urb.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012
  1. /*
  2. * Released under the GPLv2 only.
  3. * SPDX-License-Identifier: GPL-2.0
  4. */
  5. #include <linux/module.h>
  6. #include <linux/string.h>
  7. #include <linux/bitops.h>
  8. #include <linux/slab.h>
  9. #include <linux/log2.h>
  10. #include <linux/usb.h>
  11. #include <linux/wait.h>
  12. #include <linux/usb/hcd.h>
  13. #include <linux/scatterlist.h>
  14. #define to_urb(d) container_of(d, struct urb, kref)
  15. static void urb_destroy(struct kref *kref)
  16. {
  17. struct urb *urb = to_urb(kref);
  18. if (urb->transfer_flags & URB_FREE_BUFFER)
  19. kfree(urb->transfer_buffer);
  20. kfree(urb);
  21. }
  22. /**
  23. * usb_init_urb - initializes a urb so that it can be used by a USB driver
  24. * @urb: pointer to the urb to initialize
  25. *
  26. * Initializes a urb so that the USB subsystem can use it properly.
  27. *
  28. * If a urb is created with a call to usb_alloc_urb() it is not
  29. * necessary to call this function. Only use this if you allocate the
  30. * space for a struct urb on your own. If you call this function, be
  31. * careful when freeing the memory for your urb that it is no longer in
  32. * use by the USB core.
  33. *
  34. * Only use this function if you _really_ understand what you are doing.
  35. */
  36. void usb_init_urb(struct urb *urb)
  37. {
  38. if (urb) {
  39. memset(urb, 0, sizeof(*urb));
  40. kref_init(&urb->kref);
  41. INIT_LIST_HEAD(&urb->urb_list);
  42. INIT_LIST_HEAD(&urb->anchor_list);
  43. }
  44. }
  45. EXPORT_SYMBOL_GPL(usb_init_urb);
  46. /**
  47. * usb_alloc_urb - creates a new urb for a USB driver to use
  48. * @iso_packets: number of iso packets for this urb
  49. * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
  50. * valid options for this.
  51. *
  52. * Creates an urb for the USB driver to use, initializes a few internal
  53. * structures, increments the usage counter, and returns a pointer to it.
  54. *
  55. * If the driver want to use this urb for interrupt, control, or bulk
  56. * endpoints, pass '0' as the number of iso packets.
  57. *
  58. * The driver must call usb_free_urb() when it is finished with the urb.
  59. *
  60. * Return: A pointer to the new urb, or %NULL if no memory is available.
  61. */
  62. struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
  63. {
  64. struct urb *urb;
  65. urb = kmalloc(sizeof(struct urb) +
  66. iso_packets * sizeof(struct usb_iso_packet_descriptor),
  67. mem_flags);
  68. if (!urb)
  69. return NULL;
  70. usb_init_urb(urb);
  71. return urb;
  72. }
  73. EXPORT_SYMBOL_GPL(usb_alloc_urb);
  74. /**
  75. * usb_free_urb - frees the memory used by a urb when all users of it are finished
  76. * @urb: pointer to the urb to free, may be NULL
  77. *
  78. * Must be called when a user of a urb is finished with it. When the last user
  79. * of the urb calls this function, the memory of the urb is freed.
  80. *
  81. * Note: The transfer buffer associated with the urb is not freed unless the
  82. * URB_FREE_BUFFER transfer flag is set.
  83. */
  84. void usb_free_urb(struct urb *urb)
  85. {
  86. if (urb)
  87. kref_put(&urb->kref, urb_destroy);
  88. }
  89. EXPORT_SYMBOL_GPL(usb_free_urb);
  90. /**
  91. * usb_get_urb - increments the reference count of the urb
  92. * @urb: pointer to the urb to modify, may be NULL
  93. *
  94. * This must be called whenever a urb is transferred from a device driver to a
  95. * host controller driver. This allows proper reference counting to happen
  96. * for urbs.
  97. *
  98. * Return: A pointer to the urb with the incremented reference counter.
  99. */
  100. struct urb *usb_get_urb(struct urb *urb)
  101. {
  102. if (urb)
  103. kref_get(&urb->kref);
  104. return urb;
  105. }
  106. EXPORT_SYMBOL_GPL(usb_get_urb);
  107. /**
  108. * usb_anchor_urb - anchors an URB while it is processed
  109. * @urb: pointer to the urb to anchor
  110. * @anchor: pointer to the anchor
  111. *
  112. * This can be called to have access to URBs which are to be executed
  113. * without bothering to track them
  114. */
  115. void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
  116. {
  117. unsigned long flags;
  118. spin_lock_irqsave(&anchor->lock, flags);
  119. usb_get_urb(urb);
  120. list_add_tail(&urb->anchor_list, &anchor->urb_list);
  121. urb->anchor = anchor;
  122. if (unlikely(anchor->poisoned))
  123. atomic_inc(&urb->reject);
  124. spin_unlock_irqrestore(&anchor->lock, flags);
  125. }
  126. EXPORT_SYMBOL_GPL(usb_anchor_urb);
  127. static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
  128. {
  129. return atomic_read(&anchor->suspend_wakeups) == 0 &&
  130. list_empty(&anchor->urb_list);
  131. }
  132. /* Callers must hold anchor->lock */
  133. static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
  134. {
  135. urb->anchor = NULL;
  136. list_del(&urb->anchor_list);
  137. usb_put_urb(urb);
  138. if (usb_anchor_check_wakeup(anchor))
  139. wake_up(&anchor->wait);
  140. }
  141. /**
  142. * usb_unanchor_urb - unanchors an URB
  143. * @urb: pointer to the urb to anchor
  144. *
  145. * Call this to stop the system keeping track of this URB
  146. */
  147. void usb_unanchor_urb(struct urb *urb)
  148. {
  149. unsigned long flags;
  150. struct usb_anchor *anchor;
  151. if (!urb)
  152. return;
  153. anchor = urb->anchor;
  154. if (!anchor)
  155. return;
  156. spin_lock_irqsave(&anchor->lock, flags);
  157. /*
  158. * At this point, we could be competing with another thread which
  159. * has the same intention. To protect the urb from being unanchored
  160. * twice, only the winner of the race gets the job.
  161. */
  162. if (likely(anchor == urb->anchor))
  163. __usb_unanchor_urb(urb, anchor);
  164. spin_unlock_irqrestore(&anchor->lock, flags);
  165. }
  166. EXPORT_SYMBOL_GPL(usb_unanchor_urb);
  167. /*-------------------------------------------------------------------*/
  168. static const int pipetypes[4] = {
  169. PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
  170. };
  171. /**
  172. * usb_urb_ep_type_check - sanity check of endpoint in the given urb
  173. * @urb: urb to be checked
  174. *
  175. * This performs a light-weight sanity check for the endpoint in the
  176. * given urb. It returns 0 if the urb contains a valid endpoint, otherwise
  177. * a negative error code.
  178. */
  179. int usb_urb_ep_type_check(const struct urb *urb)
  180. {
  181. const struct usb_host_endpoint *ep;
  182. ep = usb_pipe_endpoint(urb->dev, urb->pipe);
  183. if (!ep)
  184. return -EINVAL;
  185. if (usb_pipetype(urb->pipe) != pipetypes[usb_endpoint_type(&ep->desc)])
  186. return -EINVAL;
  187. return 0;
  188. }
  189. EXPORT_SYMBOL_GPL(usb_urb_ep_type_check);
  190. /**
  191. * usb_submit_urb - issue an asynchronous transfer request for an endpoint
  192. * @urb: pointer to the urb describing the request
  193. * @mem_flags: the type of memory to allocate, see kmalloc() for a list
  194. * of valid options for this.
  195. *
  196. * This submits a transfer request, and transfers control of the URB
  197. * describing that request to the USB subsystem. Request completion will
  198. * be indicated later, asynchronously, by calling the completion handler.
  199. * The three types of completion are success, error, and unlink
  200. * (a software-induced fault, also called "request cancellation").
  201. *
  202. * URBs may be submitted in interrupt context.
  203. *
  204. * The caller must have correctly initialized the URB before submitting
  205. * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
  206. * available to ensure that most fields are correctly initialized, for
  207. * the particular kind of transfer, although they will not initialize
  208. * any transfer flags.
  209. *
  210. * If the submission is successful, the complete() callback from the URB
  211. * will be called exactly once, when the USB core and Host Controller Driver
  212. * (HCD) are finished with the URB. When the completion function is called,
  213. * control of the URB is returned to the device driver which issued the
  214. * request. The completion handler may then immediately free or reuse that
  215. * URB.
  216. *
  217. * With few exceptions, USB device drivers should never access URB fields
  218. * provided by usbcore or the HCD until its complete() is called.
  219. * The exceptions relate to periodic transfer scheduling. For both
  220. * interrupt and isochronous urbs, as part of successful URB submission
  221. * urb->interval is modified to reflect the actual transfer period used
  222. * (normally some power of two units). And for isochronous urbs,
  223. * urb->start_frame is modified to reflect when the URB's transfers were
  224. * scheduled to start.
  225. *
  226. * Not all isochronous transfer scheduling policies will work, but most
  227. * host controller drivers should easily handle ISO queues going from now
  228. * until 10-200 msec into the future. Drivers should try to keep at
  229. * least one or two msec of data in the queue; many controllers require
  230. * that new transfers start at least 1 msec in the future when they are
  231. * added. If the driver is unable to keep up and the queue empties out,
  232. * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
  233. * If the flag is set, or if the queue is idle, then the URB is always
  234. * assigned to the first available (and not yet expired) slot in the
  235. * endpoint's schedule. If the flag is not set and the queue is active
  236. * then the URB is always assigned to the next slot in the schedule
  237. * following the end of the endpoint's previous URB, even if that slot is
  238. * in the past. When a packet is assigned in this way to a slot that has
  239. * already expired, the packet is not transmitted and the corresponding
  240. * usb_iso_packet_descriptor's status field will return -EXDEV. If this
  241. * would happen to all the packets in the URB, submission fails with a
  242. * -EXDEV error code.
  243. *
  244. * For control endpoints, the synchronous usb_control_msg() call is
  245. * often used (in non-interrupt context) instead of this call.
  246. * That is often used through convenience wrappers, for the requests
  247. * that are standardized in the USB 2.0 specification. For bulk
  248. * endpoints, a synchronous usb_bulk_msg() call is available.
  249. *
  250. * Return:
  251. * 0 on successful submissions. A negative error number otherwise.
  252. *
  253. * Request Queuing:
  254. *
  255. * URBs may be submitted to endpoints before previous ones complete, to
  256. * minimize the impact of interrupt latencies and system overhead on data
  257. * throughput. With that queuing policy, an endpoint's queue would never
  258. * be empty. This is required for continuous isochronous data streams,
  259. * and may also be required for some kinds of interrupt transfers. Such
  260. * queuing also maximizes bandwidth utilization by letting USB controllers
  261. * start work on later requests before driver software has finished the
  262. * completion processing for earlier (successful) requests.
  263. *
  264. * As of Linux 2.6, all USB endpoint transfer queues support depths greater
  265. * than one. This was previously a HCD-specific behavior, except for ISO
  266. * transfers. Non-isochronous endpoint queues are inactive during cleanup
  267. * after faults (transfer errors or cancellation).
  268. *
  269. * Reserved Bandwidth Transfers:
  270. *
  271. * Periodic transfers (interrupt or isochronous) are performed repeatedly,
  272. * using the interval specified in the urb. Submitting the first urb to
  273. * the endpoint reserves the bandwidth necessary to make those transfers.
  274. * If the USB subsystem can't allocate sufficient bandwidth to perform
  275. * the periodic request, submitting such a periodic request should fail.
  276. *
  277. * For devices under xHCI, the bandwidth is reserved at configuration time, or
  278. * when the alt setting is selected. If there is not enough bus bandwidth, the
  279. * configuration/alt setting request will fail. Therefore, submissions to
  280. * periodic endpoints on devices under xHCI should never fail due to bandwidth
  281. * constraints.
  282. *
  283. * Device drivers must explicitly request that repetition, by ensuring that
  284. * some URB is always on the endpoint's queue (except possibly for short
  285. * periods during completion callbacks). When there is no longer an urb
  286. * queued, the endpoint's bandwidth reservation is canceled. This means
  287. * drivers can use their completion handlers to ensure they keep bandwidth
  288. * they need, by reinitializing and resubmitting the just-completed urb
  289. * until the driver longer needs that periodic bandwidth.
  290. *
  291. * Memory Flags:
  292. *
  293. * The general rules for how to decide which mem_flags to use
  294. * are the same as for kmalloc. There are four
  295. * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
  296. * GFP_ATOMIC.
  297. *
  298. * GFP_NOFS is not ever used, as it has not been implemented yet.
  299. *
  300. * GFP_ATOMIC is used when
  301. * (a) you are inside a completion handler, an interrupt, bottom half,
  302. * tasklet or timer, or
  303. * (b) you are holding a spinlock or rwlock (does not apply to
  304. * semaphores), or
  305. * (c) current->state != TASK_RUNNING, this is the case only after
  306. * you've changed it.
  307. *
  308. * GFP_NOIO is used in the block io path and error handling of storage
  309. * devices.
  310. *
  311. * All other situations use GFP_KERNEL.
  312. *
  313. * Some more specific rules for mem_flags can be inferred, such as
  314. * (1) start_xmit, timeout, and receive methods of network drivers must
  315. * use GFP_ATOMIC (they are called with a spinlock held);
  316. * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
  317. * called with a spinlock held);
  318. * (3) If you use a kernel thread with a network driver you must use
  319. * GFP_NOIO, unless (b) or (c) apply;
  320. * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
  321. * apply or your are in a storage driver's block io path;
  322. * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
  323. * (6) changing firmware on a running storage or net device uses
  324. * GFP_NOIO, unless b) or c) apply
  325. *
  326. */
  327. int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
  328. {
  329. int xfertype, max;
  330. struct usb_device *dev;
  331. struct usb_host_endpoint *ep;
  332. int is_out;
  333. unsigned int allowed;
  334. if (!urb || !urb->complete)
  335. return -EINVAL;
  336. if (urb->hcpriv) {
  337. WARN_ONCE(1, "URB %pK submitted while active\n", urb);
  338. return -EBUSY;
  339. }
  340. dev = urb->dev;
  341. if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
  342. return -ENODEV;
  343. /* For now, get the endpoint from the pipe. Eventually drivers
  344. * will be required to set urb->ep directly and we will eliminate
  345. * urb->pipe.
  346. */
  347. ep = usb_pipe_endpoint(dev, urb->pipe);
  348. if (!ep)
  349. return -ENOENT;
  350. urb->ep = ep;
  351. urb->status = -EINPROGRESS;
  352. urb->actual_length = 0;
  353. /* Lots of sanity checks, so HCDs can rely on clean data
  354. * and don't need to duplicate tests
  355. */
  356. xfertype = usb_endpoint_type(&ep->desc);
  357. if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
  358. struct usb_ctrlrequest *setup =
  359. (struct usb_ctrlrequest *) urb->setup_packet;
  360. if (!setup)
  361. return -ENOEXEC;
  362. is_out = !(setup->bRequestType & USB_DIR_IN) ||
  363. !setup->wLength;
  364. } else {
  365. is_out = usb_endpoint_dir_out(&ep->desc);
  366. }
  367. /* Clear the internal flags and cache the direction for later use */
  368. urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
  369. URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
  370. URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
  371. URB_DMA_SG_COMBINED);
  372. urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
  373. if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
  374. dev->state < USB_STATE_CONFIGURED)
  375. return -ENODEV;
  376. max = usb_endpoint_maxp(&ep->desc);
  377. if (max <= 0) {
  378. dev_dbg(&dev->dev,
  379. "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
  380. usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
  381. __func__, max);
  382. return -EMSGSIZE;
  383. }
  384. /* periodic transfers limit size per frame/uframe,
  385. * but drivers only control those sizes for ISO.
  386. * while we're checking, initialize return status.
  387. */
  388. if (xfertype == USB_ENDPOINT_XFER_ISOC) {
  389. int n, len;
  390. /* SuperSpeed isoc endpoints have up to 16 bursts of up to
  391. * 3 packets each
  392. */
  393. if (dev->speed >= USB_SPEED_SUPER) {
  394. int burst = 1 + ep->ss_ep_comp.bMaxBurst;
  395. int mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
  396. max *= burst;
  397. max *= mult;
  398. }
  399. /* "high bandwidth" mode, 1-3 packets/uframe? */
  400. if (dev->speed == USB_SPEED_HIGH)
  401. max *= usb_endpoint_maxp_mult(&ep->desc);
  402. if (urb->number_of_packets <= 0)
  403. return -EINVAL;
  404. for (n = 0; n < urb->number_of_packets; n++) {
  405. len = urb->iso_frame_desc[n].length;
  406. if (len < 0 || len > max)
  407. return -EMSGSIZE;
  408. urb->iso_frame_desc[n].status = -EXDEV;
  409. urb->iso_frame_desc[n].actual_length = 0;
  410. }
  411. } else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint &&
  412. dev->speed != USB_SPEED_WIRELESS) {
  413. struct scatterlist *sg;
  414. int i;
  415. for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
  416. if (sg->length % max)
  417. return -EINVAL;
  418. }
  419. /* the I/O buffer must be mapped/unmapped, except when length=0 */
  420. if (urb->transfer_buffer_length > INT_MAX)
  421. return -EMSGSIZE;
  422. /*
  423. * stuff that drivers shouldn't do, but which shouldn't
  424. * cause problems in HCDs if they get it wrong.
  425. */
  426. /* Check that the pipe's type matches the endpoint's type */
  427. if (usb_urb_ep_type_check(urb))
  428. dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
  429. usb_pipetype(urb->pipe), pipetypes[xfertype]);
  430. /* Check against a simple/standard policy */
  431. allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
  432. URB_FREE_BUFFER);
  433. switch (xfertype) {
  434. case USB_ENDPOINT_XFER_BULK:
  435. case USB_ENDPOINT_XFER_INT:
  436. if (is_out)
  437. allowed |= URB_ZERO_PACKET;
  438. /* FALLTHROUGH */
  439. case USB_ENDPOINT_XFER_CONTROL:
  440. allowed |= URB_NO_FSBR; /* only affects UHCI */
  441. /* FALLTHROUGH */
  442. default: /* all non-iso endpoints */
  443. if (!is_out)
  444. allowed |= URB_SHORT_NOT_OK;
  445. break;
  446. case USB_ENDPOINT_XFER_ISOC:
  447. allowed |= URB_ISO_ASAP;
  448. break;
  449. }
  450. allowed &= urb->transfer_flags;
  451. /* warn if submitter gave bogus flags */
  452. if (allowed != urb->transfer_flags)
  453. dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
  454. urb->transfer_flags, allowed);
  455. /*
  456. * Force periodic transfer intervals to be legal values that are
  457. * a power of two (so HCDs don't need to).
  458. *
  459. * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC
  460. * supports different values... this uses EHCI/UHCI defaults (and
  461. * EHCI can use smaller non-default values).
  462. */
  463. switch (xfertype) {
  464. case USB_ENDPOINT_XFER_ISOC:
  465. case USB_ENDPOINT_XFER_INT:
  466. /* too small? */
  467. switch (dev->speed) {
  468. case USB_SPEED_WIRELESS:
  469. if ((urb->interval < 6)
  470. && (xfertype == USB_ENDPOINT_XFER_INT))
  471. return -EINVAL;
  472. default:
  473. if (urb->interval <= 0)
  474. return -EINVAL;
  475. break;
  476. }
  477. /* too big? */
  478. switch (dev->speed) {
  479. case USB_SPEED_SUPER_PLUS:
  480. case USB_SPEED_SUPER: /* units are 125us */
  481. /* Handle up to 2^(16-1) microframes */
  482. if (urb->interval > (1 << 15))
  483. return -EINVAL;
  484. max = 1 << 15;
  485. break;
  486. case USB_SPEED_WIRELESS:
  487. if (urb->interval > 16)
  488. return -EINVAL;
  489. break;
  490. case USB_SPEED_HIGH: /* units are microframes */
  491. /* NOTE usb handles 2^15 */
  492. if (urb->interval > (1024 * 8))
  493. urb->interval = 1024 * 8;
  494. max = 1024 * 8;
  495. break;
  496. case USB_SPEED_FULL: /* units are frames/msec */
  497. case USB_SPEED_LOW:
  498. if (xfertype == USB_ENDPOINT_XFER_INT) {
  499. if (urb->interval > 255)
  500. return -EINVAL;
  501. /* NOTE ohci only handles up to 32 */
  502. max = 128;
  503. } else {
  504. if (urb->interval > 1024)
  505. urb->interval = 1024;
  506. /* NOTE usb and ohci handle up to 2^15 */
  507. max = 1024;
  508. }
  509. break;
  510. default:
  511. return -EINVAL;
  512. }
  513. if (dev->speed != USB_SPEED_WIRELESS) {
  514. /* Round down to a power of 2, no more than max */
  515. urb->interval = min(max, 1 << ilog2(urb->interval));
  516. }
  517. }
  518. return usb_hcd_submit_urb(urb, mem_flags);
  519. }
  520. EXPORT_SYMBOL_GPL(usb_submit_urb);
  521. /*-------------------------------------------------------------------*/
  522. /**
  523. * usb_unlink_urb - abort/cancel a transfer request for an endpoint
  524. * @urb: pointer to urb describing a previously submitted request,
  525. * may be NULL
  526. *
  527. * This routine cancels an in-progress request. URBs complete only once
  528. * per submission, and may be canceled only once per submission.
  529. * Successful cancellation means termination of @urb will be expedited
  530. * and the completion handler will be called with a status code
  531. * indicating that the request has been canceled (rather than any other
  532. * code).
  533. *
  534. * Drivers should not call this routine or related routines, such as
  535. * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
  536. * method has returned. The disconnect function should synchronize with
  537. * a driver's I/O routines to insure that all URB-related activity has
  538. * completed before it returns.
  539. *
  540. * This request is asynchronous, however the HCD might call the ->complete()
  541. * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
  542. * must not hold any locks that may be taken by the completion function.
  543. * Success is indicated by returning -EINPROGRESS, at which time the URB will
  544. * probably not yet have been given back to the device driver. When it is
  545. * eventually called, the completion function will see @urb->status ==
  546. * -ECONNRESET.
  547. * Failure is indicated by usb_unlink_urb() returning any other value.
  548. * Unlinking will fail when @urb is not currently "linked" (i.e., it was
  549. * never submitted, or it was unlinked before, or the hardware is already
  550. * finished with it), even if the completion handler has not yet run.
  551. *
  552. * The URB must not be deallocated while this routine is running. In
  553. * particular, when a driver calls this routine, it must insure that the
  554. * completion handler cannot deallocate the URB.
  555. *
  556. * Return: -EINPROGRESS on success. See description for other values on
  557. * failure.
  558. *
  559. * Unlinking and Endpoint Queues:
  560. *
  561. * [The behaviors and guarantees described below do not apply to virtual
  562. * root hubs but only to endpoint queues for physical USB devices.]
  563. *
  564. * Host Controller Drivers (HCDs) place all the URBs for a particular
  565. * endpoint in a queue. Normally the queue advances as the controller
  566. * hardware processes each request. But when an URB terminates with an
  567. * error its queue generally stops (see below), at least until that URB's
  568. * completion routine returns. It is guaranteed that a stopped queue
  569. * will not restart until all its unlinked URBs have been fully retired,
  570. * with their completion routines run, even if that's not until some time
  571. * after the original completion handler returns. The same behavior and
  572. * guarantee apply when an URB terminates because it was unlinked.
  573. *
  574. * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
  575. * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
  576. * and -EREMOTEIO. Control endpoint queues behave the same way except
  577. * that they are not guaranteed to stop for -EREMOTEIO errors. Queues
  578. * for isochronous endpoints are treated differently, because they must
  579. * advance at fixed rates. Such queues do not stop when an URB
  580. * encounters an error or is unlinked. An unlinked isochronous URB may
  581. * leave a gap in the stream of packets; it is undefined whether such
  582. * gaps can be filled in.
  583. *
  584. * Note that early termination of an URB because a short packet was
  585. * received will generate a -EREMOTEIO error if and only if the
  586. * URB_SHORT_NOT_OK flag is set. By setting this flag, USB device
  587. * drivers can build deep queues for large or complex bulk transfers
  588. * and clean them up reliably after any sort of aborted transfer by
  589. * unlinking all pending URBs at the first fault.
  590. *
  591. * When a control URB terminates with an error other than -EREMOTEIO, it
  592. * is quite likely that the status stage of the transfer will not take
  593. * place.
  594. */
  595. int usb_unlink_urb(struct urb *urb)
  596. {
  597. if (!urb)
  598. return -EINVAL;
  599. if (!urb->dev)
  600. return -ENODEV;
  601. if (!urb->ep)
  602. return -EIDRM;
  603. return usb_hcd_unlink_urb(urb, -ECONNRESET);
  604. }
  605. EXPORT_SYMBOL_GPL(usb_unlink_urb);
  606. /**
  607. * usb_kill_urb - cancel a transfer request and wait for it to finish
  608. * @urb: pointer to URB describing a previously submitted request,
  609. * may be NULL
  610. *
  611. * This routine cancels an in-progress request. It is guaranteed that
  612. * upon return all completion handlers will have finished and the URB
  613. * will be totally idle and available for reuse. These features make
  614. * this an ideal way to stop I/O in a disconnect() callback or close()
  615. * function. If the request has not already finished or been unlinked
  616. * the completion handler will see urb->status == -ENOENT.
  617. *
  618. * While the routine is running, attempts to resubmit the URB will fail
  619. * with error -EPERM. Thus even if the URB's completion handler always
  620. * tries to resubmit, it will not succeed and the URB will become idle.
  621. *
  622. * The URB must not be deallocated while this routine is running. In
  623. * particular, when a driver calls this routine, it must insure that the
  624. * completion handler cannot deallocate the URB.
  625. *
  626. * This routine may not be used in an interrupt context (such as a bottom
  627. * half or a completion handler), or when holding a spinlock, or in other
  628. * situations where the caller can't schedule().
  629. *
  630. * This routine should not be called by a driver after its disconnect
  631. * method has returned.
  632. */
  633. void usb_kill_urb(struct urb *urb)
  634. {
  635. might_sleep();
  636. if (!(urb && urb->dev && urb->ep))
  637. return;
  638. atomic_inc(&urb->reject);
  639. usb_hcd_unlink_urb(urb, -ENOENT);
  640. wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
  641. atomic_dec(&urb->reject);
  642. }
  643. EXPORT_SYMBOL_GPL(usb_kill_urb);
  644. /**
  645. * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
  646. * @urb: pointer to URB describing a previously submitted request,
  647. * may be NULL
  648. *
  649. * This routine cancels an in-progress request. It is guaranteed that
  650. * upon return all completion handlers will have finished and the URB
  651. * will be totally idle and cannot be reused. These features make
  652. * this an ideal way to stop I/O in a disconnect() callback.
  653. * If the request has not already finished or been unlinked
  654. * the completion handler will see urb->status == -ENOENT.
  655. *
  656. * After and while the routine runs, attempts to resubmit the URB will fail
  657. * with error -EPERM. Thus even if the URB's completion handler always
  658. * tries to resubmit, it will not succeed and the URB will become idle.
  659. *
  660. * The URB must not be deallocated while this routine is running. In
  661. * particular, when a driver calls this routine, it must insure that the
  662. * completion handler cannot deallocate the URB.
  663. *
  664. * This routine may not be used in an interrupt context (such as a bottom
  665. * half or a completion handler), or when holding a spinlock, or in other
  666. * situations where the caller can't schedule().
  667. *
  668. * This routine should not be called by a driver after its disconnect
  669. * method has returned.
  670. */
  671. void usb_poison_urb(struct urb *urb)
  672. {
  673. might_sleep();
  674. if (!urb)
  675. return;
  676. atomic_inc(&urb->reject);
  677. if (!urb->dev || !urb->ep)
  678. return;
  679. usb_hcd_unlink_urb(urb, -ENOENT);
  680. wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
  681. }
  682. EXPORT_SYMBOL_GPL(usb_poison_urb);
  683. void usb_unpoison_urb(struct urb *urb)
  684. {
  685. if (!urb)
  686. return;
  687. atomic_dec(&urb->reject);
  688. }
  689. EXPORT_SYMBOL_GPL(usb_unpoison_urb);
  690. /**
  691. * usb_block_urb - reliably prevent further use of an URB
  692. * @urb: pointer to URB to be blocked, may be NULL
  693. *
  694. * After the routine has run, attempts to resubmit the URB will fail
  695. * with error -EPERM. Thus even if the URB's completion handler always
  696. * tries to resubmit, it will not succeed and the URB will become idle.
  697. *
  698. * The URB must not be deallocated while this routine is running. In
  699. * particular, when a driver calls this routine, it must insure that the
  700. * completion handler cannot deallocate the URB.
  701. */
  702. void usb_block_urb(struct urb *urb)
  703. {
  704. if (!urb)
  705. return;
  706. atomic_inc(&urb->reject);
  707. }
  708. EXPORT_SYMBOL_GPL(usb_block_urb);
  709. /**
  710. * usb_kill_anchored_urbs - kill all URBs associated with an anchor
  711. * @anchor: anchor the requests are bound to
  712. *
  713. * This kills all outstanding URBs starting from the back of the queue,
  714. * with guarantee that no completer callbacks will take place from the
  715. * anchor after this function returns.
  716. *
  717. * This routine should not be called by a driver after its disconnect
  718. * method has returned.
  719. */
  720. void usb_kill_anchored_urbs(struct usb_anchor *anchor)
  721. {
  722. struct urb *victim;
  723. int surely_empty;
  724. do {
  725. spin_lock_irq(&anchor->lock);
  726. while (!list_empty(&anchor->urb_list)) {
  727. victim = list_entry(anchor->urb_list.prev,
  728. struct urb, anchor_list);
  729. /* make sure the URB isn't freed before we kill it */
  730. usb_get_urb(victim);
  731. spin_unlock_irq(&anchor->lock);
  732. /* this will unanchor the URB */
  733. usb_kill_urb(victim);
  734. usb_put_urb(victim);
  735. spin_lock_irq(&anchor->lock);
  736. }
  737. surely_empty = usb_anchor_check_wakeup(anchor);
  738. spin_unlock_irq(&anchor->lock);
  739. cpu_relax();
  740. } while (!surely_empty);
  741. }
  742. EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
  743. /**
  744. * usb_poison_anchored_urbs - cease all traffic from an anchor
  745. * @anchor: anchor the requests are bound to
  746. *
  747. * this allows all outstanding URBs to be poisoned starting
  748. * from the back of the queue. Newly added URBs will also be
  749. * poisoned
  750. *
  751. * This routine should not be called by a driver after its disconnect
  752. * method has returned.
  753. */
  754. void usb_poison_anchored_urbs(struct usb_anchor *anchor)
  755. {
  756. struct urb *victim;
  757. int surely_empty;
  758. do {
  759. spin_lock_irq(&anchor->lock);
  760. anchor->poisoned = 1;
  761. while (!list_empty(&anchor->urb_list)) {
  762. victim = list_entry(anchor->urb_list.prev,
  763. struct urb, anchor_list);
  764. /* make sure the URB isn't freed before we kill it */
  765. usb_get_urb(victim);
  766. spin_unlock_irq(&anchor->lock);
  767. /* this will unanchor the URB */
  768. usb_poison_urb(victim);
  769. usb_put_urb(victim);
  770. spin_lock_irq(&anchor->lock);
  771. }
  772. surely_empty = usb_anchor_check_wakeup(anchor);
  773. spin_unlock_irq(&anchor->lock);
  774. cpu_relax();
  775. } while (!surely_empty);
  776. }
  777. EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
  778. /**
  779. * usb_unpoison_anchored_urbs - let an anchor be used successfully again
  780. * @anchor: anchor the requests are bound to
  781. *
  782. * Reverses the effect of usb_poison_anchored_urbs
  783. * the anchor can be used normally after it returns
  784. */
  785. void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
  786. {
  787. unsigned long flags;
  788. struct urb *lazarus;
  789. spin_lock_irqsave(&anchor->lock, flags);
  790. list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
  791. usb_unpoison_urb(lazarus);
  792. }
  793. anchor->poisoned = 0;
  794. spin_unlock_irqrestore(&anchor->lock, flags);
  795. }
  796. EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
  797. /**
  798. * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
  799. * @anchor: anchor the requests are bound to
  800. *
  801. * this allows all outstanding URBs to be unlinked starting
  802. * from the back of the queue. This function is asynchronous.
  803. * The unlinking is just triggered. It may happen after this
  804. * function has returned.
  805. *
  806. * This routine should not be called by a driver after its disconnect
  807. * method has returned.
  808. */
  809. void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
  810. {
  811. struct urb *victim;
  812. while ((victim = usb_get_from_anchor(anchor)) != NULL) {
  813. usb_unlink_urb(victim);
  814. usb_put_urb(victim);
  815. }
  816. }
  817. EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
  818. /**
  819. * usb_anchor_suspend_wakeups
  820. * @anchor: the anchor you want to suspend wakeups on
  821. *
  822. * Call this to stop the last urb being unanchored from waking up any
  823. * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
  824. * back path to delay waking up until after the completion handler has run.
  825. */
  826. void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
  827. {
  828. if (anchor)
  829. atomic_inc(&anchor->suspend_wakeups);
  830. }
  831. EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
  832. /**
  833. * usb_anchor_resume_wakeups
  834. * @anchor: the anchor you want to resume wakeups on
  835. *
  836. * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
  837. * wake up any current waiters if the anchor is empty.
  838. */
  839. void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
  840. {
  841. if (!anchor)
  842. return;
  843. atomic_dec(&anchor->suspend_wakeups);
  844. if (usb_anchor_check_wakeup(anchor))
  845. wake_up(&anchor->wait);
  846. }
  847. EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
  848. /**
  849. * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
  850. * @anchor: the anchor you want to become unused
  851. * @timeout: how long you are willing to wait in milliseconds
  852. *
  853. * Call this is you want to be sure all an anchor's
  854. * URBs have finished
  855. *
  856. * Return: Non-zero if the anchor became unused. Zero on timeout.
  857. */
  858. int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
  859. unsigned int timeout)
  860. {
  861. return wait_event_timeout(anchor->wait,
  862. usb_anchor_check_wakeup(anchor),
  863. msecs_to_jiffies(timeout));
  864. }
  865. EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
  866. /**
  867. * usb_get_from_anchor - get an anchor's oldest urb
  868. * @anchor: the anchor whose urb you want
  869. *
  870. * This will take the oldest urb from an anchor,
  871. * unanchor and return it
  872. *
  873. * Return: The oldest urb from @anchor, or %NULL if @anchor has no
  874. * urbs associated with it.
  875. */
  876. struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
  877. {
  878. struct urb *victim;
  879. unsigned long flags;
  880. spin_lock_irqsave(&anchor->lock, flags);
  881. if (!list_empty(&anchor->urb_list)) {
  882. victim = list_entry(anchor->urb_list.next, struct urb,
  883. anchor_list);
  884. usb_get_urb(victim);
  885. __usb_unanchor_urb(victim, anchor);
  886. } else {
  887. victim = NULL;
  888. }
  889. spin_unlock_irqrestore(&anchor->lock, flags);
  890. return victim;
  891. }
  892. EXPORT_SYMBOL_GPL(usb_get_from_anchor);
  893. /**
  894. * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
  895. * @anchor: the anchor whose urbs you want to unanchor
  896. *
  897. * use this to get rid of all an anchor's urbs
  898. */
  899. void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
  900. {
  901. struct urb *victim;
  902. unsigned long flags;
  903. int surely_empty;
  904. do {
  905. spin_lock_irqsave(&anchor->lock, flags);
  906. while (!list_empty(&anchor->urb_list)) {
  907. victim = list_entry(anchor->urb_list.prev,
  908. struct urb, anchor_list);
  909. __usb_unanchor_urb(victim, anchor);
  910. }
  911. surely_empty = usb_anchor_check_wakeup(anchor);
  912. spin_unlock_irqrestore(&anchor->lock, flags);
  913. cpu_relax();
  914. } while (!surely_empty);
  915. }
  916. EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
  917. /**
  918. * usb_anchor_empty - is an anchor empty
  919. * @anchor: the anchor you want to query
  920. *
  921. * Return: 1 if the anchor has no urbs associated with it.
  922. */
  923. int usb_anchor_empty(struct usb_anchor *anchor)
  924. {
  925. return list_empty(&anchor->urb_list);
  926. }
  927. EXPORT_SYMBOL_GPL(usb_anchor_empty);