123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- """Functions for downloading and reading MNIST data."""
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import gzip
- import os
- import numpy
- from six.moves import urllib
- from six.moves import xrange # pylint: disable=redefined-builtin
- SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
- def maybe_download(filename, work_directory):
- """Download the data from Yann's website, unless it's already here."""
- if not os.path.exists(work_directory):
- os.mkdir(work_directory)
- filepath = os.path.join(work_directory, filename)
- if not os.path.exists(filepath):
- filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
- statinfo = os.stat(filepath)
- print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.')
- return filepath
- def _read32(bytestream):
- dt = numpy.dtype(numpy.uint32).newbyteorder('>')
- return numpy.frombuffer(bytestream.read(4), dtype=dt)
- def extract_images(filename):
- """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
- print('Extracting', filename)
- with gzip.open(filename) as bytestream:
- magic = _read32(bytestream)
- if magic != 2051:
- raise ValueError(
- 'Invalid magic number %d in MNIST image file: %s' %
- (magic, filename))
- num_images = _read32(bytestream)
- rows = _read32(bytestream)
- cols = _read32(bytestream)
- buf = bytestream.read(rows * cols * num_images)
- data = numpy.frombuffer(buf, dtype=numpy.uint8)
- data = data.reshape(num_images, rows, cols, 1)
- return data
- def dense_to_one_hot(labels_dense, num_classes=10):
- """Convert class labels from scalars to one-hot vectors."""
- num_labels = labels_dense.shape[0]
- index_offset = numpy.arange(num_labels) * num_classes
- labels_one_hot = numpy.zeros((num_labels, num_classes))
- labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
- return labels_one_hot
- def extract_labels(filename, one_hot=False):
- """Extract the labels into a 1D uint8 numpy array [index]."""
- print('Extracting', filename)
- with gzip.open(filename) as bytestream:
- magic = _read32(bytestream)
- if magic != 2049:
- raise ValueError(
- 'Invalid magic number %d in MNIST label file: %s' %
- (magic, filename))
- num_items = _read32(bytestream)
- buf = bytestream.read(num_items)
- labels = numpy.frombuffer(buf, dtype=numpy.uint8)
- if one_hot:
- return dense_to_one_hot(labels)
- return labels
- class DataSet(object):
- def __init__(self, images, labels, fake_data=False):
- if fake_data:
- self._num_examples = 10000
- else:
- assert images.shape[0] == labels.shape[0], (
- "images.shape: %s labels.shape: %s" % (images.shape,
- labels.shape))
- self._num_examples = images.shape[0]
- # Convert shape from [num examples, rows, columns, depth]
- # to [num examples, rows*columns] (assuming depth == 1)
- assert images.shape[3] == 1
- images = images.reshape(images.shape[0],
- images.shape[1] * images.shape[2])
- # Convert from [0, 255] -> [0.0, 1.0].
- images = images.astype(numpy.float32)
- images = numpy.multiply(images, 1.0 / 255.0)
- self._images = images
- self._labels = labels
- self._epochs_completed = 0
- self._index_in_epoch = 0
- @property
- def images(self):
- return self._images
- @property
- def labels(self):
- return self._labels
- @property
- def num_examples(self):
- return self._num_examples
- @property
- def epochs_completed(self):
- return self._epochs_completed
- def next_batch(self, batch_size, fake_data=False):
- """Return the next `batch_size` examples from this data set."""
- if fake_data:
- fake_image = [1.0 for _ in xrange(784)]
- fake_label = 0
- return [fake_image for _ in xrange(batch_size)], [
- fake_label for _ in xrange(batch_size)]
- start = self._index_in_epoch
- self._index_in_epoch += batch_size
- if self._index_in_epoch > self._num_examples:
- # Finished epoch
- self._epochs_completed += 1
- # Shuffle the data
- perm = numpy.arange(self._num_examples)
- numpy.random.shuffle(perm)
- self._images = self._images[perm]
- self._labels = self._labels[perm]
- # Start next epoch
- start = 0
- self._index_in_epoch = batch_size
- assert batch_size <= self._num_examples
- end = self._index_in_epoch
- return self._images[start:end], self._labels[start:end]
- def read_data_sets(train_dir, fake_data=False, one_hot=False):
- class DataSets(object):
- pass
- data_sets = DataSets()
- if fake_data:
- data_sets.train = DataSet([], [], fake_data=True)
- data_sets.validation = DataSet([], [], fake_data=True)
- data_sets.test = DataSet([], [], fake_data=True)
- return data_sets
- TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
- TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
- TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
- TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
- VALIDATION_SIZE = 5000
- local_file = maybe_download(TRAIN_IMAGES, train_dir)
- train_images = extract_images(local_file)
- local_file = maybe_download(TRAIN_LABELS, train_dir)
- train_labels = extract_labels(local_file, one_hot=one_hot)
- local_file = maybe_download(TEST_IMAGES, train_dir)
- test_images = extract_images(local_file)
- local_file = maybe_download(TEST_LABELS, train_dir)
- test_labels = extract_labels(local_file, one_hot=one_hot)
- validation_images = train_images[:VALIDATION_SIZE]
- validation_labels = train_labels[:VALIDATION_SIZE]
- train_images = train_images[VALIDATION_SIZE:]
- train_labels = train_labels[VALIDATION_SIZE:]
- data_sets.train = DataSet(train_images, train_labels)
- data_sets.validation = DataSet(validation_images, validation_labels)
- data_sets.test = DataSet(test_images, test_labels)
- return data_sets
|