rdma.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885
  1. /*
  2. * Copyright (c) 2007 Oracle. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. *
  32. */
  33. #include <linux/pagemap.h>
  34. #include <linux/slab.h>
  35. #include <linux/rbtree.h>
  36. #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */
  37. #include "rds.h"
  38. /*
  39. * XXX
  40. * - build with sparse
  41. * - should we detect duplicate keys on a socket? hmm.
  42. * - an rdma is an mlock, apply rlimit?
  43. */
  44. /*
  45. * get the number of pages by looking at the page indices that the start and
  46. * end addresses fall in.
  47. *
  48. * Returns 0 if the vec is invalid. It is invalid if the number of bytes
  49. * causes the address to wrap or overflows an unsigned int. This comes
  50. * from being stored in the 'length' member of 'struct scatterlist'.
  51. */
  52. static unsigned int rds_pages_in_vec(struct rds_iovec *vec)
  53. {
  54. if ((vec->addr + vec->bytes <= vec->addr) ||
  55. (vec->bytes > (u64)UINT_MAX))
  56. return 0;
  57. return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) -
  58. (vec->addr >> PAGE_SHIFT);
  59. }
  60. static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key,
  61. struct rds_mr *insert)
  62. {
  63. struct rb_node **p = &root->rb_node;
  64. struct rb_node *parent = NULL;
  65. struct rds_mr *mr;
  66. while (*p) {
  67. parent = *p;
  68. mr = rb_entry(parent, struct rds_mr, r_rb_node);
  69. if (key < mr->r_key)
  70. p = &(*p)->rb_left;
  71. else if (key > mr->r_key)
  72. p = &(*p)->rb_right;
  73. else
  74. return mr;
  75. }
  76. if (insert) {
  77. rb_link_node(&insert->r_rb_node, parent, p);
  78. rb_insert_color(&insert->r_rb_node, root);
  79. refcount_inc(&insert->r_refcount);
  80. }
  81. return NULL;
  82. }
  83. /*
  84. * Destroy the transport-specific part of a MR.
  85. */
  86. static void rds_destroy_mr(struct rds_mr *mr)
  87. {
  88. struct rds_sock *rs = mr->r_sock;
  89. void *trans_private = NULL;
  90. unsigned long flags;
  91. rdsdebug("RDS: destroy mr key is %x refcnt %u\n",
  92. mr->r_key, refcount_read(&mr->r_refcount));
  93. if (test_and_set_bit(RDS_MR_DEAD, &mr->r_state))
  94. return;
  95. spin_lock_irqsave(&rs->rs_rdma_lock, flags);
  96. if (!RB_EMPTY_NODE(&mr->r_rb_node))
  97. rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
  98. trans_private = mr->r_trans_private;
  99. mr->r_trans_private = NULL;
  100. spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
  101. if (trans_private)
  102. mr->r_trans->free_mr(trans_private, mr->r_invalidate);
  103. }
  104. void __rds_put_mr_final(struct rds_mr *mr)
  105. {
  106. rds_destroy_mr(mr);
  107. kfree(mr);
  108. }
  109. /*
  110. * By the time this is called we can't have any more ioctls called on
  111. * the socket so we don't need to worry about racing with others.
  112. */
  113. void rds_rdma_drop_keys(struct rds_sock *rs)
  114. {
  115. struct rds_mr *mr;
  116. struct rb_node *node;
  117. unsigned long flags;
  118. /* Release any MRs associated with this socket */
  119. spin_lock_irqsave(&rs->rs_rdma_lock, flags);
  120. while ((node = rb_first(&rs->rs_rdma_keys))) {
  121. mr = rb_entry(node, struct rds_mr, r_rb_node);
  122. if (mr->r_trans == rs->rs_transport)
  123. mr->r_invalidate = 0;
  124. rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
  125. RB_CLEAR_NODE(&mr->r_rb_node);
  126. spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
  127. rds_destroy_mr(mr);
  128. rds_mr_put(mr);
  129. spin_lock_irqsave(&rs->rs_rdma_lock, flags);
  130. }
  131. spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
  132. if (rs->rs_transport && rs->rs_transport->flush_mrs)
  133. rs->rs_transport->flush_mrs();
  134. }
  135. /*
  136. * Helper function to pin user pages.
  137. */
  138. static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages,
  139. struct page **pages, int write)
  140. {
  141. int ret;
  142. ret = get_user_pages_fast(user_addr, nr_pages, write, pages);
  143. if (ret >= 0 && ret < nr_pages) {
  144. while (ret--)
  145. put_page(pages[ret]);
  146. ret = -EFAULT;
  147. }
  148. return ret;
  149. }
  150. static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args,
  151. u64 *cookie_ret, struct rds_mr **mr_ret)
  152. {
  153. struct rds_mr *mr = NULL, *found;
  154. unsigned int nr_pages;
  155. struct page **pages = NULL;
  156. struct scatterlist *sg;
  157. void *trans_private;
  158. unsigned long flags;
  159. rds_rdma_cookie_t cookie;
  160. unsigned int nents;
  161. long i;
  162. int ret;
  163. if (rs->rs_bound_addr == 0 || !rs->rs_transport) {
  164. ret = -ENOTCONN; /* XXX not a great errno */
  165. goto out;
  166. }
  167. if (!rs->rs_transport->get_mr) {
  168. ret = -EOPNOTSUPP;
  169. goto out;
  170. }
  171. nr_pages = rds_pages_in_vec(&args->vec);
  172. if (nr_pages == 0) {
  173. ret = -EINVAL;
  174. goto out;
  175. }
  176. /* Restrict the size of mr irrespective of underlying transport
  177. * To account for unaligned mr regions, subtract one from nr_pages
  178. */
  179. if ((nr_pages - 1) > (RDS_MAX_MSG_SIZE >> PAGE_SHIFT)) {
  180. ret = -EMSGSIZE;
  181. goto out;
  182. }
  183. rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n",
  184. args->vec.addr, args->vec.bytes, nr_pages);
  185. /* XXX clamp nr_pages to limit the size of this alloc? */
  186. pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
  187. if (!pages) {
  188. ret = -ENOMEM;
  189. goto out;
  190. }
  191. mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL);
  192. if (!mr) {
  193. ret = -ENOMEM;
  194. goto out;
  195. }
  196. refcount_set(&mr->r_refcount, 1);
  197. RB_CLEAR_NODE(&mr->r_rb_node);
  198. mr->r_trans = rs->rs_transport;
  199. mr->r_sock = rs;
  200. if (args->flags & RDS_RDMA_USE_ONCE)
  201. mr->r_use_once = 1;
  202. if (args->flags & RDS_RDMA_INVALIDATE)
  203. mr->r_invalidate = 1;
  204. if (args->flags & RDS_RDMA_READWRITE)
  205. mr->r_write = 1;
  206. /*
  207. * Pin the pages that make up the user buffer and transfer the page
  208. * pointers to the mr's sg array. We check to see if we've mapped
  209. * the whole region after transferring the partial page references
  210. * to the sg array so that we can have one page ref cleanup path.
  211. *
  212. * For now we have no flag that tells us whether the mapping is
  213. * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to
  214. * the zero page.
  215. */
  216. ret = rds_pin_pages(args->vec.addr, nr_pages, pages, 1);
  217. if (ret < 0)
  218. goto out;
  219. nents = ret;
  220. sg = kcalloc(nents, sizeof(*sg), GFP_KERNEL);
  221. if (!sg) {
  222. ret = -ENOMEM;
  223. goto out;
  224. }
  225. WARN_ON(!nents);
  226. sg_init_table(sg, nents);
  227. /* Stick all pages into the scatterlist */
  228. for (i = 0 ; i < nents; i++)
  229. sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0);
  230. rdsdebug("RDS: trans_private nents is %u\n", nents);
  231. /* Obtain a transport specific MR. If this succeeds, the
  232. * s/g list is now owned by the MR.
  233. * Note that dma_map() implies that pending writes are
  234. * flushed to RAM, so no dma_sync is needed here. */
  235. trans_private = rs->rs_transport->get_mr(sg, nents, rs,
  236. &mr->r_key);
  237. if (IS_ERR(trans_private)) {
  238. for (i = 0 ; i < nents; i++)
  239. put_page(sg_page(&sg[i]));
  240. kfree(sg);
  241. ret = PTR_ERR(trans_private);
  242. goto out;
  243. }
  244. mr->r_trans_private = trans_private;
  245. rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n",
  246. mr->r_key, (void *)(unsigned long) args->cookie_addr);
  247. /* The user may pass us an unaligned address, but we can only
  248. * map page aligned regions. So we keep the offset, and build
  249. * a 64bit cookie containing <R_Key, offset> and pass that
  250. * around. */
  251. cookie = rds_rdma_make_cookie(mr->r_key, args->vec.addr & ~PAGE_MASK);
  252. if (cookie_ret)
  253. *cookie_ret = cookie;
  254. if (args->cookie_addr && put_user(cookie, (u64 __user *)(unsigned long) args->cookie_addr)) {
  255. ret = -EFAULT;
  256. goto out;
  257. }
  258. /* Inserting the new MR into the rbtree bumps its
  259. * reference count. */
  260. spin_lock_irqsave(&rs->rs_rdma_lock, flags);
  261. found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr);
  262. spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
  263. BUG_ON(found && found != mr);
  264. rdsdebug("RDS: get_mr key is %x\n", mr->r_key);
  265. if (mr_ret) {
  266. refcount_inc(&mr->r_refcount);
  267. *mr_ret = mr;
  268. }
  269. ret = 0;
  270. out:
  271. kfree(pages);
  272. if (mr)
  273. rds_mr_put(mr);
  274. return ret;
  275. }
  276. int rds_get_mr(struct rds_sock *rs, char __user *optval, int optlen)
  277. {
  278. struct rds_get_mr_args args;
  279. if (optlen != sizeof(struct rds_get_mr_args))
  280. return -EINVAL;
  281. if (copy_from_user(&args, (struct rds_get_mr_args __user *)optval,
  282. sizeof(struct rds_get_mr_args)))
  283. return -EFAULT;
  284. return __rds_rdma_map(rs, &args, NULL, NULL);
  285. }
  286. int rds_get_mr_for_dest(struct rds_sock *rs, char __user *optval, int optlen)
  287. {
  288. struct rds_get_mr_for_dest_args args;
  289. struct rds_get_mr_args new_args;
  290. if (optlen != sizeof(struct rds_get_mr_for_dest_args))
  291. return -EINVAL;
  292. if (copy_from_user(&args, (struct rds_get_mr_for_dest_args __user *)optval,
  293. sizeof(struct rds_get_mr_for_dest_args)))
  294. return -EFAULT;
  295. /*
  296. * Initially, just behave like get_mr().
  297. * TODO: Implement get_mr as wrapper around this
  298. * and deprecate it.
  299. */
  300. new_args.vec = args.vec;
  301. new_args.cookie_addr = args.cookie_addr;
  302. new_args.flags = args.flags;
  303. return __rds_rdma_map(rs, &new_args, NULL, NULL);
  304. }
  305. /*
  306. * Free the MR indicated by the given R_Key
  307. */
  308. int rds_free_mr(struct rds_sock *rs, char __user *optval, int optlen)
  309. {
  310. struct rds_free_mr_args args;
  311. struct rds_mr *mr;
  312. unsigned long flags;
  313. if (optlen != sizeof(struct rds_free_mr_args))
  314. return -EINVAL;
  315. if (copy_from_user(&args, (struct rds_free_mr_args __user *)optval,
  316. sizeof(struct rds_free_mr_args)))
  317. return -EFAULT;
  318. /* Special case - a null cookie means flush all unused MRs */
  319. if (args.cookie == 0) {
  320. if (!rs->rs_transport || !rs->rs_transport->flush_mrs)
  321. return -EINVAL;
  322. rs->rs_transport->flush_mrs();
  323. return 0;
  324. }
  325. /* Look up the MR given its R_key and remove it from the rbtree
  326. * so nobody else finds it.
  327. * This should also prevent races with rds_rdma_unuse.
  328. */
  329. spin_lock_irqsave(&rs->rs_rdma_lock, flags);
  330. mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL);
  331. if (mr) {
  332. rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
  333. RB_CLEAR_NODE(&mr->r_rb_node);
  334. if (args.flags & RDS_RDMA_INVALIDATE)
  335. mr->r_invalidate = 1;
  336. }
  337. spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
  338. if (!mr)
  339. return -EINVAL;
  340. /*
  341. * call rds_destroy_mr() ourselves so that we're sure it's done by the time
  342. * we return. If we let rds_mr_put() do it it might not happen until
  343. * someone else drops their ref.
  344. */
  345. rds_destroy_mr(mr);
  346. rds_mr_put(mr);
  347. return 0;
  348. }
  349. /*
  350. * This is called when we receive an extension header that
  351. * tells us this MR was used. It allows us to implement
  352. * use_once semantics
  353. */
  354. void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force)
  355. {
  356. struct rds_mr *mr;
  357. unsigned long flags;
  358. int zot_me = 0;
  359. spin_lock_irqsave(&rs->rs_rdma_lock, flags);
  360. mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
  361. if (!mr) {
  362. pr_debug("rds: trying to unuse MR with unknown r_key %u!\n",
  363. r_key);
  364. spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
  365. return;
  366. }
  367. if (mr->r_use_once || force) {
  368. rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys);
  369. RB_CLEAR_NODE(&mr->r_rb_node);
  370. zot_me = 1;
  371. }
  372. spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
  373. /* May have to issue a dma_sync on this memory region.
  374. * Note we could avoid this if the operation was a RDMA READ,
  375. * but at this point we can't tell. */
  376. if (mr->r_trans->sync_mr)
  377. mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE);
  378. /* If the MR was marked as invalidate, this will
  379. * trigger an async flush. */
  380. if (zot_me) {
  381. rds_destroy_mr(mr);
  382. rds_mr_put(mr);
  383. }
  384. }
  385. void rds_rdma_free_op(struct rm_rdma_op *ro)
  386. {
  387. unsigned int i;
  388. for (i = 0; i < ro->op_nents; i++) {
  389. struct page *page = sg_page(&ro->op_sg[i]);
  390. /* Mark page dirty if it was possibly modified, which
  391. * is the case for a RDMA_READ which copies from remote
  392. * to local memory */
  393. if (!ro->op_write) {
  394. WARN_ON(!page->mapping && irqs_disabled());
  395. set_page_dirty(page);
  396. }
  397. put_page(page);
  398. }
  399. kfree(ro->op_notifier);
  400. ro->op_notifier = NULL;
  401. ro->op_active = 0;
  402. }
  403. void rds_atomic_free_op(struct rm_atomic_op *ao)
  404. {
  405. struct page *page = sg_page(ao->op_sg);
  406. /* Mark page dirty if it was possibly modified, which
  407. * is the case for a RDMA_READ which copies from remote
  408. * to local memory */
  409. set_page_dirty(page);
  410. put_page(page);
  411. kfree(ao->op_notifier);
  412. ao->op_notifier = NULL;
  413. ao->op_active = 0;
  414. }
  415. /*
  416. * Count the number of pages needed to describe an incoming iovec array.
  417. */
  418. static int rds_rdma_pages(struct rds_iovec iov[], int nr_iovecs)
  419. {
  420. int tot_pages = 0;
  421. unsigned int nr_pages;
  422. unsigned int i;
  423. /* figure out the number of pages in the vector */
  424. for (i = 0; i < nr_iovecs; i++) {
  425. nr_pages = rds_pages_in_vec(&iov[i]);
  426. if (nr_pages == 0)
  427. return -EINVAL;
  428. tot_pages += nr_pages;
  429. /*
  430. * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
  431. * so tot_pages cannot overflow without first going negative.
  432. */
  433. if (tot_pages < 0)
  434. return -EINVAL;
  435. }
  436. return tot_pages;
  437. }
  438. int rds_rdma_extra_size(struct rds_rdma_args *args)
  439. {
  440. struct rds_iovec vec;
  441. struct rds_iovec __user *local_vec;
  442. int tot_pages = 0;
  443. unsigned int nr_pages;
  444. unsigned int i;
  445. local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr;
  446. if (args->nr_local == 0)
  447. return -EINVAL;
  448. /* figure out the number of pages in the vector */
  449. for (i = 0; i < args->nr_local; i++) {
  450. if (copy_from_user(&vec, &local_vec[i],
  451. sizeof(struct rds_iovec)))
  452. return -EFAULT;
  453. nr_pages = rds_pages_in_vec(&vec);
  454. if (nr_pages == 0)
  455. return -EINVAL;
  456. tot_pages += nr_pages;
  457. /*
  458. * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
  459. * so tot_pages cannot overflow without first going negative.
  460. */
  461. if (tot_pages < 0)
  462. return -EINVAL;
  463. }
  464. return tot_pages * sizeof(struct scatterlist);
  465. }
  466. /*
  467. * The application asks for a RDMA transfer.
  468. * Extract all arguments and set up the rdma_op
  469. */
  470. int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm,
  471. struct cmsghdr *cmsg)
  472. {
  473. struct rds_rdma_args *args;
  474. struct rm_rdma_op *op = &rm->rdma;
  475. int nr_pages;
  476. unsigned int nr_bytes;
  477. struct page **pages = NULL;
  478. struct rds_iovec iovstack[UIO_FASTIOV], *iovs = iovstack;
  479. int iov_size;
  480. unsigned int i, j;
  481. int ret = 0;
  482. if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args))
  483. || rm->rdma.op_active)
  484. return -EINVAL;
  485. args = CMSG_DATA(cmsg);
  486. if (rs->rs_bound_addr == 0) {
  487. ret = -ENOTCONN; /* XXX not a great errno */
  488. goto out_ret;
  489. }
  490. if (args->nr_local > UIO_MAXIOV) {
  491. ret = -EMSGSIZE;
  492. goto out_ret;
  493. }
  494. /* Check whether to allocate the iovec area */
  495. iov_size = args->nr_local * sizeof(struct rds_iovec);
  496. if (args->nr_local > UIO_FASTIOV) {
  497. iovs = sock_kmalloc(rds_rs_to_sk(rs), iov_size, GFP_KERNEL);
  498. if (!iovs) {
  499. ret = -ENOMEM;
  500. goto out_ret;
  501. }
  502. }
  503. if (copy_from_user(iovs, (struct rds_iovec __user *)(unsigned long) args->local_vec_addr, iov_size)) {
  504. ret = -EFAULT;
  505. goto out;
  506. }
  507. nr_pages = rds_rdma_pages(iovs, args->nr_local);
  508. if (nr_pages < 0) {
  509. ret = -EINVAL;
  510. goto out;
  511. }
  512. pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
  513. if (!pages) {
  514. ret = -ENOMEM;
  515. goto out;
  516. }
  517. op->op_write = !!(args->flags & RDS_RDMA_READWRITE);
  518. op->op_fence = !!(args->flags & RDS_RDMA_FENCE);
  519. op->op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
  520. op->op_silent = !!(args->flags & RDS_RDMA_SILENT);
  521. op->op_active = 1;
  522. op->op_recverr = rs->rs_recverr;
  523. WARN_ON(!nr_pages);
  524. op->op_sg = rds_message_alloc_sgs(rm, nr_pages);
  525. if (!op->op_sg) {
  526. ret = -ENOMEM;
  527. goto out;
  528. }
  529. if (op->op_notify || op->op_recverr) {
  530. /* We allocate an uninitialized notifier here, because
  531. * we don't want to do that in the completion handler. We
  532. * would have to use GFP_ATOMIC there, and don't want to deal
  533. * with failed allocations.
  534. */
  535. op->op_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL);
  536. if (!op->op_notifier) {
  537. ret = -ENOMEM;
  538. goto out;
  539. }
  540. op->op_notifier->n_user_token = args->user_token;
  541. op->op_notifier->n_status = RDS_RDMA_SUCCESS;
  542. /* Enable rmda notification on data operation for composite
  543. * rds messages and make sure notification is enabled only
  544. * for the data operation which follows it so that application
  545. * gets notified only after full message gets delivered.
  546. */
  547. if (rm->data.op_sg) {
  548. rm->rdma.op_notify = 0;
  549. rm->data.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
  550. }
  551. }
  552. /* The cookie contains the R_Key of the remote memory region, and
  553. * optionally an offset into it. This is how we implement RDMA into
  554. * unaligned memory.
  555. * When setting up the RDMA, we need to add that offset to the
  556. * destination address (which is really an offset into the MR)
  557. * FIXME: We may want to move this into ib_rdma.c
  558. */
  559. op->op_rkey = rds_rdma_cookie_key(args->cookie);
  560. op->op_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie);
  561. nr_bytes = 0;
  562. rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n",
  563. (unsigned long long)args->nr_local,
  564. (unsigned long long)args->remote_vec.addr,
  565. op->op_rkey);
  566. for (i = 0; i < args->nr_local; i++) {
  567. struct rds_iovec *iov = &iovs[i];
  568. /* don't need to check, rds_rdma_pages() verified nr will be +nonzero */
  569. unsigned int nr = rds_pages_in_vec(iov);
  570. rs->rs_user_addr = iov->addr;
  571. rs->rs_user_bytes = iov->bytes;
  572. /* If it's a WRITE operation, we want to pin the pages for reading.
  573. * If it's a READ operation, we need to pin the pages for writing.
  574. */
  575. ret = rds_pin_pages(iov->addr, nr, pages, !op->op_write);
  576. if (ret < 0)
  577. goto out;
  578. else
  579. ret = 0;
  580. rdsdebug("RDS: nr_bytes %u nr %u iov->bytes %llu iov->addr %llx\n",
  581. nr_bytes, nr, iov->bytes, iov->addr);
  582. nr_bytes += iov->bytes;
  583. for (j = 0; j < nr; j++) {
  584. unsigned int offset = iov->addr & ~PAGE_MASK;
  585. struct scatterlist *sg;
  586. sg = &op->op_sg[op->op_nents + j];
  587. sg_set_page(sg, pages[j],
  588. min_t(unsigned int, iov->bytes, PAGE_SIZE - offset),
  589. offset);
  590. rdsdebug("RDS: sg->offset %x sg->len %x iov->addr %llx iov->bytes %llu\n",
  591. sg->offset, sg->length, iov->addr, iov->bytes);
  592. iov->addr += sg->length;
  593. iov->bytes -= sg->length;
  594. }
  595. op->op_nents += nr;
  596. }
  597. if (nr_bytes > args->remote_vec.bytes) {
  598. rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n",
  599. nr_bytes,
  600. (unsigned int) args->remote_vec.bytes);
  601. ret = -EINVAL;
  602. goto out;
  603. }
  604. op->op_bytes = nr_bytes;
  605. out:
  606. if (iovs != iovstack)
  607. sock_kfree_s(rds_rs_to_sk(rs), iovs, iov_size);
  608. kfree(pages);
  609. out_ret:
  610. if (ret)
  611. rds_rdma_free_op(op);
  612. else
  613. rds_stats_inc(s_send_rdma);
  614. return ret;
  615. }
  616. /*
  617. * The application wants us to pass an RDMA destination (aka MR)
  618. * to the remote
  619. */
  620. int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm,
  621. struct cmsghdr *cmsg)
  622. {
  623. unsigned long flags;
  624. struct rds_mr *mr;
  625. u32 r_key;
  626. int err = 0;
  627. if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) ||
  628. rm->m_rdma_cookie != 0)
  629. return -EINVAL;
  630. memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie));
  631. /* We are reusing a previously mapped MR here. Most likely, the
  632. * application has written to the buffer, so we need to explicitly
  633. * flush those writes to RAM. Otherwise the HCA may not see them
  634. * when doing a DMA from that buffer.
  635. */
  636. r_key = rds_rdma_cookie_key(rm->m_rdma_cookie);
  637. spin_lock_irqsave(&rs->rs_rdma_lock, flags);
  638. mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL);
  639. if (!mr)
  640. err = -EINVAL; /* invalid r_key */
  641. else
  642. refcount_inc(&mr->r_refcount);
  643. spin_unlock_irqrestore(&rs->rs_rdma_lock, flags);
  644. if (mr) {
  645. mr->r_trans->sync_mr(mr->r_trans_private, DMA_TO_DEVICE);
  646. rm->rdma.op_rdma_mr = mr;
  647. }
  648. return err;
  649. }
  650. /*
  651. * The application passes us an address range it wants to enable RDMA
  652. * to/from. We map the area, and save the <R_Key,offset> pair
  653. * in rm->m_rdma_cookie. This causes it to be sent along to the peer
  654. * in an extension header.
  655. */
  656. int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm,
  657. struct cmsghdr *cmsg)
  658. {
  659. if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) ||
  660. rm->m_rdma_cookie != 0)
  661. return -EINVAL;
  662. return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie, &rm->rdma.op_rdma_mr);
  663. }
  664. /*
  665. * Fill in rds_message for an atomic request.
  666. */
  667. int rds_cmsg_atomic(struct rds_sock *rs, struct rds_message *rm,
  668. struct cmsghdr *cmsg)
  669. {
  670. struct page *page = NULL;
  671. struct rds_atomic_args *args;
  672. int ret = 0;
  673. if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_atomic_args))
  674. || rm->atomic.op_active)
  675. return -EINVAL;
  676. args = CMSG_DATA(cmsg);
  677. /* Nonmasked & masked cmsg ops converted to masked hw ops */
  678. switch (cmsg->cmsg_type) {
  679. case RDS_CMSG_ATOMIC_FADD:
  680. rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
  681. rm->atomic.op_m_fadd.add = args->fadd.add;
  682. rm->atomic.op_m_fadd.nocarry_mask = 0;
  683. break;
  684. case RDS_CMSG_MASKED_ATOMIC_FADD:
  685. rm->atomic.op_type = RDS_ATOMIC_TYPE_FADD;
  686. rm->atomic.op_m_fadd.add = args->m_fadd.add;
  687. rm->atomic.op_m_fadd.nocarry_mask = args->m_fadd.nocarry_mask;
  688. break;
  689. case RDS_CMSG_ATOMIC_CSWP:
  690. rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
  691. rm->atomic.op_m_cswp.compare = args->cswp.compare;
  692. rm->atomic.op_m_cswp.swap = args->cswp.swap;
  693. rm->atomic.op_m_cswp.compare_mask = ~0;
  694. rm->atomic.op_m_cswp.swap_mask = ~0;
  695. break;
  696. case RDS_CMSG_MASKED_ATOMIC_CSWP:
  697. rm->atomic.op_type = RDS_ATOMIC_TYPE_CSWP;
  698. rm->atomic.op_m_cswp.compare = args->m_cswp.compare;
  699. rm->atomic.op_m_cswp.swap = args->m_cswp.swap;
  700. rm->atomic.op_m_cswp.compare_mask = args->m_cswp.compare_mask;
  701. rm->atomic.op_m_cswp.swap_mask = args->m_cswp.swap_mask;
  702. break;
  703. default:
  704. BUG(); /* should never happen */
  705. }
  706. rm->atomic.op_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME);
  707. rm->atomic.op_silent = !!(args->flags & RDS_RDMA_SILENT);
  708. rm->atomic.op_active = 1;
  709. rm->atomic.op_recverr = rs->rs_recverr;
  710. rm->atomic.op_sg = rds_message_alloc_sgs(rm, 1);
  711. if (!rm->atomic.op_sg) {
  712. ret = -ENOMEM;
  713. goto err;
  714. }
  715. /* verify 8 byte-aligned */
  716. if (args->local_addr & 0x7) {
  717. ret = -EFAULT;
  718. goto err;
  719. }
  720. ret = rds_pin_pages(args->local_addr, 1, &page, 1);
  721. if (ret != 1)
  722. goto err;
  723. ret = 0;
  724. sg_set_page(rm->atomic.op_sg, page, 8, offset_in_page(args->local_addr));
  725. if (rm->atomic.op_notify || rm->atomic.op_recverr) {
  726. /* We allocate an uninitialized notifier here, because
  727. * we don't want to do that in the completion handler. We
  728. * would have to use GFP_ATOMIC there, and don't want to deal
  729. * with failed allocations.
  730. */
  731. rm->atomic.op_notifier = kmalloc(sizeof(*rm->atomic.op_notifier), GFP_KERNEL);
  732. if (!rm->atomic.op_notifier) {
  733. ret = -ENOMEM;
  734. goto err;
  735. }
  736. rm->atomic.op_notifier->n_user_token = args->user_token;
  737. rm->atomic.op_notifier->n_status = RDS_RDMA_SUCCESS;
  738. }
  739. rm->atomic.op_rkey = rds_rdma_cookie_key(args->cookie);
  740. rm->atomic.op_remote_addr = args->remote_addr + rds_rdma_cookie_offset(args->cookie);
  741. return ret;
  742. err:
  743. if (page)
  744. put_page(page);
  745. rm->atomic.op_active = 0;
  746. kfree(rm->atomic.op_notifier);
  747. return ret;
  748. }