dimm_devs.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674
  1. /*
  2. * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of version 2 of the GNU General Public License as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. */
  13. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14. #include <linux/vmalloc.h>
  15. #include <linux/device.h>
  16. #include <linux/ndctl.h>
  17. #include <linux/slab.h>
  18. #include <linux/io.h>
  19. #include <linux/fs.h>
  20. #include <linux/mm.h>
  21. #include "nd-core.h"
  22. #include "label.h"
  23. #include "pmem.h"
  24. #include "nd.h"
  25. static DEFINE_IDA(dimm_ida);
  26. /*
  27. * Retrieve bus and dimm handle and return if this bus supports
  28. * get_config_data commands
  29. */
  30. int nvdimm_check_config_data(struct device *dev)
  31. {
  32. struct nvdimm *nvdimm = to_nvdimm(dev);
  33. if (!nvdimm->cmd_mask ||
  34. !test_bit(ND_CMD_GET_CONFIG_DATA, &nvdimm->cmd_mask)) {
  35. if (test_bit(NDD_ALIASING, &nvdimm->flags))
  36. return -ENXIO;
  37. else
  38. return -ENOTTY;
  39. }
  40. return 0;
  41. }
  42. static int validate_dimm(struct nvdimm_drvdata *ndd)
  43. {
  44. int rc;
  45. if (!ndd)
  46. return -EINVAL;
  47. rc = nvdimm_check_config_data(ndd->dev);
  48. if (rc)
  49. dev_dbg(ndd->dev, "%pf: %s error: %d\n",
  50. __builtin_return_address(0), __func__, rc);
  51. return rc;
  52. }
  53. /**
  54. * nvdimm_init_nsarea - determine the geometry of a dimm's namespace area
  55. * @nvdimm: dimm to initialize
  56. */
  57. int nvdimm_init_nsarea(struct nvdimm_drvdata *ndd)
  58. {
  59. struct nd_cmd_get_config_size *cmd = &ndd->nsarea;
  60. struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(ndd->dev);
  61. struct nvdimm_bus_descriptor *nd_desc;
  62. int rc = validate_dimm(ndd);
  63. int cmd_rc = 0;
  64. if (rc)
  65. return rc;
  66. if (cmd->config_size)
  67. return 0; /* already valid */
  68. memset(cmd, 0, sizeof(*cmd));
  69. nd_desc = nvdimm_bus->nd_desc;
  70. rc = nd_desc->ndctl(nd_desc, to_nvdimm(ndd->dev),
  71. ND_CMD_GET_CONFIG_SIZE, cmd, sizeof(*cmd), &cmd_rc);
  72. if (rc < 0)
  73. return rc;
  74. return cmd_rc;
  75. }
  76. int nvdimm_init_config_data(struct nvdimm_drvdata *ndd)
  77. {
  78. struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(ndd->dev);
  79. struct nd_cmd_get_config_data_hdr *cmd;
  80. struct nvdimm_bus_descriptor *nd_desc;
  81. int rc = validate_dimm(ndd);
  82. u32 max_cmd_size, config_size;
  83. size_t offset;
  84. if (rc)
  85. return rc;
  86. if (ndd->data)
  87. return 0;
  88. if (ndd->nsarea.status || ndd->nsarea.max_xfer == 0
  89. || ndd->nsarea.config_size < ND_LABEL_MIN_SIZE) {
  90. dev_dbg(ndd->dev, "failed to init config data area: (%d:%d)\n",
  91. ndd->nsarea.max_xfer, ndd->nsarea.config_size);
  92. return -ENXIO;
  93. }
  94. ndd->data = kvmalloc(ndd->nsarea.config_size, GFP_KERNEL);
  95. if (!ndd->data)
  96. return -ENOMEM;
  97. max_cmd_size = min_t(u32, PAGE_SIZE, ndd->nsarea.max_xfer);
  98. cmd = kzalloc(max_cmd_size + sizeof(*cmd), GFP_KERNEL);
  99. if (!cmd)
  100. return -ENOMEM;
  101. nd_desc = nvdimm_bus->nd_desc;
  102. for (config_size = ndd->nsarea.config_size, offset = 0;
  103. config_size; config_size -= cmd->in_length,
  104. offset += cmd->in_length) {
  105. cmd->in_length = min(config_size, max_cmd_size);
  106. cmd->in_offset = offset;
  107. rc = nd_desc->ndctl(nd_desc, to_nvdimm(ndd->dev),
  108. ND_CMD_GET_CONFIG_DATA, cmd,
  109. cmd->in_length + sizeof(*cmd), NULL);
  110. if (rc || cmd->status) {
  111. rc = -ENXIO;
  112. break;
  113. }
  114. memcpy(ndd->data + offset, cmd->out_buf, cmd->in_length);
  115. }
  116. dev_dbg(ndd->dev, "%s: len: %zu rc: %d\n", __func__, offset, rc);
  117. kfree(cmd);
  118. return rc;
  119. }
  120. int nvdimm_set_config_data(struct nvdimm_drvdata *ndd, size_t offset,
  121. void *buf, size_t len)
  122. {
  123. int rc = validate_dimm(ndd);
  124. size_t max_cmd_size, buf_offset;
  125. struct nd_cmd_set_config_hdr *cmd;
  126. struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(ndd->dev);
  127. struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc;
  128. if (rc)
  129. return rc;
  130. if (!ndd->data)
  131. return -ENXIO;
  132. if (offset + len > ndd->nsarea.config_size)
  133. return -ENXIO;
  134. max_cmd_size = min_t(u32, PAGE_SIZE, len);
  135. max_cmd_size = min_t(u32, max_cmd_size, ndd->nsarea.max_xfer);
  136. cmd = kzalloc(max_cmd_size + sizeof(*cmd) + sizeof(u32), GFP_KERNEL);
  137. if (!cmd)
  138. return -ENOMEM;
  139. for (buf_offset = 0; len; len -= cmd->in_length,
  140. buf_offset += cmd->in_length) {
  141. size_t cmd_size;
  142. u32 *status;
  143. cmd->in_offset = offset + buf_offset;
  144. cmd->in_length = min(max_cmd_size, len);
  145. memcpy(cmd->in_buf, buf + buf_offset, cmd->in_length);
  146. /* status is output in the last 4-bytes of the command buffer */
  147. cmd_size = sizeof(*cmd) + cmd->in_length + sizeof(u32);
  148. status = ((void *) cmd) + cmd_size - sizeof(u32);
  149. rc = nd_desc->ndctl(nd_desc, to_nvdimm(ndd->dev),
  150. ND_CMD_SET_CONFIG_DATA, cmd, cmd_size, NULL);
  151. if (rc || *status) {
  152. rc = rc ? rc : -ENXIO;
  153. break;
  154. }
  155. }
  156. kfree(cmd);
  157. return rc;
  158. }
  159. void nvdimm_set_aliasing(struct device *dev)
  160. {
  161. struct nvdimm *nvdimm = to_nvdimm(dev);
  162. set_bit(NDD_ALIASING, &nvdimm->flags);
  163. }
  164. void nvdimm_set_locked(struct device *dev)
  165. {
  166. struct nvdimm *nvdimm = to_nvdimm(dev);
  167. set_bit(NDD_LOCKED, &nvdimm->flags);
  168. }
  169. void nvdimm_clear_locked(struct device *dev)
  170. {
  171. struct nvdimm *nvdimm = to_nvdimm(dev);
  172. clear_bit(NDD_LOCKED, &nvdimm->flags);
  173. }
  174. static void nvdimm_release(struct device *dev)
  175. {
  176. struct nvdimm *nvdimm = to_nvdimm(dev);
  177. ida_simple_remove(&dimm_ida, nvdimm->id);
  178. kfree(nvdimm);
  179. }
  180. static struct device_type nvdimm_device_type = {
  181. .name = "nvdimm",
  182. .release = nvdimm_release,
  183. };
  184. bool is_nvdimm(struct device *dev)
  185. {
  186. return dev->type == &nvdimm_device_type;
  187. }
  188. struct nvdimm *to_nvdimm(struct device *dev)
  189. {
  190. struct nvdimm *nvdimm = container_of(dev, struct nvdimm, dev);
  191. WARN_ON(!is_nvdimm(dev));
  192. return nvdimm;
  193. }
  194. EXPORT_SYMBOL_GPL(to_nvdimm);
  195. struct nvdimm *nd_blk_region_to_dimm(struct nd_blk_region *ndbr)
  196. {
  197. struct nd_region *nd_region = &ndbr->nd_region;
  198. struct nd_mapping *nd_mapping = &nd_region->mapping[0];
  199. return nd_mapping->nvdimm;
  200. }
  201. EXPORT_SYMBOL_GPL(nd_blk_region_to_dimm);
  202. unsigned long nd_blk_memremap_flags(struct nd_blk_region *ndbr)
  203. {
  204. /* pmem mapping properties are private to libnvdimm */
  205. return ARCH_MEMREMAP_PMEM;
  206. }
  207. EXPORT_SYMBOL_GPL(nd_blk_memremap_flags);
  208. struct nvdimm_drvdata *to_ndd(struct nd_mapping *nd_mapping)
  209. {
  210. struct nvdimm *nvdimm = nd_mapping->nvdimm;
  211. WARN_ON_ONCE(!is_nvdimm_bus_locked(&nvdimm->dev));
  212. return dev_get_drvdata(&nvdimm->dev);
  213. }
  214. EXPORT_SYMBOL(to_ndd);
  215. void nvdimm_drvdata_release(struct kref *kref)
  216. {
  217. struct nvdimm_drvdata *ndd = container_of(kref, typeof(*ndd), kref);
  218. struct device *dev = ndd->dev;
  219. struct resource *res, *_r;
  220. dev_dbg(dev, "%s\n", __func__);
  221. nvdimm_bus_lock(dev);
  222. for_each_dpa_resource_safe(ndd, res, _r)
  223. nvdimm_free_dpa(ndd, res);
  224. nvdimm_bus_unlock(dev);
  225. kvfree(ndd->data);
  226. kfree(ndd);
  227. put_device(dev);
  228. }
  229. void get_ndd(struct nvdimm_drvdata *ndd)
  230. {
  231. kref_get(&ndd->kref);
  232. }
  233. void put_ndd(struct nvdimm_drvdata *ndd)
  234. {
  235. if (ndd)
  236. kref_put(&ndd->kref, nvdimm_drvdata_release);
  237. }
  238. const char *nvdimm_name(struct nvdimm *nvdimm)
  239. {
  240. return dev_name(&nvdimm->dev);
  241. }
  242. EXPORT_SYMBOL_GPL(nvdimm_name);
  243. struct kobject *nvdimm_kobj(struct nvdimm *nvdimm)
  244. {
  245. return &nvdimm->dev.kobj;
  246. }
  247. EXPORT_SYMBOL_GPL(nvdimm_kobj);
  248. unsigned long nvdimm_cmd_mask(struct nvdimm *nvdimm)
  249. {
  250. return nvdimm->cmd_mask;
  251. }
  252. EXPORT_SYMBOL_GPL(nvdimm_cmd_mask);
  253. void *nvdimm_provider_data(struct nvdimm *nvdimm)
  254. {
  255. if (nvdimm)
  256. return nvdimm->provider_data;
  257. return NULL;
  258. }
  259. EXPORT_SYMBOL_GPL(nvdimm_provider_data);
  260. static ssize_t commands_show(struct device *dev,
  261. struct device_attribute *attr, char *buf)
  262. {
  263. struct nvdimm *nvdimm = to_nvdimm(dev);
  264. int cmd, len = 0;
  265. if (!nvdimm->cmd_mask)
  266. return sprintf(buf, "\n");
  267. for_each_set_bit(cmd, &nvdimm->cmd_mask, BITS_PER_LONG)
  268. len += sprintf(buf + len, "%s ", nvdimm_cmd_name(cmd));
  269. len += sprintf(buf + len, "\n");
  270. return len;
  271. }
  272. static DEVICE_ATTR_RO(commands);
  273. static ssize_t state_show(struct device *dev, struct device_attribute *attr,
  274. char *buf)
  275. {
  276. struct nvdimm *nvdimm = to_nvdimm(dev);
  277. /*
  278. * The state may be in the process of changing, userspace should
  279. * quiesce probing if it wants a static answer
  280. */
  281. nvdimm_bus_lock(dev);
  282. nvdimm_bus_unlock(dev);
  283. return sprintf(buf, "%s\n", atomic_read(&nvdimm->busy)
  284. ? "active" : "idle");
  285. }
  286. static DEVICE_ATTR_RO(state);
  287. static ssize_t __available_slots_show(struct nvdimm_drvdata *ndd, char *buf)
  288. {
  289. struct device *dev;
  290. ssize_t rc;
  291. u32 nfree;
  292. if (!ndd)
  293. return -ENXIO;
  294. dev = ndd->dev;
  295. nvdimm_bus_lock(dev);
  296. nfree = nd_label_nfree(ndd);
  297. if (nfree - 1 > nfree) {
  298. dev_WARN_ONCE(dev, 1, "we ate our last label?\n");
  299. nfree = 0;
  300. } else
  301. nfree--;
  302. rc = sprintf(buf, "%d\n", nfree);
  303. nvdimm_bus_unlock(dev);
  304. return rc;
  305. }
  306. static ssize_t available_slots_show(struct device *dev,
  307. struct device_attribute *attr, char *buf)
  308. {
  309. ssize_t rc;
  310. device_lock(dev);
  311. rc = __available_slots_show(dev_get_drvdata(dev), buf);
  312. device_unlock(dev);
  313. return rc;
  314. }
  315. static DEVICE_ATTR_RO(available_slots);
  316. static struct attribute *nvdimm_attributes[] = {
  317. &dev_attr_state.attr,
  318. &dev_attr_commands.attr,
  319. &dev_attr_available_slots.attr,
  320. NULL,
  321. };
  322. struct attribute_group nvdimm_attribute_group = {
  323. .attrs = nvdimm_attributes,
  324. };
  325. EXPORT_SYMBOL_GPL(nvdimm_attribute_group);
  326. struct nvdimm *nvdimm_create(struct nvdimm_bus *nvdimm_bus, void *provider_data,
  327. const struct attribute_group **groups, unsigned long flags,
  328. unsigned long cmd_mask, int num_flush,
  329. struct resource *flush_wpq)
  330. {
  331. struct nvdimm *nvdimm = kzalloc(sizeof(*nvdimm), GFP_KERNEL);
  332. struct device *dev;
  333. if (!nvdimm)
  334. return NULL;
  335. nvdimm->id = ida_simple_get(&dimm_ida, 0, 0, GFP_KERNEL);
  336. if (nvdimm->id < 0) {
  337. kfree(nvdimm);
  338. return NULL;
  339. }
  340. nvdimm->provider_data = provider_data;
  341. nvdimm->flags = flags;
  342. nvdimm->cmd_mask = cmd_mask;
  343. nvdimm->num_flush = num_flush;
  344. nvdimm->flush_wpq = flush_wpq;
  345. atomic_set(&nvdimm->busy, 0);
  346. dev = &nvdimm->dev;
  347. dev_set_name(dev, "nmem%d", nvdimm->id);
  348. dev->parent = &nvdimm_bus->dev;
  349. dev->type = &nvdimm_device_type;
  350. dev->devt = MKDEV(nvdimm_major, nvdimm->id);
  351. dev->groups = groups;
  352. nd_device_register(dev);
  353. return nvdimm;
  354. }
  355. EXPORT_SYMBOL_GPL(nvdimm_create);
  356. int alias_dpa_busy(struct device *dev, void *data)
  357. {
  358. resource_size_t map_end, blk_start, new;
  359. struct blk_alloc_info *info = data;
  360. struct nd_mapping *nd_mapping;
  361. struct nd_region *nd_region;
  362. struct nvdimm_drvdata *ndd;
  363. struct resource *res;
  364. int i;
  365. if (!is_memory(dev))
  366. return 0;
  367. nd_region = to_nd_region(dev);
  368. for (i = 0; i < nd_region->ndr_mappings; i++) {
  369. nd_mapping = &nd_region->mapping[i];
  370. if (nd_mapping->nvdimm == info->nd_mapping->nvdimm)
  371. break;
  372. }
  373. if (i >= nd_region->ndr_mappings)
  374. return 0;
  375. ndd = to_ndd(nd_mapping);
  376. map_end = nd_mapping->start + nd_mapping->size - 1;
  377. blk_start = nd_mapping->start;
  378. /*
  379. * In the allocation case ->res is set to free space that we are
  380. * looking to validate against PMEM aliasing collision rules
  381. * (i.e. BLK is allocated after all aliased PMEM).
  382. */
  383. if (info->res) {
  384. if (info->res->start >= nd_mapping->start
  385. && info->res->start < map_end)
  386. /* pass */;
  387. else
  388. return 0;
  389. }
  390. retry:
  391. /*
  392. * Find the free dpa from the end of the last pmem allocation to
  393. * the end of the interleave-set mapping.
  394. */
  395. for_each_dpa_resource(ndd, res) {
  396. if (strncmp(res->name, "pmem", 4) != 0)
  397. continue;
  398. if ((res->start >= blk_start && res->start < map_end)
  399. || (res->end >= blk_start
  400. && res->end <= map_end)) {
  401. new = max(blk_start, min(map_end + 1, res->end + 1));
  402. if (new != blk_start) {
  403. blk_start = new;
  404. goto retry;
  405. }
  406. }
  407. }
  408. /* update the free space range with the probed blk_start */
  409. if (info->res && blk_start > info->res->start) {
  410. info->res->start = max(info->res->start, blk_start);
  411. if (info->res->start > info->res->end)
  412. info->res->end = info->res->start - 1;
  413. return 1;
  414. }
  415. info->available -= blk_start - nd_mapping->start;
  416. return 0;
  417. }
  418. /**
  419. * nd_blk_available_dpa - account the unused dpa of BLK region
  420. * @nd_mapping: container of dpa-resource-root + labels
  421. *
  422. * Unlike PMEM, BLK namespaces can occupy discontiguous DPA ranges, but
  423. * we arrange for them to never start at an lower dpa than the last
  424. * PMEM allocation in an aliased region.
  425. */
  426. resource_size_t nd_blk_available_dpa(struct nd_region *nd_region)
  427. {
  428. struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
  429. struct nd_mapping *nd_mapping = &nd_region->mapping[0];
  430. struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
  431. struct blk_alloc_info info = {
  432. .nd_mapping = nd_mapping,
  433. .available = nd_mapping->size,
  434. .res = NULL,
  435. };
  436. struct resource *res;
  437. if (!ndd)
  438. return 0;
  439. device_for_each_child(&nvdimm_bus->dev, &info, alias_dpa_busy);
  440. /* now account for busy blk allocations in unaliased dpa */
  441. for_each_dpa_resource(ndd, res) {
  442. if (strncmp(res->name, "blk", 3) != 0)
  443. continue;
  444. info.available -= resource_size(res);
  445. }
  446. return info.available;
  447. }
  448. /**
  449. * nd_pmem_available_dpa - for the given dimm+region account unallocated dpa
  450. * @nd_mapping: container of dpa-resource-root + labels
  451. * @nd_region: constrain available space check to this reference region
  452. * @overlap: calculate available space assuming this level of overlap
  453. *
  454. * Validate that a PMEM label, if present, aligns with the start of an
  455. * interleave set and truncate the available size at the lowest BLK
  456. * overlap point.
  457. *
  458. * The expectation is that this routine is called multiple times as it
  459. * probes for the largest BLK encroachment for any single member DIMM of
  460. * the interleave set. Once that value is determined the PMEM-limit for
  461. * the set can be established.
  462. */
  463. resource_size_t nd_pmem_available_dpa(struct nd_region *nd_region,
  464. struct nd_mapping *nd_mapping, resource_size_t *overlap)
  465. {
  466. resource_size_t map_start, map_end, busy = 0, available, blk_start;
  467. struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
  468. struct resource *res;
  469. const char *reason;
  470. if (!ndd)
  471. return 0;
  472. map_start = nd_mapping->start;
  473. map_end = map_start + nd_mapping->size - 1;
  474. blk_start = max(map_start, map_end + 1 - *overlap);
  475. for_each_dpa_resource(ndd, res) {
  476. if (res->start >= map_start && res->start < map_end) {
  477. if (strncmp(res->name, "blk", 3) == 0)
  478. blk_start = min(blk_start,
  479. max(map_start, res->start));
  480. else if (res->end > map_end) {
  481. reason = "misaligned to iset";
  482. goto err;
  483. } else
  484. busy += resource_size(res);
  485. } else if (res->end >= map_start && res->end <= map_end) {
  486. if (strncmp(res->name, "blk", 3) == 0) {
  487. /*
  488. * If a BLK allocation overlaps the start of
  489. * PMEM the entire interleave set may now only
  490. * be used for BLK.
  491. */
  492. blk_start = map_start;
  493. } else
  494. busy += resource_size(res);
  495. } else if (map_start > res->start && map_start < res->end) {
  496. /* total eclipse of the mapping */
  497. busy += nd_mapping->size;
  498. blk_start = map_start;
  499. }
  500. }
  501. *overlap = map_end + 1 - blk_start;
  502. available = blk_start - map_start;
  503. if (busy < available)
  504. return available - busy;
  505. return 0;
  506. err:
  507. nd_dbg_dpa(nd_region, ndd, res, "%s\n", reason);
  508. return 0;
  509. }
  510. void nvdimm_free_dpa(struct nvdimm_drvdata *ndd, struct resource *res)
  511. {
  512. WARN_ON_ONCE(!is_nvdimm_bus_locked(ndd->dev));
  513. kfree(res->name);
  514. __release_region(&ndd->dpa, res->start, resource_size(res));
  515. }
  516. struct resource *nvdimm_allocate_dpa(struct nvdimm_drvdata *ndd,
  517. struct nd_label_id *label_id, resource_size_t start,
  518. resource_size_t n)
  519. {
  520. char *name = kmemdup(label_id, sizeof(*label_id), GFP_KERNEL);
  521. struct resource *res;
  522. if (!name)
  523. return NULL;
  524. WARN_ON_ONCE(!is_nvdimm_bus_locked(ndd->dev));
  525. res = __request_region(&ndd->dpa, start, n, name, 0);
  526. if (!res)
  527. kfree(name);
  528. return res;
  529. }
  530. /**
  531. * nvdimm_allocated_dpa - sum up the dpa currently allocated to this label_id
  532. * @nvdimm: container of dpa-resource-root + labels
  533. * @label_id: dpa resource name of the form {pmem|blk}-<human readable uuid>
  534. */
  535. resource_size_t nvdimm_allocated_dpa(struct nvdimm_drvdata *ndd,
  536. struct nd_label_id *label_id)
  537. {
  538. resource_size_t allocated = 0;
  539. struct resource *res;
  540. for_each_dpa_resource(ndd, res)
  541. if (strcmp(res->name, label_id->id) == 0)
  542. allocated += resource_size(res);
  543. return allocated;
  544. }
  545. static int count_dimms(struct device *dev, void *c)
  546. {
  547. int *count = c;
  548. if (is_nvdimm(dev))
  549. (*count)++;
  550. return 0;
  551. }
  552. int nvdimm_bus_check_dimm_count(struct nvdimm_bus *nvdimm_bus, int dimm_count)
  553. {
  554. int count = 0;
  555. /* Flush any possible dimm registration failures */
  556. nd_synchronize();
  557. device_for_each_child(&nvdimm_bus->dev, &count, count_dimms);
  558. dev_dbg(&nvdimm_bus->dev, "%s: count: %d\n", __func__, count);
  559. if (count != dimm_count)
  560. return -ENXIO;
  561. return 0;
  562. }
  563. EXPORT_SYMBOL_GPL(nvdimm_bus_check_dimm_count);
  564. void __exit nvdimm_devs_exit(void)
  565. {
  566. ida_destroy(&dimm_ida);
  567. }