rtc-mxc.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486
  1. /*
  2. * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
  3. *
  4. * The code contained herein is licensed under the GNU General Public
  5. * License. You may obtain a copy of the GNU General Public License
  6. * Version 2 or later at the following locations:
  7. *
  8. * http://www.opensource.org/licenses/gpl-license.html
  9. * http://www.gnu.org/copyleft/gpl.html
  10. */
  11. #include <linux/io.h>
  12. #include <linux/rtc.h>
  13. #include <linux/module.h>
  14. #include <linux/slab.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/platform_device.h>
  17. #include <linux/clk.h>
  18. #include <linux/of.h>
  19. #include <linux/of_device.h>
  20. #define RTC_INPUT_CLK_32768HZ (0x00 << 5)
  21. #define RTC_INPUT_CLK_32000HZ (0x01 << 5)
  22. #define RTC_INPUT_CLK_38400HZ (0x02 << 5)
  23. #define RTC_SW_BIT (1 << 0)
  24. #define RTC_ALM_BIT (1 << 2)
  25. #define RTC_1HZ_BIT (1 << 4)
  26. #define RTC_2HZ_BIT (1 << 7)
  27. #define RTC_SAM0_BIT (1 << 8)
  28. #define RTC_SAM1_BIT (1 << 9)
  29. #define RTC_SAM2_BIT (1 << 10)
  30. #define RTC_SAM3_BIT (1 << 11)
  31. #define RTC_SAM4_BIT (1 << 12)
  32. #define RTC_SAM5_BIT (1 << 13)
  33. #define RTC_SAM6_BIT (1 << 14)
  34. #define RTC_SAM7_BIT (1 << 15)
  35. #define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
  36. RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
  37. RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
  38. #define RTC_ENABLE_BIT (1 << 7)
  39. #define MAX_PIE_NUM 9
  40. #define MAX_PIE_FREQ 512
  41. #define MXC_RTC_TIME 0
  42. #define MXC_RTC_ALARM 1
  43. #define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */
  44. #define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */
  45. #define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */
  46. #define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */
  47. #define RTC_RTCCTL 0x10 /* 32bit rtc control reg */
  48. #define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */
  49. #define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */
  50. #define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */
  51. #define RTC_DAYR 0x20 /* 32bit rtc days counter reg */
  52. #define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */
  53. #define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */
  54. #define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */
  55. #define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */
  56. enum imx_rtc_type {
  57. IMX1_RTC,
  58. IMX21_RTC,
  59. };
  60. struct rtc_plat_data {
  61. struct rtc_device *rtc;
  62. void __iomem *ioaddr;
  63. int irq;
  64. struct clk *clk_ref;
  65. struct clk *clk_ipg;
  66. struct rtc_time g_rtc_alarm;
  67. enum imx_rtc_type devtype;
  68. };
  69. static const struct platform_device_id imx_rtc_devtype[] = {
  70. {
  71. .name = "imx1-rtc",
  72. .driver_data = IMX1_RTC,
  73. }, {
  74. .name = "imx21-rtc",
  75. .driver_data = IMX21_RTC,
  76. }, {
  77. /* sentinel */
  78. }
  79. };
  80. MODULE_DEVICE_TABLE(platform, imx_rtc_devtype);
  81. #ifdef CONFIG_OF
  82. static const struct of_device_id imx_rtc_dt_ids[] = {
  83. { .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
  84. { .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
  85. {}
  86. };
  87. MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
  88. #endif
  89. static inline int is_imx1_rtc(struct rtc_plat_data *data)
  90. {
  91. return data->devtype == IMX1_RTC;
  92. }
  93. /*
  94. * This function is used to obtain the RTC time or the alarm value in
  95. * second.
  96. */
  97. static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
  98. {
  99. struct platform_device *pdev = to_platform_device(dev);
  100. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  101. void __iomem *ioaddr = pdata->ioaddr;
  102. u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
  103. switch (time_alarm) {
  104. case MXC_RTC_TIME:
  105. day = readw(ioaddr + RTC_DAYR);
  106. hr_min = readw(ioaddr + RTC_HOURMIN);
  107. sec = readw(ioaddr + RTC_SECOND);
  108. break;
  109. case MXC_RTC_ALARM:
  110. day = readw(ioaddr + RTC_DAYALARM);
  111. hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
  112. sec = readw(ioaddr + RTC_ALRM_SEC);
  113. break;
  114. }
  115. hr = hr_min >> 8;
  116. min = hr_min & 0xff;
  117. return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
  118. }
  119. /*
  120. * This function sets the RTC alarm value or the time value.
  121. */
  122. static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
  123. {
  124. u32 tod, day, hr, min, sec, temp;
  125. struct platform_device *pdev = to_platform_device(dev);
  126. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  127. void __iomem *ioaddr = pdata->ioaddr;
  128. day = div_s64_rem(time, 86400, &tod);
  129. /* time is within a day now */
  130. hr = tod / 3600;
  131. tod -= hr * 3600;
  132. /* time is within an hour now */
  133. min = tod / 60;
  134. sec = tod - min * 60;
  135. temp = (hr << 8) + min;
  136. switch (time_alarm) {
  137. case MXC_RTC_TIME:
  138. writew(day, ioaddr + RTC_DAYR);
  139. writew(sec, ioaddr + RTC_SECOND);
  140. writew(temp, ioaddr + RTC_HOURMIN);
  141. break;
  142. case MXC_RTC_ALARM:
  143. writew(day, ioaddr + RTC_DAYALARM);
  144. writew(sec, ioaddr + RTC_ALRM_SEC);
  145. writew(temp, ioaddr + RTC_ALRM_HM);
  146. break;
  147. }
  148. }
  149. /*
  150. * This function updates the RTC alarm registers and then clears all the
  151. * interrupt status bits.
  152. */
  153. static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
  154. {
  155. time64_t time;
  156. struct platform_device *pdev = to_platform_device(dev);
  157. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  158. void __iomem *ioaddr = pdata->ioaddr;
  159. time = rtc_tm_to_time64(alrm);
  160. /* clear all the interrupt status bits */
  161. writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
  162. set_alarm_or_time(dev, MXC_RTC_ALARM, time);
  163. }
  164. static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
  165. unsigned int enabled)
  166. {
  167. struct platform_device *pdev = to_platform_device(dev);
  168. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  169. void __iomem *ioaddr = pdata->ioaddr;
  170. u32 reg;
  171. spin_lock_irq(&pdata->rtc->irq_lock);
  172. reg = readw(ioaddr + RTC_RTCIENR);
  173. if (enabled)
  174. reg |= bit;
  175. else
  176. reg &= ~bit;
  177. writew(reg, ioaddr + RTC_RTCIENR);
  178. spin_unlock_irq(&pdata->rtc->irq_lock);
  179. }
  180. /* This function is the RTC interrupt service routine. */
  181. static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
  182. {
  183. struct platform_device *pdev = dev_id;
  184. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  185. void __iomem *ioaddr = pdata->ioaddr;
  186. unsigned long flags;
  187. u32 status;
  188. u32 events = 0;
  189. spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
  190. status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
  191. /* clear interrupt sources */
  192. writew(status, ioaddr + RTC_RTCISR);
  193. /* update irq data & counter */
  194. if (status & RTC_ALM_BIT) {
  195. events |= (RTC_AF | RTC_IRQF);
  196. /* RTC alarm should be one-shot */
  197. mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
  198. }
  199. if (status & PIT_ALL_ON)
  200. events |= (RTC_PF | RTC_IRQF);
  201. rtc_update_irq(pdata->rtc, 1, events);
  202. spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
  203. return IRQ_HANDLED;
  204. }
  205. static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
  206. {
  207. mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
  208. return 0;
  209. }
  210. /*
  211. * This function reads the current RTC time into tm in Gregorian date.
  212. */
  213. static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
  214. {
  215. time64_t val;
  216. /* Avoid roll-over from reading the different registers */
  217. do {
  218. val = get_alarm_or_time(dev, MXC_RTC_TIME);
  219. } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
  220. rtc_time64_to_tm(val, tm);
  221. return 0;
  222. }
  223. /*
  224. * This function sets the internal RTC time based on tm in Gregorian date.
  225. */
  226. static int mxc_rtc_set_mmss(struct device *dev, time64_t time)
  227. {
  228. struct platform_device *pdev = to_platform_device(dev);
  229. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  230. /*
  231. * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
  232. */
  233. if (is_imx1_rtc(pdata)) {
  234. struct rtc_time tm;
  235. rtc_time64_to_tm(time, &tm);
  236. tm.tm_year = 70;
  237. time = rtc_tm_to_time64(&tm);
  238. }
  239. /* Avoid roll-over from reading the different registers */
  240. do {
  241. set_alarm_or_time(dev, MXC_RTC_TIME, time);
  242. } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
  243. return 0;
  244. }
  245. /*
  246. * This function reads the current alarm value into the passed in 'alrm'
  247. * argument. It updates the alrm's pending field value based on the whether
  248. * an alarm interrupt occurs or not.
  249. */
  250. static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  251. {
  252. struct platform_device *pdev = to_platform_device(dev);
  253. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  254. void __iomem *ioaddr = pdata->ioaddr;
  255. rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
  256. alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
  257. return 0;
  258. }
  259. /*
  260. * This function sets the RTC alarm based on passed in alrm.
  261. */
  262. static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
  263. {
  264. struct platform_device *pdev = to_platform_device(dev);
  265. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  266. rtc_update_alarm(dev, &alrm->time);
  267. memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
  268. mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
  269. return 0;
  270. }
  271. /* RTC layer */
  272. static const struct rtc_class_ops mxc_rtc_ops = {
  273. .read_time = mxc_rtc_read_time,
  274. .set_mmss64 = mxc_rtc_set_mmss,
  275. .read_alarm = mxc_rtc_read_alarm,
  276. .set_alarm = mxc_rtc_set_alarm,
  277. .alarm_irq_enable = mxc_rtc_alarm_irq_enable,
  278. };
  279. static int mxc_rtc_probe(struct platform_device *pdev)
  280. {
  281. struct resource *res;
  282. struct rtc_device *rtc;
  283. struct rtc_plat_data *pdata = NULL;
  284. u32 reg;
  285. unsigned long rate;
  286. int ret;
  287. const struct of_device_id *of_id;
  288. pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
  289. if (!pdata)
  290. return -ENOMEM;
  291. of_id = of_match_device(imx_rtc_dt_ids, &pdev->dev);
  292. if (of_id)
  293. pdata->devtype = (enum imx_rtc_type)of_id->data;
  294. else
  295. pdata->devtype = pdev->id_entry->driver_data;
  296. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  297. pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
  298. if (IS_ERR(pdata->ioaddr))
  299. return PTR_ERR(pdata->ioaddr);
  300. pdata->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
  301. if (IS_ERR(pdata->clk_ipg)) {
  302. dev_err(&pdev->dev, "unable to get ipg clock!\n");
  303. return PTR_ERR(pdata->clk_ipg);
  304. }
  305. ret = clk_prepare_enable(pdata->clk_ipg);
  306. if (ret)
  307. return ret;
  308. pdata->clk_ref = devm_clk_get(&pdev->dev, "ref");
  309. if (IS_ERR(pdata->clk_ref)) {
  310. dev_err(&pdev->dev, "unable to get ref clock!\n");
  311. ret = PTR_ERR(pdata->clk_ref);
  312. goto exit_put_clk_ipg;
  313. }
  314. ret = clk_prepare_enable(pdata->clk_ref);
  315. if (ret)
  316. goto exit_put_clk_ipg;
  317. rate = clk_get_rate(pdata->clk_ref);
  318. if (rate == 32768)
  319. reg = RTC_INPUT_CLK_32768HZ;
  320. else if (rate == 32000)
  321. reg = RTC_INPUT_CLK_32000HZ;
  322. else if (rate == 38400)
  323. reg = RTC_INPUT_CLK_38400HZ;
  324. else {
  325. dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
  326. ret = -EINVAL;
  327. goto exit_put_clk_ref;
  328. }
  329. reg |= RTC_ENABLE_BIT;
  330. writew(reg, (pdata->ioaddr + RTC_RTCCTL));
  331. if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
  332. dev_err(&pdev->dev, "hardware module can't be enabled!\n");
  333. ret = -EIO;
  334. goto exit_put_clk_ref;
  335. }
  336. platform_set_drvdata(pdev, pdata);
  337. /* Configure and enable the RTC */
  338. pdata->irq = platform_get_irq(pdev, 0);
  339. if (pdata->irq >= 0 &&
  340. devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
  341. IRQF_SHARED, pdev->name, pdev) < 0) {
  342. dev_warn(&pdev->dev, "interrupt not available.\n");
  343. pdata->irq = -1;
  344. }
  345. if (pdata->irq >= 0)
  346. device_init_wakeup(&pdev->dev, 1);
  347. rtc = devm_rtc_device_register(&pdev->dev, pdev->name, &mxc_rtc_ops,
  348. THIS_MODULE);
  349. if (IS_ERR(rtc)) {
  350. ret = PTR_ERR(rtc);
  351. goto exit_put_clk_ref;
  352. }
  353. pdata->rtc = rtc;
  354. return 0;
  355. exit_put_clk_ref:
  356. clk_disable_unprepare(pdata->clk_ref);
  357. exit_put_clk_ipg:
  358. clk_disable_unprepare(pdata->clk_ipg);
  359. return ret;
  360. }
  361. static int mxc_rtc_remove(struct platform_device *pdev)
  362. {
  363. struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
  364. clk_disable_unprepare(pdata->clk_ref);
  365. clk_disable_unprepare(pdata->clk_ipg);
  366. return 0;
  367. }
  368. #ifdef CONFIG_PM_SLEEP
  369. static int mxc_rtc_suspend(struct device *dev)
  370. {
  371. struct rtc_plat_data *pdata = dev_get_drvdata(dev);
  372. if (device_may_wakeup(dev))
  373. enable_irq_wake(pdata->irq);
  374. return 0;
  375. }
  376. static int mxc_rtc_resume(struct device *dev)
  377. {
  378. struct rtc_plat_data *pdata = dev_get_drvdata(dev);
  379. if (device_may_wakeup(dev))
  380. disable_irq_wake(pdata->irq);
  381. return 0;
  382. }
  383. #endif
  384. static SIMPLE_DEV_PM_OPS(mxc_rtc_pm_ops, mxc_rtc_suspend, mxc_rtc_resume);
  385. static struct platform_driver mxc_rtc_driver = {
  386. .driver = {
  387. .name = "mxc_rtc",
  388. .of_match_table = of_match_ptr(imx_rtc_dt_ids),
  389. .pm = &mxc_rtc_pm_ops,
  390. },
  391. .id_table = imx_rtc_devtype,
  392. .probe = mxc_rtc_probe,
  393. .remove = mxc_rtc_remove,
  394. };
  395. module_platform_driver(mxc_rtc_driver)
  396. MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
  397. MODULE_DESCRIPTION("RTC driver for Freescale MXC");
  398. MODULE_LICENSE("GPL");