vgic-mmio-v3.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893
  1. /*
  2. * VGICv3 MMIO handling functions
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. */
  13. #include <linux/irqchip/arm-gic-v3.h>
  14. #include <linux/kvm.h>
  15. #include <linux/kvm_host.h>
  16. #include <kvm/iodev.h>
  17. #include <kvm/arm_vgic.h>
  18. #include <asm/kvm_emulate.h>
  19. #include <asm/kvm_arm.h>
  20. #include <asm/kvm_mmu.h>
  21. #include "vgic.h"
  22. #include "vgic-mmio.h"
  23. /* extract @num bytes at @offset bytes offset in data */
  24. unsigned long extract_bytes(u64 data, unsigned int offset,
  25. unsigned int num)
  26. {
  27. return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
  28. }
  29. /* allows updates of any half of a 64-bit register (or the whole thing) */
  30. u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
  31. unsigned long val)
  32. {
  33. int lower = (offset & 4) * 8;
  34. int upper = lower + 8 * len - 1;
  35. reg &= ~GENMASK_ULL(upper, lower);
  36. val &= GENMASK_ULL(len * 8 - 1, 0);
  37. return reg | ((u64)val << lower);
  38. }
  39. bool vgic_has_its(struct kvm *kvm)
  40. {
  41. struct vgic_dist *dist = &kvm->arch.vgic;
  42. if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
  43. return false;
  44. return dist->has_its;
  45. }
  46. static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
  47. gpa_t addr, unsigned int len)
  48. {
  49. u32 value = 0;
  50. switch (addr & 0x0c) {
  51. case GICD_CTLR:
  52. if (vcpu->kvm->arch.vgic.enabled)
  53. value |= GICD_CTLR_ENABLE_SS_G1;
  54. value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
  55. break;
  56. case GICD_TYPER:
  57. value = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
  58. value = (value >> 5) - 1;
  59. if (vgic_has_its(vcpu->kvm)) {
  60. value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
  61. value |= GICD_TYPER_LPIS;
  62. } else {
  63. value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
  64. }
  65. break;
  66. case GICD_IIDR:
  67. value = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
  68. break;
  69. default:
  70. return 0;
  71. }
  72. return value;
  73. }
  74. static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
  75. gpa_t addr, unsigned int len,
  76. unsigned long val)
  77. {
  78. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  79. bool was_enabled = dist->enabled;
  80. switch (addr & 0x0c) {
  81. case GICD_CTLR:
  82. dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
  83. if (!was_enabled && dist->enabled)
  84. vgic_kick_vcpus(vcpu->kvm);
  85. break;
  86. case GICD_TYPER:
  87. case GICD_IIDR:
  88. return;
  89. }
  90. }
  91. static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
  92. gpa_t addr, unsigned int len)
  93. {
  94. int intid = VGIC_ADDR_TO_INTID(addr, 64);
  95. struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
  96. unsigned long ret = 0;
  97. if (!irq)
  98. return 0;
  99. /* The upper word is RAZ for us. */
  100. if (!(addr & 4))
  101. ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
  102. vgic_put_irq(vcpu->kvm, irq);
  103. return ret;
  104. }
  105. static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
  106. gpa_t addr, unsigned int len,
  107. unsigned long val)
  108. {
  109. int intid = VGIC_ADDR_TO_INTID(addr, 64);
  110. struct vgic_irq *irq;
  111. /* The upper word is WI for us since we don't implement Aff3. */
  112. if (addr & 4)
  113. return;
  114. irq = vgic_get_irq(vcpu->kvm, NULL, intid);
  115. if (!irq)
  116. return;
  117. spin_lock(&irq->irq_lock);
  118. /* We only care about and preserve Aff0, Aff1 and Aff2. */
  119. irq->mpidr = val & GENMASK(23, 0);
  120. irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
  121. spin_unlock(&irq->irq_lock);
  122. vgic_put_irq(vcpu->kvm, irq);
  123. }
  124. static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
  125. gpa_t addr, unsigned int len)
  126. {
  127. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  128. return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
  129. }
  130. static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
  131. gpa_t addr, unsigned int len,
  132. unsigned long val)
  133. {
  134. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  135. bool was_enabled = vgic_cpu->lpis_enabled;
  136. if (!vgic_has_its(vcpu->kvm))
  137. return;
  138. vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
  139. if (!was_enabled && vgic_cpu->lpis_enabled)
  140. vgic_enable_lpis(vcpu);
  141. }
  142. static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
  143. gpa_t addr, unsigned int len)
  144. {
  145. unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
  146. int target_vcpu_id = vcpu->vcpu_id;
  147. u64 value;
  148. value = (u64)(mpidr & GENMASK(23, 0)) << 32;
  149. value |= ((target_vcpu_id & 0xffff) << 8);
  150. if (target_vcpu_id == atomic_read(&vcpu->kvm->online_vcpus) - 1)
  151. value |= GICR_TYPER_LAST;
  152. if (vgic_has_its(vcpu->kvm))
  153. value |= GICR_TYPER_PLPIS;
  154. return extract_bytes(value, addr & 7, len);
  155. }
  156. static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
  157. gpa_t addr, unsigned int len)
  158. {
  159. return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
  160. }
  161. static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
  162. gpa_t addr, unsigned int len)
  163. {
  164. switch (addr & 0xffff) {
  165. case GICD_PIDR2:
  166. /* report a GICv3 compliant implementation */
  167. return 0x3b;
  168. }
  169. return 0;
  170. }
  171. static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
  172. gpa_t addr, unsigned int len)
  173. {
  174. u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
  175. u32 value = 0;
  176. int i;
  177. /*
  178. * pending state of interrupt is latched in pending_latch variable.
  179. * Userspace will save and restore pending state and line_level
  180. * separately.
  181. * Refer to Documentation/virtual/kvm/devices/arm-vgic-v3.txt
  182. * for handling of ISPENDR and ICPENDR.
  183. */
  184. for (i = 0; i < len * 8; i++) {
  185. struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
  186. if (irq->pending_latch)
  187. value |= (1U << i);
  188. vgic_put_irq(vcpu->kvm, irq);
  189. }
  190. return value;
  191. }
  192. static void vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
  193. gpa_t addr, unsigned int len,
  194. unsigned long val)
  195. {
  196. u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
  197. int i;
  198. for (i = 0; i < len * 8; i++) {
  199. struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
  200. spin_lock(&irq->irq_lock);
  201. if (test_bit(i, &val)) {
  202. /*
  203. * pending_latch is set irrespective of irq type
  204. * (level or edge) to avoid dependency that VM should
  205. * restore irq config before pending info.
  206. */
  207. irq->pending_latch = true;
  208. vgic_queue_irq_unlock(vcpu->kvm, irq);
  209. } else {
  210. irq->pending_latch = false;
  211. spin_unlock(&irq->irq_lock);
  212. }
  213. vgic_put_irq(vcpu->kvm, irq);
  214. }
  215. }
  216. /* We want to avoid outer shareable. */
  217. u64 vgic_sanitise_shareability(u64 field)
  218. {
  219. switch (field) {
  220. case GIC_BASER_OuterShareable:
  221. return GIC_BASER_InnerShareable;
  222. default:
  223. return field;
  224. }
  225. }
  226. /* Avoid any inner non-cacheable mapping. */
  227. u64 vgic_sanitise_inner_cacheability(u64 field)
  228. {
  229. switch (field) {
  230. case GIC_BASER_CACHE_nCnB:
  231. case GIC_BASER_CACHE_nC:
  232. return GIC_BASER_CACHE_RaWb;
  233. default:
  234. return field;
  235. }
  236. }
  237. /* Non-cacheable or same-as-inner are OK. */
  238. u64 vgic_sanitise_outer_cacheability(u64 field)
  239. {
  240. switch (field) {
  241. case GIC_BASER_CACHE_SameAsInner:
  242. case GIC_BASER_CACHE_nC:
  243. return field;
  244. default:
  245. return GIC_BASER_CACHE_nC;
  246. }
  247. }
  248. u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
  249. u64 (*sanitise_fn)(u64))
  250. {
  251. u64 field = (reg & field_mask) >> field_shift;
  252. field = sanitise_fn(field) << field_shift;
  253. return (reg & ~field_mask) | field;
  254. }
  255. #define PROPBASER_RES0_MASK \
  256. (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
  257. #define PENDBASER_RES0_MASK \
  258. (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) | \
  259. GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
  260. static u64 vgic_sanitise_pendbaser(u64 reg)
  261. {
  262. reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
  263. GICR_PENDBASER_SHAREABILITY_SHIFT,
  264. vgic_sanitise_shareability);
  265. reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
  266. GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
  267. vgic_sanitise_inner_cacheability);
  268. reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
  269. GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
  270. vgic_sanitise_outer_cacheability);
  271. reg &= ~PENDBASER_RES0_MASK;
  272. reg &= ~GENMASK_ULL(51, 48);
  273. return reg;
  274. }
  275. static u64 vgic_sanitise_propbaser(u64 reg)
  276. {
  277. reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
  278. GICR_PROPBASER_SHAREABILITY_SHIFT,
  279. vgic_sanitise_shareability);
  280. reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
  281. GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
  282. vgic_sanitise_inner_cacheability);
  283. reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
  284. GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
  285. vgic_sanitise_outer_cacheability);
  286. reg &= ~PROPBASER_RES0_MASK;
  287. reg &= ~GENMASK_ULL(51, 48);
  288. return reg;
  289. }
  290. static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
  291. gpa_t addr, unsigned int len)
  292. {
  293. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  294. return extract_bytes(dist->propbaser, addr & 7, len);
  295. }
  296. static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
  297. gpa_t addr, unsigned int len,
  298. unsigned long val)
  299. {
  300. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  301. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  302. u64 old_propbaser, propbaser;
  303. /* Storing a value with LPIs already enabled is undefined */
  304. if (vgic_cpu->lpis_enabled)
  305. return;
  306. do {
  307. old_propbaser = READ_ONCE(dist->propbaser);
  308. propbaser = old_propbaser;
  309. propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
  310. propbaser = vgic_sanitise_propbaser(propbaser);
  311. } while (cmpxchg64(&dist->propbaser, old_propbaser,
  312. propbaser) != old_propbaser);
  313. }
  314. static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
  315. gpa_t addr, unsigned int len)
  316. {
  317. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  318. return extract_bytes(vgic_cpu->pendbaser, addr & 7, len);
  319. }
  320. static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
  321. gpa_t addr, unsigned int len,
  322. unsigned long val)
  323. {
  324. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  325. u64 old_pendbaser, pendbaser;
  326. /* Storing a value with LPIs already enabled is undefined */
  327. if (vgic_cpu->lpis_enabled)
  328. return;
  329. do {
  330. old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
  331. pendbaser = old_pendbaser;
  332. pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
  333. pendbaser = vgic_sanitise_pendbaser(pendbaser);
  334. } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
  335. pendbaser) != old_pendbaser);
  336. }
  337. /*
  338. * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
  339. * redistributors, while SPIs are covered by registers in the distributor
  340. * block. Trying to set private IRQs in this block gets ignored.
  341. * We take some special care here to fix the calculation of the register
  342. * offset.
  343. */
  344. #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
  345. { \
  346. .reg_offset = off, \
  347. .bits_per_irq = bpi, \
  348. .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
  349. .access_flags = acc, \
  350. .read = vgic_mmio_read_raz, \
  351. .write = vgic_mmio_write_wi, \
  352. }, { \
  353. .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
  354. .bits_per_irq = bpi, \
  355. .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8, \
  356. .access_flags = acc, \
  357. .read = rd, \
  358. .write = wr, \
  359. .uaccess_read = ur, \
  360. .uaccess_write = uw, \
  361. }
  362. static const struct vgic_register_region vgic_v3_dist_registers[] = {
  363. REGISTER_DESC_WITH_LENGTH(GICD_CTLR,
  364. vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc, 16,
  365. VGIC_ACCESS_32bit),
  366. REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
  367. vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
  368. VGIC_ACCESS_32bit),
  369. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
  370. vgic_mmio_read_rao, vgic_mmio_write_wi, NULL, NULL, 1,
  371. VGIC_ACCESS_32bit),
  372. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
  373. vgic_mmio_read_enable, vgic_mmio_write_senable, NULL, NULL, 1,
  374. VGIC_ACCESS_32bit),
  375. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
  376. vgic_mmio_read_enable, vgic_mmio_write_cenable, NULL, NULL, 1,
  377. VGIC_ACCESS_32bit),
  378. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
  379. vgic_mmio_read_pending, vgic_mmio_write_spending,
  380. vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
  381. VGIC_ACCESS_32bit),
  382. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
  383. vgic_mmio_read_pending, vgic_mmio_write_cpending,
  384. vgic_mmio_read_raz, vgic_mmio_write_wi, 1,
  385. VGIC_ACCESS_32bit),
  386. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
  387. vgic_mmio_read_active, vgic_mmio_write_sactive,
  388. NULL, vgic_mmio_uaccess_write_sactive, 1,
  389. VGIC_ACCESS_32bit),
  390. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
  391. vgic_mmio_read_active, vgic_mmio_write_cactive,
  392. NULL, vgic_mmio_uaccess_write_cactive,
  393. 1, VGIC_ACCESS_32bit),
  394. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
  395. vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
  396. 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
  397. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
  398. vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
  399. VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
  400. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
  401. vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
  402. VGIC_ACCESS_32bit),
  403. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
  404. vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
  405. VGIC_ACCESS_32bit),
  406. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
  407. vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
  408. VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
  409. REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
  410. vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
  411. VGIC_ACCESS_32bit),
  412. };
  413. static const struct vgic_register_region vgic_v3_rdbase_registers[] = {
  414. REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
  415. vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
  416. VGIC_ACCESS_32bit),
  417. REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
  418. vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
  419. VGIC_ACCESS_32bit),
  420. REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
  421. vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
  422. VGIC_ACCESS_32bit),
  423. REGISTER_DESC_WITH_LENGTH(GICR_TYPER,
  424. vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8,
  425. VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
  426. REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
  427. vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
  428. VGIC_ACCESS_32bit),
  429. REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
  430. vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
  431. VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
  432. REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
  433. vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
  434. VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
  435. REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
  436. vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
  437. VGIC_ACCESS_32bit),
  438. };
  439. static const struct vgic_register_region vgic_v3_sgibase_registers[] = {
  440. REGISTER_DESC_WITH_LENGTH(GICR_IGROUPR0,
  441. vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
  442. VGIC_ACCESS_32bit),
  443. REGISTER_DESC_WITH_LENGTH(GICR_ISENABLER0,
  444. vgic_mmio_read_enable, vgic_mmio_write_senable, 4,
  445. VGIC_ACCESS_32bit),
  446. REGISTER_DESC_WITH_LENGTH(GICR_ICENABLER0,
  447. vgic_mmio_read_enable, vgic_mmio_write_cenable, 4,
  448. VGIC_ACCESS_32bit),
  449. REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISPENDR0,
  450. vgic_mmio_read_pending, vgic_mmio_write_spending,
  451. vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
  452. VGIC_ACCESS_32bit),
  453. REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICPENDR0,
  454. vgic_mmio_read_pending, vgic_mmio_write_cpending,
  455. vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
  456. VGIC_ACCESS_32bit),
  457. REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISACTIVER0,
  458. vgic_mmio_read_active, vgic_mmio_write_sactive,
  459. NULL, vgic_mmio_uaccess_write_sactive,
  460. 4, VGIC_ACCESS_32bit),
  461. REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICACTIVER0,
  462. vgic_mmio_read_active, vgic_mmio_write_cactive,
  463. NULL, vgic_mmio_uaccess_write_cactive,
  464. 4, VGIC_ACCESS_32bit),
  465. REGISTER_DESC_WITH_LENGTH(GICR_IPRIORITYR0,
  466. vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
  467. VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
  468. REGISTER_DESC_WITH_LENGTH(GICR_ICFGR0,
  469. vgic_mmio_read_config, vgic_mmio_write_config, 8,
  470. VGIC_ACCESS_32bit),
  471. REGISTER_DESC_WITH_LENGTH(GICR_IGRPMODR0,
  472. vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
  473. VGIC_ACCESS_32bit),
  474. REGISTER_DESC_WITH_LENGTH(GICR_NSACR,
  475. vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
  476. VGIC_ACCESS_32bit),
  477. };
  478. unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
  479. {
  480. dev->regions = vgic_v3_dist_registers;
  481. dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
  482. kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
  483. return SZ_64K;
  484. }
  485. /**
  486. * vgic_register_redist_iodev - register a single redist iodev
  487. * @vcpu: The VCPU to which the redistributor belongs
  488. *
  489. * Register a KVM iodev for this VCPU's redistributor using the address
  490. * provided.
  491. *
  492. * Return 0 on success, -ERRNO otherwise.
  493. */
  494. int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
  495. {
  496. struct kvm *kvm = vcpu->kvm;
  497. struct vgic_dist *vgic = &kvm->arch.vgic;
  498. struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
  499. struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
  500. gpa_t rd_base, sgi_base;
  501. int ret;
  502. /*
  503. * We may be creating VCPUs before having set the base address for the
  504. * redistributor region, in which case we will come back to this
  505. * function for all VCPUs when the base address is set. Just return
  506. * without doing any work for now.
  507. */
  508. if (IS_VGIC_ADDR_UNDEF(vgic->vgic_redist_base))
  509. return 0;
  510. if (!vgic_v3_check_base(kvm))
  511. return -EINVAL;
  512. rd_base = vgic->vgic_redist_base + vgic->vgic_redist_free_offset;
  513. sgi_base = rd_base + SZ_64K;
  514. kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
  515. rd_dev->base_addr = rd_base;
  516. rd_dev->iodev_type = IODEV_REDIST;
  517. rd_dev->regions = vgic_v3_rdbase_registers;
  518. rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
  519. rd_dev->redist_vcpu = vcpu;
  520. mutex_lock(&kvm->slots_lock);
  521. ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
  522. SZ_64K, &rd_dev->dev);
  523. mutex_unlock(&kvm->slots_lock);
  524. if (ret)
  525. return ret;
  526. kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops);
  527. sgi_dev->base_addr = sgi_base;
  528. sgi_dev->iodev_type = IODEV_REDIST;
  529. sgi_dev->regions = vgic_v3_sgibase_registers;
  530. sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers);
  531. sgi_dev->redist_vcpu = vcpu;
  532. mutex_lock(&kvm->slots_lock);
  533. ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base,
  534. SZ_64K, &sgi_dev->dev);
  535. if (ret) {
  536. kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
  537. &rd_dev->dev);
  538. goto out;
  539. }
  540. vgic->vgic_redist_free_offset += 2 * SZ_64K;
  541. out:
  542. mutex_unlock(&kvm->slots_lock);
  543. return ret;
  544. }
  545. static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
  546. {
  547. struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
  548. struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
  549. kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
  550. kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &sgi_dev->dev);
  551. }
  552. static int vgic_register_all_redist_iodevs(struct kvm *kvm)
  553. {
  554. struct kvm_vcpu *vcpu;
  555. int c, ret = 0;
  556. kvm_for_each_vcpu(c, vcpu, kvm) {
  557. ret = vgic_register_redist_iodev(vcpu);
  558. if (ret)
  559. break;
  560. }
  561. if (ret) {
  562. /* The current c failed, so we start with the previous one. */
  563. mutex_lock(&kvm->slots_lock);
  564. for (c--; c >= 0; c--) {
  565. vcpu = kvm_get_vcpu(kvm, c);
  566. vgic_unregister_redist_iodev(vcpu);
  567. }
  568. mutex_unlock(&kvm->slots_lock);
  569. }
  570. return ret;
  571. }
  572. int vgic_v3_set_redist_base(struct kvm *kvm, u64 addr)
  573. {
  574. struct vgic_dist *vgic = &kvm->arch.vgic;
  575. int ret;
  576. /* vgic_check_ioaddr makes sure we don't do this twice */
  577. ret = vgic_check_ioaddr(kvm, &vgic->vgic_redist_base, addr, SZ_64K);
  578. if (ret)
  579. return ret;
  580. vgic->vgic_redist_base = addr;
  581. if (!vgic_v3_check_base(kvm)) {
  582. vgic->vgic_redist_base = VGIC_ADDR_UNDEF;
  583. return -EINVAL;
  584. }
  585. /*
  586. * Register iodevs for each existing VCPU. Adding more VCPUs
  587. * afterwards will register the iodevs when needed.
  588. */
  589. ret = vgic_register_all_redist_iodevs(kvm);
  590. if (ret)
  591. return ret;
  592. return 0;
  593. }
  594. int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
  595. {
  596. const struct vgic_register_region *region;
  597. struct vgic_io_device iodev;
  598. struct vgic_reg_attr reg_attr;
  599. struct kvm_vcpu *vcpu;
  600. gpa_t addr;
  601. int ret;
  602. ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
  603. if (ret)
  604. return ret;
  605. vcpu = reg_attr.vcpu;
  606. addr = reg_attr.addr;
  607. switch (attr->group) {
  608. case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
  609. iodev.regions = vgic_v3_dist_registers;
  610. iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
  611. iodev.base_addr = 0;
  612. break;
  613. case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
  614. iodev.regions = vgic_v3_rdbase_registers;
  615. iodev.nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
  616. iodev.base_addr = 0;
  617. break;
  618. }
  619. case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
  620. u64 reg, id;
  621. id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
  622. return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, &reg);
  623. }
  624. default:
  625. return -ENXIO;
  626. }
  627. /* We only support aligned 32-bit accesses. */
  628. if (addr & 3)
  629. return -ENXIO;
  630. region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
  631. if (!region)
  632. return -ENXIO;
  633. return 0;
  634. }
  635. /*
  636. * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
  637. * generation register ICC_SGI1R_EL1) with a given VCPU.
  638. * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
  639. * return -1.
  640. */
  641. static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
  642. {
  643. unsigned long affinity;
  644. int level0;
  645. /*
  646. * Split the current VCPU's MPIDR into affinity level 0 and the
  647. * rest as this is what we have to compare against.
  648. */
  649. affinity = kvm_vcpu_get_mpidr_aff(vcpu);
  650. level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
  651. affinity &= ~MPIDR_LEVEL_MASK;
  652. /* bail out if the upper three levels don't match */
  653. if (sgi_aff != affinity)
  654. return -1;
  655. /* Is this VCPU's bit set in the mask ? */
  656. if (!(sgi_cpu_mask & BIT(level0)))
  657. return -1;
  658. return level0;
  659. }
  660. /*
  661. * The ICC_SGI* registers encode the affinity differently from the MPIDR,
  662. * so provide a wrapper to use the existing defines to isolate a certain
  663. * affinity level.
  664. */
  665. #define SGI_AFFINITY_LEVEL(reg, level) \
  666. ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
  667. >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
  668. /**
  669. * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
  670. * @vcpu: The VCPU requesting a SGI
  671. * @reg: The value written into the ICC_SGI1R_EL1 register by that VCPU
  672. *
  673. * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
  674. * This will trap in sys_regs.c and call this function.
  675. * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
  676. * target processors as well as a bitmask of 16 Aff0 CPUs.
  677. * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
  678. * check for matching ones. If this bit is set, we signal all, but not the
  679. * calling VCPU.
  680. */
  681. void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg)
  682. {
  683. struct kvm *kvm = vcpu->kvm;
  684. struct kvm_vcpu *c_vcpu;
  685. u16 target_cpus;
  686. u64 mpidr;
  687. int sgi, c;
  688. int vcpu_id = vcpu->vcpu_id;
  689. bool broadcast;
  690. sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
  691. broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
  692. target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
  693. mpidr = SGI_AFFINITY_LEVEL(reg, 3);
  694. mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
  695. mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
  696. /*
  697. * We iterate over all VCPUs to find the MPIDRs matching the request.
  698. * If we have handled one CPU, we clear its bit to detect early
  699. * if we are already finished. This avoids iterating through all
  700. * VCPUs when most of the times we just signal a single VCPU.
  701. */
  702. kvm_for_each_vcpu(c, c_vcpu, kvm) {
  703. struct vgic_irq *irq;
  704. /* Exit early if we have dealt with all requested CPUs */
  705. if (!broadcast && target_cpus == 0)
  706. break;
  707. /* Don't signal the calling VCPU */
  708. if (broadcast && c == vcpu_id)
  709. continue;
  710. if (!broadcast) {
  711. int level0;
  712. level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
  713. if (level0 == -1)
  714. continue;
  715. /* remove this matching VCPU from the mask */
  716. target_cpus &= ~BIT(level0);
  717. }
  718. irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
  719. spin_lock(&irq->irq_lock);
  720. irq->pending_latch = true;
  721. vgic_queue_irq_unlock(vcpu->kvm, irq);
  722. vgic_put_irq(vcpu->kvm, irq);
  723. }
  724. }
  725. int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
  726. int offset, u32 *val)
  727. {
  728. struct vgic_io_device dev = {
  729. .regions = vgic_v3_dist_registers,
  730. .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
  731. };
  732. return vgic_uaccess(vcpu, &dev, is_write, offset, val);
  733. }
  734. int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
  735. int offset, u32 *val)
  736. {
  737. struct vgic_io_device rd_dev = {
  738. .regions = vgic_v3_rdbase_registers,
  739. .nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers),
  740. };
  741. struct vgic_io_device sgi_dev = {
  742. .regions = vgic_v3_sgibase_registers,
  743. .nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers),
  744. };
  745. /* SGI_base is the next 64K frame after RD_base */
  746. if (offset >= SZ_64K)
  747. return vgic_uaccess(vcpu, &sgi_dev, is_write, offset - SZ_64K,
  748. val);
  749. else
  750. return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
  751. }
  752. int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
  753. u32 intid, u64 *val)
  754. {
  755. if (intid % 32)
  756. return -EINVAL;
  757. if (is_write)
  758. vgic_write_irq_line_level_info(vcpu, intid, *val);
  759. else
  760. *val = vgic_read_irq_line_level_info(vcpu, intid);
  761. return 0;
  762. }