io.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446
  1. /*
  2. * Copyright (c) International Business Machines Corp., 2006
  3. * Copyright (c) Nokia Corporation, 2006, 2007
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  13. * the GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. *
  19. * Author: Artem Bityutskiy (Битюцкий Артём)
  20. */
  21. /*
  22. * UBI input/output sub-system.
  23. *
  24. * This sub-system provides a uniform way to work with all kinds of the
  25. * underlying MTD devices. It also implements handy functions for reading and
  26. * writing UBI headers.
  27. *
  28. * We are trying to have a paranoid mindset and not to trust to what we read
  29. * from the flash media in order to be more secure and robust. So this
  30. * sub-system validates every single header it reads from the flash media.
  31. *
  32. * Some words about how the eraseblock headers are stored.
  33. *
  34. * The erase counter header is always stored at offset zero. By default, the
  35. * VID header is stored after the EC header at the closest aligned offset
  36. * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
  37. * header at the closest aligned offset. But this default layout may be
  38. * changed. For example, for different reasons (e.g., optimization) UBI may be
  39. * asked to put the VID header at further offset, and even at an unaligned
  40. * offset. Of course, if the offset of the VID header is unaligned, UBI adds
  41. * proper padding in front of it. Data offset may also be changed but it has to
  42. * be aligned.
  43. *
  44. * About minimal I/O units. In general, UBI assumes flash device model where
  45. * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
  46. * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
  47. * @ubi->mtd->writesize field. But as an exception, UBI admits use of another
  48. * (smaller) minimal I/O unit size for EC and VID headers to make it possible
  49. * to do different optimizations.
  50. *
  51. * This is extremely useful in case of NAND flashes which admit of several
  52. * write operations to one NAND page. In this case UBI can fit EC and VID
  53. * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
  54. * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
  55. * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
  56. * users.
  57. *
  58. * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
  59. * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
  60. * headers.
  61. *
  62. * Q: why not just to treat sub-page as a minimal I/O unit of this flash
  63. * device, e.g., make @ubi->min_io_size = 512 in the example above?
  64. *
  65. * A: because when writing a sub-page, MTD still writes a full 2K page but the
  66. * bytes which are not relevant to the sub-page are 0xFF. So, basically,
  67. * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
  68. * Thus, we prefer to use sub-pages only for EC and VID headers.
  69. *
  70. * As it was noted above, the VID header may start at a non-aligned offset.
  71. * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
  72. * the VID header may reside at offset 1984 which is the last 64 bytes of the
  73. * last sub-page (EC header is always at offset zero). This causes some
  74. * difficulties when reading and writing VID headers.
  75. *
  76. * Suppose we have a 64-byte buffer and we read a VID header at it. We change
  77. * the data and want to write this VID header out. As we can only write in
  78. * 512-byte chunks, we have to allocate one more buffer and copy our VID header
  79. * to offset 448 of this buffer.
  80. *
  81. * The I/O sub-system does the following trick in order to avoid this extra
  82. * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
  83. * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
  84. * When the VID header is being written out, it shifts the VID header pointer
  85. * back and writes the whole sub-page.
  86. */
  87. #include <linux/crc32.h>
  88. #include <linux/err.h>
  89. #include <linux/slab.h>
  90. #include "ubi.h"
  91. static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
  92. static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
  93. static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
  94. const struct ubi_ec_hdr *ec_hdr);
  95. static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
  96. static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
  97. const struct ubi_vid_hdr *vid_hdr);
  98. static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
  99. int offset, int len);
  100. /**
  101. * ubi_io_read - read data from a physical eraseblock.
  102. * @ubi: UBI device description object
  103. * @buf: buffer where to store the read data
  104. * @pnum: physical eraseblock number to read from
  105. * @offset: offset within the physical eraseblock from where to read
  106. * @len: how many bytes to read
  107. *
  108. * This function reads data from offset @offset of physical eraseblock @pnum
  109. * and stores the read data in the @buf buffer. The following return codes are
  110. * possible:
  111. *
  112. * o %0 if all the requested data were successfully read;
  113. * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
  114. * correctable bit-flips were detected; this is harmless but may indicate
  115. * that this eraseblock may become bad soon (but do not have to);
  116. * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
  117. * example it can be an ECC error in case of NAND; this most probably means
  118. * that the data is corrupted;
  119. * o %-EIO if some I/O error occurred;
  120. * o other negative error codes in case of other errors.
  121. */
  122. int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
  123. int len)
  124. {
  125. int err, retries = 0;
  126. size_t read;
  127. loff_t addr;
  128. dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
  129. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  130. ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
  131. ubi_assert(len > 0);
  132. err = self_check_not_bad(ubi, pnum);
  133. if (err)
  134. return err;
  135. /*
  136. * Deliberately corrupt the buffer to improve robustness. Indeed, if we
  137. * do not do this, the following may happen:
  138. * 1. The buffer contains data from previous operation, e.g., read from
  139. * another PEB previously. The data looks like expected, e.g., if we
  140. * just do not read anything and return - the caller would not
  141. * notice this. E.g., if we are reading a VID header, the buffer may
  142. * contain a valid VID header from another PEB.
  143. * 2. The driver is buggy and returns us success or -EBADMSG or
  144. * -EUCLEAN, but it does not actually put any data to the buffer.
  145. *
  146. * This may confuse UBI or upper layers - they may think the buffer
  147. * contains valid data while in fact it is just old data. This is
  148. * especially possible because UBI (and UBIFS) relies on CRC, and
  149. * treats data as correct even in case of ECC errors if the CRC is
  150. * correct.
  151. *
  152. * Try to prevent this situation by changing the first byte of the
  153. * buffer.
  154. */
  155. *((uint8_t *)buf) ^= 0xFF;
  156. addr = (loff_t)pnum * ubi->peb_size + offset;
  157. retry:
  158. err = mtd_read(ubi->mtd, addr, len, &read, buf);
  159. if (err) {
  160. const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
  161. if (mtd_is_bitflip(err)) {
  162. /*
  163. * -EUCLEAN is reported if there was a bit-flip which
  164. * was corrected, so this is harmless.
  165. *
  166. * We do not report about it here unless debugging is
  167. * enabled. A corresponding message will be printed
  168. * later, when it is has been scrubbed.
  169. */
  170. ubi_msg(ubi, "fixable bit-flip detected at PEB %d",
  171. pnum);
  172. ubi_assert(len == read);
  173. return UBI_IO_BITFLIPS;
  174. }
  175. if (retries++ < UBI_IO_RETRIES) {
  176. ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
  177. err, errstr, len, pnum, offset, read);
  178. yield();
  179. goto retry;
  180. }
  181. ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
  182. err, errstr, len, pnum, offset, read);
  183. dump_stack();
  184. /*
  185. * The driver should never return -EBADMSG if it failed to read
  186. * all the requested data. But some buggy drivers might do
  187. * this, so we change it to -EIO.
  188. */
  189. if (read != len && mtd_is_eccerr(err)) {
  190. ubi_assert(0);
  191. err = -EIO;
  192. }
  193. } else {
  194. ubi_assert(len == read);
  195. if (ubi_dbg_is_bitflip(ubi)) {
  196. dbg_gen("bit-flip (emulated)");
  197. err = UBI_IO_BITFLIPS;
  198. }
  199. }
  200. return err;
  201. }
  202. /**
  203. * ubi_io_write - write data to a physical eraseblock.
  204. * @ubi: UBI device description object
  205. * @buf: buffer with the data to write
  206. * @pnum: physical eraseblock number to write to
  207. * @offset: offset within the physical eraseblock where to write
  208. * @len: how many bytes to write
  209. *
  210. * This function writes @len bytes of data from buffer @buf to offset @offset
  211. * of physical eraseblock @pnum. If all the data were successfully written,
  212. * zero is returned. If an error occurred, this function returns a negative
  213. * error code. If %-EIO is returned, the physical eraseblock most probably went
  214. * bad.
  215. *
  216. * Note, in case of an error, it is possible that something was still written
  217. * to the flash media, but may be some garbage.
  218. */
  219. int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
  220. int len)
  221. {
  222. int err;
  223. size_t written;
  224. loff_t addr;
  225. dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
  226. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  227. ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
  228. ubi_assert(offset % ubi->hdrs_min_io_size == 0);
  229. ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
  230. if (ubi->ro_mode) {
  231. ubi_err(ubi, "read-only mode");
  232. return -EROFS;
  233. }
  234. err = self_check_not_bad(ubi, pnum);
  235. if (err)
  236. return err;
  237. /* The area we are writing to has to contain all 0xFF bytes */
  238. err = ubi_self_check_all_ff(ubi, pnum, offset, len);
  239. if (err)
  240. return err;
  241. if (offset >= ubi->leb_start) {
  242. /*
  243. * We write to the data area of the physical eraseblock. Make
  244. * sure it has valid EC and VID headers.
  245. */
  246. err = self_check_peb_ec_hdr(ubi, pnum);
  247. if (err)
  248. return err;
  249. err = self_check_peb_vid_hdr(ubi, pnum);
  250. if (err)
  251. return err;
  252. }
  253. if (ubi_dbg_is_write_failure(ubi)) {
  254. ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)",
  255. len, pnum, offset);
  256. dump_stack();
  257. return -EIO;
  258. }
  259. addr = (loff_t)pnum * ubi->peb_size + offset;
  260. err = mtd_write(ubi->mtd, addr, len, &written, buf);
  261. if (err) {
  262. ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
  263. err, len, pnum, offset, written);
  264. dump_stack();
  265. ubi_dump_flash(ubi, pnum, offset, len);
  266. } else
  267. ubi_assert(written == len);
  268. if (!err) {
  269. err = self_check_write(ubi, buf, pnum, offset, len);
  270. if (err)
  271. return err;
  272. /*
  273. * Since we always write sequentially, the rest of the PEB has
  274. * to contain only 0xFF bytes.
  275. */
  276. offset += len;
  277. len = ubi->peb_size - offset;
  278. if (len)
  279. err = ubi_self_check_all_ff(ubi, pnum, offset, len);
  280. }
  281. return err;
  282. }
  283. /**
  284. * erase_callback - MTD erasure call-back.
  285. * @ei: MTD erase information object.
  286. *
  287. * Note, even though MTD erase interface is asynchronous, all the current
  288. * implementations are synchronous anyway.
  289. */
  290. static void erase_callback(struct erase_info *ei)
  291. {
  292. wake_up_interruptible((wait_queue_head_t *)ei->priv);
  293. }
  294. /**
  295. * do_sync_erase - synchronously erase a physical eraseblock.
  296. * @ubi: UBI device description object
  297. * @pnum: the physical eraseblock number to erase
  298. *
  299. * This function synchronously erases physical eraseblock @pnum and returns
  300. * zero in case of success and a negative error code in case of failure. If
  301. * %-EIO is returned, the physical eraseblock most probably went bad.
  302. */
  303. static int do_sync_erase(struct ubi_device *ubi, int pnum)
  304. {
  305. int err, retries = 0;
  306. struct erase_info ei;
  307. wait_queue_head_t wq;
  308. dbg_io("erase PEB %d", pnum);
  309. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  310. if (ubi->ro_mode) {
  311. ubi_err(ubi, "read-only mode");
  312. return -EROFS;
  313. }
  314. retry:
  315. init_waitqueue_head(&wq);
  316. memset(&ei, 0, sizeof(struct erase_info));
  317. ei.mtd = ubi->mtd;
  318. ei.addr = (loff_t)pnum * ubi->peb_size;
  319. ei.len = ubi->peb_size;
  320. ei.callback = erase_callback;
  321. ei.priv = (unsigned long)&wq;
  322. err = mtd_erase(ubi->mtd, &ei);
  323. if (err) {
  324. if (retries++ < UBI_IO_RETRIES) {
  325. ubi_warn(ubi, "error %d while erasing PEB %d, retry",
  326. err, pnum);
  327. yield();
  328. goto retry;
  329. }
  330. ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err);
  331. dump_stack();
  332. return err;
  333. }
  334. err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
  335. ei.state == MTD_ERASE_FAILED);
  336. if (err) {
  337. ubi_err(ubi, "interrupted PEB %d erasure", pnum);
  338. return -EINTR;
  339. }
  340. if (ei.state == MTD_ERASE_FAILED) {
  341. if (retries++ < UBI_IO_RETRIES) {
  342. ubi_warn(ubi, "error while erasing PEB %d, retry",
  343. pnum);
  344. yield();
  345. goto retry;
  346. }
  347. ubi_err(ubi, "cannot erase PEB %d", pnum);
  348. dump_stack();
  349. return -EIO;
  350. }
  351. err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
  352. if (err)
  353. return err;
  354. if (ubi_dbg_is_erase_failure(ubi)) {
  355. ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum);
  356. return -EIO;
  357. }
  358. return 0;
  359. }
  360. /* Patterns to write to a physical eraseblock when torturing it */
  361. static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
  362. /**
  363. * torture_peb - test a supposedly bad physical eraseblock.
  364. * @ubi: UBI device description object
  365. * @pnum: the physical eraseblock number to test
  366. *
  367. * This function returns %-EIO if the physical eraseblock did not pass the
  368. * test, a positive number of erase operations done if the test was
  369. * successfully passed, and other negative error codes in case of other errors.
  370. */
  371. static int torture_peb(struct ubi_device *ubi, int pnum)
  372. {
  373. int err, i, patt_count;
  374. ubi_msg(ubi, "run torture test for PEB %d", pnum);
  375. patt_count = ARRAY_SIZE(patterns);
  376. ubi_assert(patt_count > 0);
  377. mutex_lock(&ubi->buf_mutex);
  378. for (i = 0; i < patt_count; i++) {
  379. err = do_sync_erase(ubi, pnum);
  380. if (err)
  381. goto out;
  382. /* Make sure the PEB contains only 0xFF bytes */
  383. err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
  384. if (err)
  385. goto out;
  386. err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
  387. if (err == 0) {
  388. ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found",
  389. pnum);
  390. err = -EIO;
  391. goto out;
  392. }
  393. /* Write a pattern and check it */
  394. memset(ubi->peb_buf, patterns[i], ubi->peb_size);
  395. err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
  396. if (err)
  397. goto out;
  398. memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
  399. err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
  400. if (err)
  401. goto out;
  402. err = ubi_check_pattern(ubi->peb_buf, patterns[i],
  403. ubi->peb_size);
  404. if (err == 0) {
  405. ubi_err(ubi, "pattern %x checking failed for PEB %d",
  406. patterns[i], pnum);
  407. err = -EIO;
  408. goto out;
  409. }
  410. }
  411. err = patt_count;
  412. ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum);
  413. out:
  414. mutex_unlock(&ubi->buf_mutex);
  415. if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
  416. /*
  417. * If a bit-flip or data integrity error was detected, the test
  418. * has not passed because it happened on a freshly erased
  419. * physical eraseblock which means something is wrong with it.
  420. */
  421. ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad",
  422. pnum);
  423. err = -EIO;
  424. }
  425. return err;
  426. }
  427. /**
  428. * nor_erase_prepare - prepare a NOR flash PEB for erasure.
  429. * @ubi: UBI device description object
  430. * @pnum: physical eraseblock number to prepare
  431. *
  432. * NOR flash, or at least some of them, have peculiar embedded PEB erasure
  433. * algorithm: the PEB is first filled with zeroes, then it is erased. And
  434. * filling with zeroes starts from the end of the PEB. This was observed with
  435. * Spansion S29GL512N NOR flash.
  436. *
  437. * This means that in case of a power cut we may end up with intact data at the
  438. * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
  439. * EC and VID headers are OK, but a large chunk of data at the end of PEB is
  440. * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
  441. * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
  442. *
  443. * This function is called before erasing NOR PEBs and it zeroes out EC and VID
  444. * magic numbers in order to invalidate them and prevent the failures. Returns
  445. * zero in case of success and a negative error code in case of failure.
  446. */
  447. static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
  448. {
  449. int err;
  450. size_t written;
  451. loff_t addr;
  452. uint32_t data = 0;
  453. struct ubi_ec_hdr ec_hdr;
  454. struct ubi_vid_io_buf vidb;
  455. /*
  456. * Note, we cannot generally define VID header buffers on stack,
  457. * because of the way we deal with these buffers (see the header
  458. * comment in this file). But we know this is a NOR-specific piece of
  459. * code, so we can do this. But yes, this is error-prone and we should
  460. * (pre-)allocate VID header buffer instead.
  461. */
  462. struct ubi_vid_hdr vid_hdr;
  463. /*
  464. * If VID or EC is valid, we have to corrupt them before erasing.
  465. * It is important to first invalidate the EC header, and then the VID
  466. * header. Otherwise a power cut may lead to valid EC header and
  467. * invalid VID header, in which case UBI will treat this PEB as
  468. * corrupted and will try to preserve it, and print scary warnings.
  469. */
  470. addr = (loff_t)pnum * ubi->peb_size;
  471. err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
  472. if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
  473. err != UBI_IO_FF){
  474. err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
  475. if(err)
  476. goto error;
  477. }
  478. ubi_init_vid_buf(ubi, &vidb, &vid_hdr);
  479. ubi_assert(&vid_hdr == ubi_get_vid_hdr(&vidb));
  480. err = ubi_io_read_vid_hdr(ubi, pnum, &vidb, 0);
  481. if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
  482. err != UBI_IO_FF){
  483. addr += ubi->vid_hdr_aloffset;
  484. err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
  485. if (err)
  486. goto error;
  487. }
  488. return 0;
  489. error:
  490. /*
  491. * The PEB contains a valid VID or EC header, but we cannot invalidate
  492. * it. Supposedly the flash media or the driver is screwed up, so
  493. * return an error.
  494. */
  495. ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err);
  496. ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
  497. return -EIO;
  498. }
  499. /**
  500. * ubi_io_sync_erase - synchronously erase a physical eraseblock.
  501. * @ubi: UBI device description object
  502. * @pnum: physical eraseblock number to erase
  503. * @torture: if this physical eraseblock has to be tortured
  504. *
  505. * This function synchronously erases physical eraseblock @pnum. If @torture
  506. * flag is not zero, the physical eraseblock is checked by means of writing
  507. * different patterns to it and reading them back. If the torturing is enabled,
  508. * the physical eraseblock is erased more than once.
  509. *
  510. * This function returns the number of erasures made in case of success, %-EIO
  511. * if the erasure failed or the torturing test failed, and other negative error
  512. * codes in case of other errors. Note, %-EIO means that the physical
  513. * eraseblock is bad.
  514. */
  515. int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
  516. {
  517. int err, ret = 0;
  518. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  519. err = self_check_not_bad(ubi, pnum);
  520. if (err != 0)
  521. return err;
  522. if (ubi->ro_mode) {
  523. ubi_err(ubi, "read-only mode");
  524. return -EROFS;
  525. }
  526. if (ubi->nor_flash) {
  527. err = nor_erase_prepare(ubi, pnum);
  528. if (err)
  529. return err;
  530. }
  531. if (torture) {
  532. ret = torture_peb(ubi, pnum);
  533. if (ret < 0)
  534. return ret;
  535. }
  536. err = do_sync_erase(ubi, pnum);
  537. if (err)
  538. return err;
  539. return ret + 1;
  540. }
  541. /**
  542. * ubi_io_is_bad - check if a physical eraseblock is bad.
  543. * @ubi: UBI device description object
  544. * @pnum: the physical eraseblock number to check
  545. *
  546. * This function returns a positive number if the physical eraseblock is bad,
  547. * zero if not, and a negative error code if an error occurred.
  548. */
  549. int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
  550. {
  551. struct mtd_info *mtd = ubi->mtd;
  552. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  553. if (ubi->bad_allowed) {
  554. int ret;
  555. ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
  556. if (ret < 0)
  557. ubi_err(ubi, "error %d while checking if PEB %d is bad",
  558. ret, pnum);
  559. else if (ret)
  560. dbg_io("PEB %d is bad", pnum);
  561. return ret;
  562. }
  563. return 0;
  564. }
  565. /**
  566. * ubi_io_mark_bad - mark a physical eraseblock as bad.
  567. * @ubi: UBI device description object
  568. * @pnum: the physical eraseblock number to mark
  569. *
  570. * This function returns zero in case of success and a negative error code in
  571. * case of failure.
  572. */
  573. int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
  574. {
  575. int err;
  576. struct mtd_info *mtd = ubi->mtd;
  577. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  578. if (ubi->ro_mode) {
  579. ubi_err(ubi, "read-only mode");
  580. return -EROFS;
  581. }
  582. if (!ubi->bad_allowed)
  583. return 0;
  584. err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
  585. if (err)
  586. ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err);
  587. return err;
  588. }
  589. /**
  590. * validate_ec_hdr - validate an erase counter header.
  591. * @ubi: UBI device description object
  592. * @ec_hdr: the erase counter header to check
  593. *
  594. * This function returns zero if the erase counter header is OK, and %1 if
  595. * not.
  596. */
  597. static int validate_ec_hdr(const struct ubi_device *ubi,
  598. const struct ubi_ec_hdr *ec_hdr)
  599. {
  600. long long ec;
  601. int vid_hdr_offset, leb_start;
  602. ec = be64_to_cpu(ec_hdr->ec);
  603. vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
  604. leb_start = be32_to_cpu(ec_hdr->data_offset);
  605. if (ec_hdr->version != UBI_VERSION) {
  606. ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d",
  607. UBI_VERSION, (int)ec_hdr->version);
  608. goto bad;
  609. }
  610. if (vid_hdr_offset != ubi->vid_hdr_offset) {
  611. ubi_err(ubi, "bad VID header offset %d, expected %d",
  612. vid_hdr_offset, ubi->vid_hdr_offset);
  613. goto bad;
  614. }
  615. if (leb_start != ubi->leb_start) {
  616. ubi_err(ubi, "bad data offset %d, expected %d",
  617. leb_start, ubi->leb_start);
  618. goto bad;
  619. }
  620. if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
  621. ubi_err(ubi, "bad erase counter %lld", ec);
  622. goto bad;
  623. }
  624. return 0;
  625. bad:
  626. ubi_err(ubi, "bad EC header");
  627. ubi_dump_ec_hdr(ec_hdr);
  628. dump_stack();
  629. return 1;
  630. }
  631. /**
  632. * ubi_io_read_ec_hdr - read and check an erase counter header.
  633. * @ubi: UBI device description object
  634. * @pnum: physical eraseblock to read from
  635. * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
  636. * header
  637. * @verbose: be verbose if the header is corrupted or was not found
  638. *
  639. * This function reads erase counter header from physical eraseblock @pnum and
  640. * stores it in @ec_hdr. This function also checks CRC checksum of the read
  641. * erase counter header. The following codes may be returned:
  642. *
  643. * o %0 if the CRC checksum is correct and the header was successfully read;
  644. * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
  645. * and corrected by the flash driver; this is harmless but may indicate that
  646. * this eraseblock may become bad soon (but may be not);
  647. * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
  648. * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
  649. * a data integrity error (uncorrectable ECC error in case of NAND);
  650. * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
  651. * o a negative error code in case of failure.
  652. */
  653. int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
  654. struct ubi_ec_hdr *ec_hdr, int verbose)
  655. {
  656. int err, read_err;
  657. uint32_t crc, magic, hdr_crc;
  658. dbg_io("read EC header from PEB %d", pnum);
  659. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  660. read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
  661. if (read_err) {
  662. if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
  663. return read_err;
  664. /*
  665. * We read all the data, but either a correctable bit-flip
  666. * occurred, or MTD reported a data integrity error
  667. * (uncorrectable ECC error in case of NAND). The former is
  668. * harmless, the later may mean that the read data is
  669. * corrupted. But we have a CRC check-sum and we will detect
  670. * this. If the EC header is still OK, we just report this as
  671. * there was a bit-flip, to force scrubbing.
  672. */
  673. }
  674. magic = be32_to_cpu(ec_hdr->magic);
  675. if (magic != UBI_EC_HDR_MAGIC) {
  676. if (mtd_is_eccerr(read_err))
  677. return UBI_IO_BAD_HDR_EBADMSG;
  678. /*
  679. * The magic field is wrong. Let's check if we have read all
  680. * 0xFF. If yes, this physical eraseblock is assumed to be
  681. * empty.
  682. */
  683. if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
  684. /* The physical eraseblock is supposedly empty */
  685. if (verbose)
  686. ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes",
  687. pnum);
  688. dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
  689. pnum);
  690. if (!read_err)
  691. return UBI_IO_FF;
  692. else
  693. return UBI_IO_FF_BITFLIPS;
  694. }
  695. /*
  696. * This is not a valid erase counter header, and these are not
  697. * 0xFF bytes. Report that the header is corrupted.
  698. */
  699. if (verbose) {
  700. ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
  701. pnum, magic, UBI_EC_HDR_MAGIC);
  702. ubi_dump_ec_hdr(ec_hdr);
  703. }
  704. dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
  705. pnum, magic, UBI_EC_HDR_MAGIC);
  706. return UBI_IO_BAD_HDR;
  707. }
  708. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  709. hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
  710. if (hdr_crc != crc) {
  711. if (verbose) {
  712. ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
  713. pnum, crc, hdr_crc);
  714. ubi_dump_ec_hdr(ec_hdr);
  715. }
  716. dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
  717. pnum, crc, hdr_crc);
  718. if (!read_err)
  719. return UBI_IO_BAD_HDR;
  720. else
  721. return UBI_IO_BAD_HDR_EBADMSG;
  722. }
  723. /* And of course validate what has just been read from the media */
  724. err = validate_ec_hdr(ubi, ec_hdr);
  725. if (err) {
  726. ubi_err(ubi, "validation failed for PEB %d", pnum);
  727. return -EINVAL;
  728. }
  729. /*
  730. * If there was %-EBADMSG, but the header CRC is still OK, report about
  731. * a bit-flip to force scrubbing on this PEB.
  732. */
  733. return read_err ? UBI_IO_BITFLIPS : 0;
  734. }
  735. /**
  736. * ubi_io_write_ec_hdr - write an erase counter header.
  737. * @ubi: UBI device description object
  738. * @pnum: physical eraseblock to write to
  739. * @ec_hdr: the erase counter header to write
  740. *
  741. * This function writes erase counter header described by @ec_hdr to physical
  742. * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
  743. * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
  744. * field.
  745. *
  746. * This function returns zero in case of success and a negative error code in
  747. * case of failure. If %-EIO is returned, the physical eraseblock most probably
  748. * went bad.
  749. */
  750. int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
  751. struct ubi_ec_hdr *ec_hdr)
  752. {
  753. int err;
  754. uint32_t crc;
  755. dbg_io("write EC header to PEB %d", pnum);
  756. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  757. ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
  758. ec_hdr->version = UBI_VERSION;
  759. ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
  760. ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
  761. ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
  762. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  763. ec_hdr->hdr_crc = cpu_to_be32(crc);
  764. err = self_check_ec_hdr(ubi, pnum, ec_hdr);
  765. if (err)
  766. return err;
  767. if (ubi_dbg_power_cut(ubi, POWER_CUT_EC_WRITE))
  768. return -EROFS;
  769. err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
  770. return err;
  771. }
  772. /**
  773. * validate_vid_hdr - validate a volume identifier header.
  774. * @ubi: UBI device description object
  775. * @vid_hdr: the volume identifier header to check
  776. *
  777. * This function checks that data stored in the volume identifier header
  778. * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
  779. */
  780. static int validate_vid_hdr(const struct ubi_device *ubi,
  781. const struct ubi_vid_hdr *vid_hdr)
  782. {
  783. int vol_type = vid_hdr->vol_type;
  784. int copy_flag = vid_hdr->copy_flag;
  785. int vol_id = be32_to_cpu(vid_hdr->vol_id);
  786. int lnum = be32_to_cpu(vid_hdr->lnum);
  787. int compat = vid_hdr->compat;
  788. int data_size = be32_to_cpu(vid_hdr->data_size);
  789. int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
  790. int data_pad = be32_to_cpu(vid_hdr->data_pad);
  791. int data_crc = be32_to_cpu(vid_hdr->data_crc);
  792. int usable_leb_size = ubi->leb_size - data_pad;
  793. if (copy_flag != 0 && copy_flag != 1) {
  794. ubi_err(ubi, "bad copy_flag");
  795. goto bad;
  796. }
  797. if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
  798. data_pad < 0) {
  799. ubi_err(ubi, "negative values");
  800. goto bad;
  801. }
  802. if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
  803. ubi_err(ubi, "bad vol_id");
  804. goto bad;
  805. }
  806. if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
  807. ubi_err(ubi, "bad compat");
  808. goto bad;
  809. }
  810. if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
  811. compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
  812. compat != UBI_COMPAT_REJECT) {
  813. ubi_err(ubi, "bad compat");
  814. goto bad;
  815. }
  816. if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
  817. ubi_err(ubi, "bad vol_type");
  818. goto bad;
  819. }
  820. if (data_pad >= ubi->leb_size / 2) {
  821. ubi_err(ubi, "bad data_pad");
  822. goto bad;
  823. }
  824. if (data_size > ubi->leb_size) {
  825. ubi_err(ubi, "bad data_size");
  826. goto bad;
  827. }
  828. if (vol_type == UBI_VID_STATIC) {
  829. /*
  830. * Although from high-level point of view static volumes may
  831. * contain zero bytes of data, but no VID headers can contain
  832. * zero at these fields, because they empty volumes do not have
  833. * mapped logical eraseblocks.
  834. */
  835. if (used_ebs == 0) {
  836. ubi_err(ubi, "zero used_ebs");
  837. goto bad;
  838. }
  839. if (data_size == 0) {
  840. ubi_err(ubi, "zero data_size");
  841. goto bad;
  842. }
  843. if (lnum < used_ebs - 1) {
  844. if (data_size != usable_leb_size) {
  845. ubi_err(ubi, "bad data_size");
  846. goto bad;
  847. }
  848. } else if (lnum == used_ebs - 1) {
  849. if (data_size == 0) {
  850. ubi_err(ubi, "bad data_size at last LEB");
  851. goto bad;
  852. }
  853. } else {
  854. ubi_err(ubi, "too high lnum");
  855. goto bad;
  856. }
  857. } else {
  858. if (copy_flag == 0) {
  859. if (data_crc != 0) {
  860. ubi_err(ubi, "non-zero data CRC");
  861. goto bad;
  862. }
  863. if (data_size != 0) {
  864. ubi_err(ubi, "non-zero data_size");
  865. goto bad;
  866. }
  867. } else {
  868. if (data_size == 0) {
  869. ubi_err(ubi, "zero data_size of copy");
  870. goto bad;
  871. }
  872. }
  873. if (used_ebs != 0) {
  874. ubi_err(ubi, "bad used_ebs");
  875. goto bad;
  876. }
  877. }
  878. return 0;
  879. bad:
  880. ubi_err(ubi, "bad VID header");
  881. ubi_dump_vid_hdr(vid_hdr);
  882. dump_stack();
  883. return 1;
  884. }
  885. /**
  886. * ubi_io_read_vid_hdr - read and check a volume identifier header.
  887. * @ubi: UBI device description object
  888. * @pnum: physical eraseblock number to read from
  889. * @vidb: the volume identifier buffer to store data in
  890. * @verbose: be verbose if the header is corrupted or wasn't found
  891. *
  892. * This function reads the volume identifier header from physical eraseblock
  893. * @pnum and stores it in @vidb. It also checks CRC checksum of the read
  894. * volume identifier header. The error codes are the same as in
  895. * 'ubi_io_read_ec_hdr()'.
  896. *
  897. * Note, the implementation of this function is also very similar to
  898. * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
  899. */
  900. int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
  901. struct ubi_vid_io_buf *vidb, int verbose)
  902. {
  903. int err, read_err;
  904. uint32_t crc, magic, hdr_crc;
  905. struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
  906. void *p = vidb->buffer;
  907. dbg_io("read VID header from PEB %d", pnum);
  908. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  909. read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
  910. ubi->vid_hdr_shift + UBI_VID_HDR_SIZE);
  911. if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
  912. return read_err;
  913. magic = be32_to_cpu(vid_hdr->magic);
  914. if (magic != UBI_VID_HDR_MAGIC) {
  915. if (mtd_is_eccerr(read_err))
  916. return UBI_IO_BAD_HDR_EBADMSG;
  917. if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
  918. if (verbose)
  919. ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes",
  920. pnum);
  921. dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
  922. pnum);
  923. if (!read_err)
  924. return UBI_IO_FF;
  925. else
  926. return UBI_IO_FF_BITFLIPS;
  927. }
  928. if (verbose) {
  929. ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
  930. pnum, magic, UBI_VID_HDR_MAGIC);
  931. ubi_dump_vid_hdr(vid_hdr);
  932. }
  933. dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
  934. pnum, magic, UBI_VID_HDR_MAGIC);
  935. return UBI_IO_BAD_HDR;
  936. }
  937. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
  938. hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
  939. if (hdr_crc != crc) {
  940. if (verbose) {
  941. ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x",
  942. pnum, crc, hdr_crc);
  943. ubi_dump_vid_hdr(vid_hdr);
  944. }
  945. dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
  946. pnum, crc, hdr_crc);
  947. if (!read_err)
  948. return UBI_IO_BAD_HDR;
  949. else
  950. return UBI_IO_BAD_HDR_EBADMSG;
  951. }
  952. err = validate_vid_hdr(ubi, vid_hdr);
  953. if (err) {
  954. ubi_err(ubi, "validation failed for PEB %d", pnum);
  955. return -EINVAL;
  956. }
  957. return read_err ? UBI_IO_BITFLIPS : 0;
  958. }
  959. /**
  960. * ubi_io_write_vid_hdr - write a volume identifier header.
  961. * @ubi: UBI device description object
  962. * @pnum: the physical eraseblock number to write to
  963. * @vidb: the volume identifier buffer to write
  964. *
  965. * This function writes the volume identifier header described by @vid_hdr to
  966. * physical eraseblock @pnum. This function automatically fills the
  967. * @vidb->hdr->magic and the @vidb->hdr->version fields, as well as calculates
  968. * header CRC checksum and stores it at vidb->hdr->hdr_crc.
  969. *
  970. * This function returns zero in case of success and a negative error code in
  971. * case of failure. If %-EIO is returned, the physical eraseblock probably went
  972. * bad.
  973. */
  974. int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
  975. struct ubi_vid_io_buf *vidb)
  976. {
  977. struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
  978. int err;
  979. uint32_t crc;
  980. void *p = vidb->buffer;
  981. dbg_io("write VID header to PEB %d", pnum);
  982. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  983. err = self_check_peb_ec_hdr(ubi, pnum);
  984. if (err)
  985. return err;
  986. vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
  987. vid_hdr->version = UBI_VERSION;
  988. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
  989. vid_hdr->hdr_crc = cpu_to_be32(crc);
  990. err = self_check_vid_hdr(ubi, pnum, vid_hdr);
  991. if (err)
  992. return err;
  993. if (ubi_dbg_power_cut(ubi, POWER_CUT_VID_WRITE))
  994. return -EROFS;
  995. err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
  996. ubi->vid_hdr_alsize);
  997. return err;
  998. }
  999. /**
  1000. * self_check_not_bad - ensure that a physical eraseblock is not bad.
  1001. * @ubi: UBI device description object
  1002. * @pnum: physical eraseblock number to check
  1003. *
  1004. * This function returns zero if the physical eraseblock is good, %-EINVAL if
  1005. * it is bad and a negative error code if an error occurred.
  1006. */
  1007. static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
  1008. {
  1009. int err;
  1010. if (!ubi_dbg_chk_io(ubi))
  1011. return 0;
  1012. err = ubi_io_is_bad(ubi, pnum);
  1013. if (!err)
  1014. return err;
  1015. ubi_err(ubi, "self-check failed for PEB %d", pnum);
  1016. dump_stack();
  1017. return err > 0 ? -EINVAL : err;
  1018. }
  1019. /**
  1020. * self_check_ec_hdr - check if an erase counter header is all right.
  1021. * @ubi: UBI device description object
  1022. * @pnum: physical eraseblock number the erase counter header belongs to
  1023. * @ec_hdr: the erase counter header to check
  1024. *
  1025. * This function returns zero if the erase counter header contains valid
  1026. * values, and %-EINVAL if not.
  1027. */
  1028. static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
  1029. const struct ubi_ec_hdr *ec_hdr)
  1030. {
  1031. int err;
  1032. uint32_t magic;
  1033. if (!ubi_dbg_chk_io(ubi))
  1034. return 0;
  1035. magic = be32_to_cpu(ec_hdr->magic);
  1036. if (magic != UBI_EC_HDR_MAGIC) {
  1037. ubi_err(ubi, "bad magic %#08x, must be %#08x",
  1038. magic, UBI_EC_HDR_MAGIC);
  1039. goto fail;
  1040. }
  1041. err = validate_ec_hdr(ubi, ec_hdr);
  1042. if (err) {
  1043. ubi_err(ubi, "self-check failed for PEB %d", pnum);
  1044. goto fail;
  1045. }
  1046. return 0;
  1047. fail:
  1048. ubi_dump_ec_hdr(ec_hdr);
  1049. dump_stack();
  1050. return -EINVAL;
  1051. }
  1052. /**
  1053. * self_check_peb_ec_hdr - check erase counter header.
  1054. * @ubi: UBI device description object
  1055. * @pnum: the physical eraseblock number to check
  1056. *
  1057. * This function returns zero if the erase counter header is all right and and
  1058. * a negative error code if not or if an error occurred.
  1059. */
  1060. static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
  1061. {
  1062. int err;
  1063. uint32_t crc, hdr_crc;
  1064. struct ubi_ec_hdr *ec_hdr;
  1065. if (!ubi_dbg_chk_io(ubi))
  1066. return 0;
  1067. ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
  1068. if (!ec_hdr)
  1069. return -ENOMEM;
  1070. err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
  1071. if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
  1072. goto exit;
  1073. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  1074. hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
  1075. if (hdr_crc != crc) {
  1076. ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x",
  1077. crc, hdr_crc);
  1078. ubi_err(ubi, "self-check failed for PEB %d", pnum);
  1079. ubi_dump_ec_hdr(ec_hdr);
  1080. dump_stack();
  1081. err = -EINVAL;
  1082. goto exit;
  1083. }
  1084. err = self_check_ec_hdr(ubi, pnum, ec_hdr);
  1085. exit:
  1086. kfree(ec_hdr);
  1087. return err;
  1088. }
  1089. /**
  1090. * self_check_vid_hdr - check that a volume identifier header is all right.
  1091. * @ubi: UBI device description object
  1092. * @pnum: physical eraseblock number the volume identifier header belongs to
  1093. * @vid_hdr: the volume identifier header to check
  1094. *
  1095. * This function returns zero if the volume identifier header is all right, and
  1096. * %-EINVAL if not.
  1097. */
  1098. static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
  1099. const struct ubi_vid_hdr *vid_hdr)
  1100. {
  1101. int err;
  1102. uint32_t magic;
  1103. if (!ubi_dbg_chk_io(ubi))
  1104. return 0;
  1105. magic = be32_to_cpu(vid_hdr->magic);
  1106. if (magic != UBI_VID_HDR_MAGIC) {
  1107. ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x",
  1108. magic, pnum, UBI_VID_HDR_MAGIC);
  1109. goto fail;
  1110. }
  1111. err = validate_vid_hdr(ubi, vid_hdr);
  1112. if (err) {
  1113. ubi_err(ubi, "self-check failed for PEB %d", pnum);
  1114. goto fail;
  1115. }
  1116. return err;
  1117. fail:
  1118. ubi_err(ubi, "self-check failed for PEB %d", pnum);
  1119. ubi_dump_vid_hdr(vid_hdr);
  1120. dump_stack();
  1121. return -EINVAL;
  1122. }
  1123. /**
  1124. * self_check_peb_vid_hdr - check volume identifier header.
  1125. * @ubi: UBI device description object
  1126. * @pnum: the physical eraseblock number to check
  1127. *
  1128. * This function returns zero if the volume identifier header is all right,
  1129. * and a negative error code if not or if an error occurred.
  1130. */
  1131. static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
  1132. {
  1133. int err;
  1134. uint32_t crc, hdr_crc;
  1135. struct ubi_vid_io_buf *vidb;
  1136. struct ubi_vid_hdr *vid_hdr;
  1137. void *p;
  1138. if (!ubi_dbg_chk_io(ubi))
  1139. return 0;
  1140. vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
  1141. if (!vidb)
  1142. return -ENOMEM;
  1143. vid_hdr = ubi_get_vid_hdr(vidb);
  1144. p = vidb->buffer;
  1145. err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
  1146. ubi->vid_hdr_alsize);
  1147. if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
  1148. goto exit;
  1149. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
  1150. hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
  1151. if (hdr_crc != crc) {
  1152. ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
  1153. pnum, crc, hdr_crc);
  1154. ubi_err(ubi, "self-check failed for PEB %d", pnum);
  1155. ubi_dump_vid_hdr(vid_hdr);
  1156. dump_stack();
  1157. err = -EINVAL;
  1158. goto exit;
  1159. }
  1160. err = self_check_vid_hdr(ubi, pnum, vid_hdr);
  1161. exit:
  1162. ubi_free_vid_buf(vidb);
  1163. return err;
  1164. }
  1165. /**
  1166. * self_check_write - make sure write succeeded.
  1167. * @ubi: UBI device description object
  1168. * @buf: buffer with data which were written
  1169. * @pnum: physical eraseblock number the data were written to
  1170. * @offset: offset within the physical eraseblock the data were written to
  1171. * @len: how many bytes were written
  1172. *
  1173. * This functions reads data which were recently written and compares it with
  1174. * the original data buffer - the data have to match. Returns zero if the data
  1175. * match and a negative error code if not or in case of failure.
  1176. */
  1177. static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
  1178. int offset, int len)
  1179. {
  1180. int err, i;
  1181. size_t read;
  1182. void *buf1;
  1183. loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
  1184. if (!ubi_dbg_chk_io(ubi))
  1185. return 0;
  1186. buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
  1187. if (!buf1) {
  1188. ubi_err(ubi, "cannot allocate memory to check writes");
  1189. return 0;
  1190. }
  1191. err = mtd_read(ubi->mtd, addr, len, &read, buf1);
  1192. if (err && !mtd_is_bitflip(err))
  1193. goto out_free;
  1194. for (i = 0; i < len; i++) {
  1195. uint8_t c = ((uint8_t *)buf)[i];
  1196. uint8_t c1 = ((uint8_t *)buf1)[i];
  1197. int dump_len;
  1198. if (c == c1)
  1199. continue;
  1200. ubi_err(ubi, "self-check failed for PEB %d:%d, len %d",
  1201. pnum, offset, len);
  1202. ubi_msg(ubi, "data differ at position %d", i);
  1203. dump_len = max_t(int, 128, len - i);
  1204. ubi_msg(ubi, "hex dump of the original buffer from %d to %d",
  1205. i, i + dump_len);
  1206. print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
  1207. buf + i, dump_len, 1);
  1208. ubi_msg(ubi, "hex dump of the read buffer from %d to %d",
  1209. i, i + dump_len);
  1210. print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
  1211. buf1 + i, dump_len, 1);
  1212. dump_stack();
  1213. err = -EINVAL;
  1214. goto out_free;
  1215. }
  1216. vfree(buf1);
  1217. return 0;
  1218. out_free:
  1219. vfree(buf1);
  1220. return err;
  1221. }
  1222. /**
  1223. * ubi_self_check_all_ff - check that a region of flash is empty.
  1224. * @ubi: UBI device description object
  1225. * @pnum: the physical eraseblock number to check
  1226. * @offset: the starting offset within the physical eraseblock to check
  1227. * @len: the length of the region to check
  1228. *
  1229. * This function returns zero if only 0xFF bytes are present at offset
  1230. * @offset of the physical eraseblock @pnum, and a negative error code if not
  1231. * or if an error occurred.
  1232. */
  1233. int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
  1234. {
  1235. size_t read;
  1236. int err;
  1237. void *buf;
  1238. loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
  1239. if (!ubi_dbg_chk_io(ubi))
  1240. return 0;
  1241. buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
  1242. if (!buf) {
  1243. ubi_err(ubi, "cannot allocate memory to check for 0xFFs");
  1244. return 0;
  1245. }
  1246. err = mtd_read(ubi->mtd, addr, len, &read, buf);
  1247. if (err && !mtd_is_bitflip(err)) {
  1248. ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes",
  1249. err, len, pnum, offset, read);
  1250. goto error;
  1251. }
  1252. err = ubi_check_pattern(buf, 0xFF, len);
  1253. if (err == 0) {
  1254. ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
  1255. pnum, offset, len);
  1256. goto fail;
  1257. }
  1258. vfree(buf);
  1259. return 0;
  1260. fail:
  1261. ubi_err(ubi, "self-check failed for PEB %d", pnum);
  1262. ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len);
  1263. print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
  1264. err = -EINVAL;
  1265. error:
  1266. dump_stack();
  1267. vfree(buf);
  1268. return err;
  1269. }