViewVolume);
- M[1] = 0;
- M[2] = 0;
- M[3] = 0;
- M[4] = 0;
- M[5] = (T)(2 * zNear / heightOfViewVolume);
- M[6] = 0;
- M[7] = 0;
- M[8] = 0;
- M[9] = 0;
- // M[10]
- M[11] = 1;
- M[12] = 0;
- M[13] = 0;
- // M[14] = (T)(zNear*zFar/(zNear-zFar));
- M[15] = 0;
- if (zClipFromZero) { // DirectX version
- M[10] = (T)(zFar / (zFar - zNear));
- M[14] = (T)(zNear * zFar / (zNear - zFar));
- } else // OpenGL version
- {
- M[10] = (T)((zFar + zNear) / (zFar - zNear));
- M[14] = (T)(2.0f * zNear * zFar / (zNear - zFar));
- }
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = false;
- #endif
- return *this;
- }
- // Builds a matrix that flattens geometry into a plane.
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::buildShadowMatrix(const core::vector3df &light, core::plane3df plane, f32 point)
- {
- plane.Normal.normalize();
- const f32 d = plane.Normal.dotProduct(light);
- M[0] = (T)(-plane.Normal.X * light.X + d);
- M[1] = (T)(-plane.Normal.X * light.Y);
- M[2] = (T)(-plane.Normal.X * light.Z);
- M[3] = (T)(-plane.Normal.X * point);
- M[4] = (T)(-plane.Normal.Y * light.X);
- M[5] = (T)(-plane.Normal.Y * light.Y + d);
- M[6] = (T)(-plane.Normal.Y * light.Z);
- M[7] = (T)(-plane.Normal.Y * point);
- M[8] = (T)(-plane.Normal.Z * light.X);
- M[9] = (T)(-plane.Normal.Z * light.Y);
- M[10] = (T)(-plane.Normal.Z * light.Z + d);
- M[11] = (T)(-plane.Normal.Z * point);
- M[12] = (T)(-plane.D * light.X);
- M[13] = (T)(-plane.D * light.Y);
- M[14] = (T)(-plane.D * light.Z);
- M[15] = (T)(-plane.D * point + d);
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = false;
- #endif
- return *this;
- }
- // Builds a left-handed look-at matrix.
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::buildCameraLookAtMatrixLH(
- const vector3df &position,
- const vector3df &target,
- const vector3df &upVector)
- {
- vector3df zaxis = target - position;
- zaxis.normalize();
- vector3df xaxis = upVector.crossProduct(zaxis);
- xaxis.normalize();
- vector3df yaxis = zaxis.crossProduct(xaxis);
- M[0] = (T)xaxis.X;
- M[1] = (T)yaxis.X;
- M[2] = (T)zaxis.X;
- M[3] = 0;
- M[4] = (T)xaxis.Y;
- M[5] = (T)yaxis.Y;
- M[6] = (T)zaxis.Y;
- M[7] = 0;
- M[8] = (T)xaxis.Z;
- M[9] = (T)yaxis.Z;
- M[10] = (T)zaxis.Z;
- M[11] = 0;
- M[12] = (T)-xaxis.dotProduct(position);
- M[13] = (T)-yaxis.dotProduct(position);
- M[14] = (T)-zaxis.dotProduct(position);
- M[15] = 1;
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = false;
- #endif
- return *this;
- }
- // Builds a right-handed look-at matrix.
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::buildCameraLookAtMatrixRH(
- const vector3df &position,
- const vector3df &target,
- const vector3df &upVector)
- {
- vector3df zaxis = position - target;
- zaxis.normalize();
- vector3df xaxis = upVector.crossProduct(zaxis);
- xaxis.normalize();
- vector3df yaxis = zaxis.crossProduct(xaxis);
- M[0] = (T)xaxis.X;
- M[1] = (T)yaxis.X;
- M[2] = (T)zaxis.X;
- M[3] = 0;
- M[4] = (T)xaxis.Y;
- M[5] = (T)yaxis.Y;
- M[6] = (T)zaxis.Y;
- M[7] = 0;
- M[8] = (T)xaxis.Z;
- M[9] = (T)yaxis.Z;
- M[10] = (T)zaxis.Z;
- M[11] = 0;
- M[12] = (T)-xaxis.dotProduct(position);
- M[13] = (T)-yaxis.dotProduct(position);
- M[14] = (T)-zaxis.dotProduct(position);
- M[15] = 1;
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = false;
- #endif
- return *this;
- }
- // creates a new matrix as interpolated matrix from this and the passed one.
- template <class T>
- inline CMatrix4<T> CMatrix4<T>::interpolate(const core::CMatrix4<T> &b, f32 time) const
- {
- CMatrix4<T> mat(EM4CONST_NOTHING);
- for (u32 i = 0; i < 16; i += 4) {
- mat.M[i + 0] = (T)(M[i + 0] + (b.M[i + 0] - M[i + 0]) * time);
- mat.M[i + 1] = (T)(M[i + 1] + (b.M[i + 1] - M[i + 1]) * time);
- mat.M[i + 2] = (T)(M[i + 2] + (b.M[i + 2] - M[i + 2]) * time);
- mat.M[i + 3] = (T)(M[i + 3] + (b.M[i + 3] - M[i + 3]) * time);
- }
- return mat;
- }
- // returns transposed matrix
- template <class T>
- inline CMatrix4<T> CMatrix4<T>::getTransposed() const
- {
- CMatrix4<T> t(EM4CONST_NOTHING);
- getTransposed(t);
- return t;
- }
- // returns transposed matrix
- template <class T>
- inline void CMatrix4<T>::getTransposed(CMatrix4<T> &o) const
- {
- o[0] = M[0];
- o[1] = M[4];
- o[2] = M[8];
- o[3] = M[12];
- o[4] = M[1];
- o[5] = M[5];
- o[6] = M[9];
- o[7] = M[13];
- o[8] = M[2];
- o[9] = M[6];
- o[10] = M[10];
- o[11] = M[14];
- o[12] = M[3];
- o[13] = M[7];
- o[14] = M[11];
- o[15] = M[15];
- #if defined(USE_MATRIX_TEST)
- o.definitelyIdentityMatrix = definitelyIdentityMatrix;
- #endif
- }
- // used to scale <-1,-1><1,1> to viewport
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::buildNDCToDCMatrix(const core::rect<s32> &viewport, f32 zScale)
- {
- const f32 scaleX = (viewport.getWidth() - 0.75f) * 0.5f;
- const f32 scaleY = -(viewport.getHeight() - 0.75f) * 0.5f;
- const f32 dx = -0.5f + ((viewport.UpperLeftCorner.X + viewport.LowerRightCorner.X) * 0.5f);
- const f32 dy = -0.5f + ((viewport.UpperLeftCorner.Y + viewport.LowerRightCorner.Y) * 0.5f);
- makeIdentity();
- M[12] = (T)dx;
- M[13] = (T)dy;
- return setScale(core::vector3d<T>((T)scaleX, (T)scaleY, (T)zScale));
- }
- //! Builds a matrix that rotates from one vector to another
- /** \param from: vector to rotate from
- \param to: vector to rotate to
- http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToMatrix/index.htm
- */
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::buildRotateFromTo(const core::vector3df &from, const core::vector3df &to)
- {
- // unit vectors
- core::vector3df f(from);
- core::vector3df t(to);
- f.normalize();
- t.normalize();
- // axis multiplication by sin
- core::vector3df vs(t.crossProduct(f));
- // axis of rotation
- core::vector3df v(vs);
- v.normalize();
- // cosine angle
- T ca = f.dotProduct(t);
- core::vector3df vt(v * (1 - ca));
- M[0] = vt.X * v.X + ca;
- M[5] = vt.Y * v.Y + ca;
- M[10] = vt.Z * v.Z + ca;
- vt.X *= v.Y;
- vt.Z *= v.X;
- vt.Y *= v.Z;
- M[1] = vt.X - vs.Z;
- M[2] = vt.Z + vs.Y;
- M[3] = 0;
- M[4] = vt.X + vs.Z;
- M[6] = vt.Y - vs.X;
- M[7] = 0;
- M[8] = vt.Z - vs.Y;
- M[9] = vt.Y + vs.X;
- M[11] = 0;
- M[12] = 0;
- M[13] = 0;
- M[14] = 0;
- M[15] = 1;
- return *this;
- }
- //! Builds a matrix which rotates a source vector to a look vector over an arbitrary axis
- /** \param camPos: viewer position in world coord
- \param center: object position in world-coord, rotation pivot
- \param translation: object final translation from center
- \param axis: axis to rotate about
- \param from: source vector to rotate from
- */
- template <class T>
- inline void CMatrix4<T>::buildAxisAlignedBillboard(
- const core::vector3df &camPos,
- const core::vector3df ¢er,
- const core::vector3df &translation,
- const core::vector3df &axis,
- const core::vector3df &from)
- {
- // axis of rotation
- core::vector3df up = axis;
- up.normalize();
- const core::vector3df forward = (camPos - center).normalize();
- const core::vector3df right = up.crossProduct(forward).normalize();
- // correct look vector
- const core::vector3df look = right.crossProduct(up);
- // rotate from to
- // axis multiplication by sin
- const core::vector3df vs = look.crossProduct(from);
- // cosine angle
- const f32 ca = from.dotProduct(look);
- core::vector3df vt(up * (1.f - ca));
- M[0] = static_cast<T>(vt.X * up.X + ca);
- M[5] = static_cast<T>(vt.Y * up.Y + ca);
- M[10] = static_cast<T>(vt.Z * up.Z + ca);
- vt.X *= up.Y;
- vt.Z *= up.X;
- vt.Y *= up.Z;
- M[1] = static_cast<T>(vt.X - vs.Z);
- M[2] = static_cast<T>(vt.Z + vs.Y);
- M[3] = 0;
- M[4] = static_cast<T>(vt.X + vs.Z);
- M[6] = static_cast<T>(vt.Y - vs.X);
- M[7] = 0;
- M[8] = static_cast<T>(vt.Z - vs.Y);
- M[9] = static_cast<T>(vt.Y + vs.X);
- M[11] = 0;
- setRotationCenter(center, translation);
- }
- //! Builds a combined matrix which translate to a center before rotation and translate afterward
- template <class T>
- inline void CMatrix4<T>::setRotationCenter(const core::vector3df ¢er, const core::vector3df &translation)
- {
- M[12] = -M[0] * center.X - M[4] * center.Y - M[8] * center.Z + (center.X - translation.X);
- M[13] = -M[1] * center.X - M[5] * center.Y - M[9] * center.Z + (center.Y - translation.Y);
- M[14] = -M[2] * center.X - M[6] * center.Y - M[10] * center.Z + (center.Z - translation.Z);
- M[15] = (T)1.0;
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = false;
- #endif
- }
- /*!
- Generate texture coordinates as linear functions so that:
- u = Ux*x + Uy*y + Uz*z + Uw
- v = Vx*x + Vy*y + Vz*z + Vw
- The matrix M for this case is:
- Ux Vx 0 0
- Uy Vy 0 0
- Uz Vz 0 0
- Uw Vw 0 0
- */
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::buildTextureTransform(f32 rotateRad,
- const core::vector2df &rotatecenter,
- const core::vector2df &translate,
- const core::vector2df &scale)
- {
- const f32 c = cosf(rotateRad);
- const f32 s = sinf(rotateRad);
- M[0] = (T)(c * scale.X);
- M[1] = (T)(s * scale.Y);
- M[2] = 0;
- M[3] = 0;
- M[4] = (T)(-s * scale.X);
- M[5] = (T)(c * scale.Y);
- M[6] = 0;
- M[7] = 0;
- M[8] = (T)(c * scale.X * rotatecenter.X + -s * rotatecenter.Y + translate.X);
- M[9] = (T)(s * scale.Y * rotatecenter.X + c * rotatecenter.Y + translate.Y);
- M[10] = 1;
- M[11] = 0;
- M[12] = 0;
- M[13] = 0;
- M[14] = 0;
- M[15] = 1;
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = false;
- #endif
- return *this;
- }
- // rotate about z axis, center ( 0.5, 0.5 )
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setTextureRotationCenter(f32 rotateRad)
- {
- const f32 c = cosf(rotateRad);
- const f32 s = sinf(rotateRad);
- M[0] = (T)c;
- M[1] = (T)s;
- M[4] = (T)-s;
- M[5] = (T)c;
- M[8] = (T)(0.5f * (s - c) + 0.5f);
- M[9] = (T)(-0.5f * (s + c) + 0.5f);
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = definitelyIdentityMatrix && (rotateRad == 0.0f);
- #endif
- return *this;
- }
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setTextureTranslate(f32 x, f32 y)
- {
- M[8] = (T)x;
- M[9] = (T)y;
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = definitelyIdentityMatrix && (x == 0.0f) && (y == 0.0f);
- #endif
- return *this;
- }
- template <class T>
- inline void CMatrix4<T>::getTextureTranslate(f32 &x, f32 &y) const
- {
- x = (f32)M[8];
- y = (f32)M[9];
- }
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setTextureTranslateTransposed(f32 x, f32 y)
- {
- M[2] = (T)x;
- M[6] = (T)y;
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = definitelyIdentityMatrix && (x == 0.0f) && (y == 0.0f);
- #endif
- return *this;
- }
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setTextureScale(f32 sx, f32 sy)
- {
- M[0] = (T)sx;
- M[5] = (T)sy;
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = definitelyIdentityMatrix && (sx == 1.0f) && (sy == 1.0f);
- #endif
- return *this;
- }
- template <class T>
- inline void CMatrix4<T>::getTextureScale(f32 &sx, f32 &sy) const
- {
- sx = (f32)M[0];
- sy = (f32)M[5];
- }
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setTextureScaleCenter(f32 sx, f32 sy)
- {
- M[0] = (T)sx;
- M[5] = (T)sy;
- M[8] = (T)(0.5f - 0.5f * sx);
- M[9] = (T)(0.5f - 0.5f * sy);
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = definitelyIdentityMatrix && (sx == 1.0f) && (sy == 1.0f);
- #endif
- return *this;
- }
- // sets all matrix data members at once
- template <class T>
- inline CMatrix4<T> &CMatrix4<T>::setM(const T *data)
- {
- memcpy(M, data, 16 * sizeof(T));
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = false;
- #endif
- return *this;
- }
- // sets if the matrix is definitely identity matrix
- template <class T>
- inline void CMatrix4<T>::setDefinitelyIdentityMatrix(bool isDefinitelyIdentityMatrix)
- {
- #if defined(USE_MATRIX_TEST)
- definitelyIdentityMatrix = isDefinitelyIdentityMatrix;
- #else
- (void)isDefinitelyIdentityMatrix; // prevent compiler warning
- #endif
- }
- // gets if the matrix is definitely identity matrix
- template <class T>
- inline bool CMatrix4<T>::getDefinitelyIdentityMatrix() const
- {
- #if defined(USE_MATRIX_TEST)
- return definitelyIdentityMatrix;
- #else
- return false;
- #endif
- }
- //! Compare two matrices using the equal method
- template <class T>
- inline bool CMatrix4<T>::equals(const core::CMatrix4<T> &other, const T tolerance) const
- {
- #if defined(USE_MATRIX_TEST)
- if (definitelyIdentityMatrix && other.definitelyIdentityMatrix)
- return true;
- #endif
- for (s32 i = 0; i < 16; ++i)
- if (!core::equals(M[i], other.M[i], tolerance))
- return false;
- return true;
- }
- // Multiply by scalar.
- template <class T>
- inline CMatrix4<T> operator*(const T scalar, const CMatrix4<T> &mat)
- {
- return mat * scalar;
- }
- //! Typedef for f32 matrix
- typedef CMatrix4<f32> matrix4;
- //! global const identity matrix
- IRRLICHT_API extern const matrix4 IdentityMatrix;
- } // end namespace core
- } // end namespace irr
|