123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880 |
- /*
- * davinci_nand.c - NAND Flash Driver for DaVinci family chips
- *
- * Copyright © 2006 Texas Instruments.
- *
- * Port to 2.6.23 Copyright © 2008 by:
- * Sander Huijsen <Shuijsen@optelecom-nkf.com>
- * Troy Kisky <troy.kisky@boundarydevices.com>
- * Dirk Behme <Dirk.Behme@gmail.com>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
- #include <linux/kernel.h>
- #include <linux/module.h>
- #include <linux/platform_device.h>
- #include <linux/err.h>
- #include <linux/clk.h>
- #include <linux/io.h>
- #include <linux/mtd/rawnand.h>
- #include <linux/mtd/partitions.h>
- #include <linux/slab.h>
- #include <linux/of_device.h>
- #include <linux/of.h>
- #include <linux/platform_data/mtd-davinci.h>
- #include <linux/platform_data/mtd-davinci-aemif.h>
- /*
- * This is a device driver for the NAND flash controller found on the
- * various DaVinci family chips. It handles up to four SoC chipselects,
- * and some flavors of secondary chipselect (e.g. based on A12) as used
- * with multichip packages.
- *
- * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
- * available on chips like the DM355 and OMAP-L137 and needed with the
- * more error-prone MLC NAND chips.
- *
- * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
- * outputs in a "wire-AND" configuration, with no per-chip signals.
- */
- struct davinci_nand_info {
- struct nand_chip chip;
- struct device *dev;
- struct clk *clk;
- bool is_readmode;
- void __iomem *base;
- void __iomem *vaddr;
- uint32_t ioaddr;
- uint32_t current_cs;
- uint32_t mask_chipsel;
- uint32_t mask_ale;
- uint32_t mask_cle;
- uint32_t core_chipsel;
- struct davinci_aemif_timing *timing;
- };
- static DEFINE_SPINLOCK(davinci_nand_lock);
- static bool ecc4_busy;
- static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd)
- {
- return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip);
- }
- static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
- int offset)
- {
- return __raw_readl(info->base + offset);
- }
- static inline void davinci_nand_writel(struct davinci_nand_info *info,
- int offset, unsigned long value)
- {
- __raw_writel(value, info->base + offset);
- }
- /*----------------------------------------------------------------------*/
- /*
- * Access to hardware control lines: ALE, CLE, secondary chipselect.
- */
- static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
- unsigned int ctrl)
- {
- struct davinci_nand_info *info = to_davinci_nand(mtd);
- uint32_t addr = info->current_cs;
- struct nand_chip *nand = mtd_to_nand(mtd);
- /* Did the control lines change? */
- if (ctrl & NAND_CTRL_CHANGE) {
- if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
- addr |= info->mask_cle;
- else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
- addr |= info->mask_ale;
- nand->IO_ADDR_W = (void __iomem __force *)addr;
- }
- if (cmd != NAND_CMD_NONE)
- iowrite8(cmd, nand->IO_ADDR_W);
- }
- static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
- {
- struct davinci_nand_info *info = to_davinci_nand(mtd);
- uint32_t addr = info->ioaddr;
- /* maybe kick in a second chipselect */
- if (chip > 0)
- addr |= info->mask_chipsel;
- info->current_cs = addr;
- info->chip.IO_ADDR_W = (void __iomem __force *)addr;
- info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
- }
- /*----------------------------------------------------------------------*/
- /*
- * 1-bit hardware ECC ... context maintained for each core chipselect
- */
- static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
- {
- struct davinci_nand_info *info = to_davinci_nand(mtd);
- return davinci_nand_readl(info, NANDF1ECC_OFFSET
- + 4 * info->core_chipsel);
- }
- static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
- {
- struct davinci_nand_info *info;
- uint32_t nandcfr;
- unsigned long flags;
- info = to_davinci_nand(mtd);
- /* Reset ECC hardware */
- nand_davinci_readecc_1bit(mtd);
- spin_lock_irqsave(&davinci_nand_lock, flags);
- /* Restart ECC hardware */
- nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
- nandcfr |= BIT(8 + info->core_chipsel);
- davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
- spin_unlock_irqrestore(&davinci_nand_lock, flags);
- }
- /*
- * Read hardware ECC value and pack into three bytes
- */
- static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
- const u_char *dat, u_char *ecc_code)
- {
- unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
- unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
- /* invert so that erased block ecc is correct */
- ecc24 = ~ecc24;
- ecc_code[0] = (u_char)(ecc24);
- ecc_code[1] = (u_char)(ecc24 >> 8);
- ecc_code[2] = (u_char)(ecc24 >> 16);
- return 0;
- }
- static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
- u_char *read_ecc, u_char *calc_ecc)
- {
- struct nand_chip *chip = mtd_to_nand(mtd);
- uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
- (read_ecc[2] << 16);
- uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
- (calc_ecc[2] << 16);
- uint32_t diff = eccCalc ^ eccNand;
- if (diff) {
- if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
- /* Correctable error */
- if ((diff >> (12 + 3)) < chip->ecc.size) {
- dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
- return 1;
- } else {
- return -EBADMSG;
- }
- } else if (!(diff & (diff - 1))) {
- /* Single bit ECC error in the ECC itself,
- * nothing to fix */
- return 1;
- } else {
- /* Uncorrectable error */
- return -EBADMSG;
- }
- }
- return 0;
- }
- /*----------------------------------------------------------------------*/
- /*
- * 4-bit hardware ECC ... context maintained over entire AEMIF
- *
- * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
- * since that forces use of a problematic "infix OOB" layout.
- * Among other things, it trashes manufacturer bad block markers.
- * Also, and specific to this hardware, it ECC-protects the "prepad"
- * in the OOB ... while having ECC protection for parts of OOB would
- * seem useful, the current MTD stack sometimes wants to update the
- * OOB without recomputing ECC.
- */
- static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
- {
- struct davinci_nand_info *info = to_davinci_nand(mtd);
- unsigned long flags;
- u32 val;
- /* Reset ECC hardware */
- davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
- spin_lock_irqsave(&davinci_nand_lock, flags);
- /* Start 4-bit ECC calculation for read/write */
- val = davinci_nand_readl(info, NANDFCR_OFFSET);
- val &= ~(0x03 << 4);
- val |= (info->core_chipsel << 4) | BIT(12);
- davinci_nand_writel(info, NANDFCR_OFFSET, val);
- info->is_readmode = (mode == NAND_ECC_READ);
- spin_unlock_irqrestore(&davinci_nand_lock, flags);
- }
- /* Read raw ECC code after writing to NAND. */
- static void
- nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
- {
- const u32 mask = 0x03ff03ff;
- code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
- code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
- code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
- code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
- }
- /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
- static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
- const u_char *dat, u_char *ecc_code)
- {
- struct davinci_nand_info *info = to_davinci_nand(mtd);
- u32 raw_ecc[4], *p;
- unsigned i;
- /* After a read, terminate ECC calculation by a dummy read
- * of some 4-bit ECC register. ECC covers everything that
- * was read; correct() just uses the hardware state, so
- * ecc_code is not needed.
- */
- if (info->is_readmode) {
- davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
- return 0;
- }
- /* Pack eight raw 10-bit ecc values into ten bytes, making
- * two passes which each convert four values (in upper and
- * lower halves of two 32-bit words) into five bytes. The
- * ROM boot loader uses this same packing scheme.
- */
- nand_davinci_readecc_4bit(info, raw_ecc);
- for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
- *ecc_code++ = p[0] & 0xff;
- *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
- *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
- *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
- *ecc_code++ = (p[1] >> 18) & 0xff;
- }
- return 0;
- }
- /* Correct up to 4 bits in data we just read, using state left in the
- * hardware plus the ecc_code computed when it was first written.
- */
- static int nand_davinci_correct_4bit(struct mtd_info *mtd,
- u_char *data, u_char *ecc_code, u_char *null)
- {
- int i;
- struct davinci_nand_info *info = to_davinci_nand(mtd);
- unsigned short ecc10[8];
- unsigned short *ecc16;
- u32 syndrome[4];
- u32 ecc_state;
- unsigned num_errors, corrected;
- unsigned long timeo;
- /* Unpack ten bytes into eight 10 bit values. We know we're
- * little-endian, and use type punning for less shifting/masking.
- */
- if (WARN_ON(0x01 & (unsigned) ecc_code))
- return -EINVAL;
- ecc16 = (unsigned short *)ecc_code;
- ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
- ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
- ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
- ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
- ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
- ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
- ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
- ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
- /* Tell ECC controller about the expected ECC codes. */
- for (i = 7; i >= 0; i--)
- davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
- /* Allow time for syndrome calculation ... then read it.
- * A syndrome of all zeroes 0 means no detected errors.
- */
- davinci_nand_readl(info, NANDFSR_OFFSET);
- nand_davinci_readecc_4bit(info, syndrome);
- if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
- return 0;
- /*
- * Clear any previous address calculation by doing a dummy read of an
- * error address register.
- */
- davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
- /* Start address calculation, and wait for it to complete.
- * We _could_ start reading more data while this is working,
- * to speed up the overall page read.
- */
- davinci_nand_writel(info, NANDFCR_OFFSET,
- davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
- /*
- * ECC_STATE field reads 0x3 (Error correction complete) immediately
- * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
- * begin trying to poll for the state, you may fall right out of your
- * loop without any of the correction calculations having taken place.
- * The recommendation from the hardware team is to initially delay as
- * long as ECC_STATE reads less than 4. After that, ECC HW has entered
- * correction state.
- */
- timeo = jiffies + usecs_to_jiffies(100);
- do {
- ecc_state = (davinci_nand_readl(info,
- NANDFSR_OFFSET) >> 8) & 0x0f;
- cpu_relax();
- } while ((ecc_state < 4) && time_before(jiffies, timeo));
- for (;;) {
- u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
- switch ((fsr >> 8) & 0x0f) {
- case 0: /* no error, should not happen */
- davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
- return 0;
- case 1: /* five or more errors detected */
- davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
- return -EBADMSG;
- case 2: /* error addresses computed */
- case 3:
- num_errors = 1 + ((fsr >> 16) & 0x03);
- goto correct;
- default: /* still working on it */
- cpu_relax();
- continue;
- }
- }
- correct:
- /* correct each error */
- for (i = 0, corrected = 0; i < num_errors; i++) {
- int error_address, error_value;
- if (i > 1) {
- error_address = davinci_nand_readl(info,
- NAND_ERR_ADD2_OFFSET);
- error_value = davinci_nand_readl(info,
- NAND_ERR_ERRVAL2_OFFSET);
- } else {
- error_address = davinci_nand_readl(info,
- NAND_ERR_ADD1_OFFSET);
- error_value = davinci_nand_readl(info,
- NAND_ERR_ERRVAL1_OFFSET);
- }
- if (i & 1) {
- error_address >>= 16;
- error_value >>= 16;
- }
- error_address &= 0x3ff;
- error_address = (512 + 7) - error_address;
- if (error_address < 512) {
- data[error_address] ^= error_value;
- corrected++;
- }
- }
- return corrected;
- }
- /*----------------------------------------------------------------------*/
- /*
- * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
- * how these chips are normally wired. This translates to both 8 and 16
- * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
- *
- * For now we assume that configuration, or any other one which ignores
- * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
- * and have that transparently morphed into multiple NAND operations.
- */
- static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
- {
- struct nand_chip *chip = mtd_to_nand(mtd);
- if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
- ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
- else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
- ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
- else
- ioread8_rep(chip->IO_ADDR_R, buf, len);
- }
- static void nand_davinci_write_buf(struct mtd_info *mtd,
- const uint8_t *buf, int len)
- {
- struct nand_chip *chip = mtd_to_nand(mtd);
- if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
- iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
- else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
- iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
- else
- iowrite8_rep(chip->IO_ADDR_R, buf, len);
- }
- /*
- * Check hardware register for wait status. Returns 1 if device is ready,
- * 0 if it is still busy.
- */
- static int nand_davinci_dev_ready(struct mtd_info *mtd)
- {
- struct davinci_nand_info *info = to_davinci_nand(mtd);
- return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
- }
- /*----------------------------------------------------------------------*/
- /* An ECC layout for using 4-bit ECC with small-page flash, storing
- * ten ECC bytes plus the manufacturer's bad block marker byte, and
- * and not overlapping the default BBT markers.
- */
- static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
- {
- if (section > 2)
- return -ERANGE;
- if (!section) {
- oobregion->offset = 0;
- oobregion->length = 5;
- } else if (section == 1) {
- oobregion->offset = 6;
- oobregion->length = 2;
- } else {
- oobregion->offset = 13;
- oobregion->length = 3;
- }
- return 0;
- }
- static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section,
- struct mtd_oob_region *oobregion)
- {
- if (section > 1)
- return -ERANGE;
- if (!section) {
- oobregion->offset = 8;
- oobregion->length = 5;
- } else {
- oobregion->offset = 16;
- oobregion->length = mtd->oobsize - 16;
- }
- return 0;
- }
- static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = {
- .ecc = hwecc4_ooblayout_small_ecc,
- .free = hwecc4_ooblayout_small_free,
- };
- #if defined(CONFIG_OF)
- static const struct of_device_id davinci_nand_of_match[] = {
- {.compatible = "ti,davinci-nand", },
- {.compatible = "ti,keystone-nand", },
- {},
- };
- MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
- static struct davinci_nand_pdata
- *nand_davinci_get_pdata(struct platform_device *pdev)
- {
- if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
- struct davinci_nand_pdata *pdata;
- const char *mode;
- u32 prop;
- pdata = devm_kzalloc(&pdev->dev,
- sizeof(struct davinci_nand_pdata),
- GFP_KERNEL);
- pdev->dev.platform_data = pdata;
- if (!pdata)
- return ERR_PTR(-ENOMEM);
- if (!of_property_read_u32(pdev->dev.of_node,
- "ti,davinci-chipselect", &prop))
- pdev->id = prop;
- else
- return ERR_PTR(-EINVAL);
- if (!of_property_read_u32(pdev->dev.of_node,
- "ti,davinci-mask-ale", &prop))
- pdata->mask_ale = prop;
- if (!of_property_read_u32(pdev->dev.of_node,
- "ti,davinci-mask-cle", &prop))
- pdata->mask_cle = prop;
- if (!of_property_read_u32(pdev->dev.of_node,
- "ti,davinci-mask-chipsel", &prop))
- pdata->mask_chipsel = prop;
- if (!of_property_read_string(pdev->dev.of_node,
- "ti,davinci-ecc-mode", &mode)) {
- if (!strncmp("none", mode, 4))
- pdata->ecc_mode = NAND_ECC_NONE;
- if (!strncmp("soft", mode, 4))
- pdata->ecc_mode = NAND_ECC_SOFT;
- if (!strncmp("hw", mode, 2))
- pdata->ecc_mode = NAND_ECC_HW;
- }
- if (!of_property_read_u32(pdev->dev.of_node,
- "ti,davinci-ecc-bits", &prop))
- pdata->ecc_bits = prop;
- if (!of_property_read_u32(pdev->dev.of_node,
- "ti,davinci-nand-buswidth", &prop) && prop == 16)
- pdata->options |= NAND_BUSWIDTH_16;
- if (of_property_read_bool(pdev->dev.of_node,
- "ti,davinci-nand-use-bbt"))
- pdata->bbt_options = NAND_BBT_USE_FLASH;
- /*
- * Since kernel v4.8, this driver has been fixed to enable
- * use of 4-bit hardware ECC with subpages and verified on
- * TI's keystone EVMs (K2L, K2HK and K2E).
- * However, in the interest of not breaking systems using
- * existing UBI partitions, sub-page writes are not being
- * (re)enabled. If you want to use subpage writes on Keystone
- * platforms (i.e. do not have any existing UBI partitions),
- * then use "ti,davinci-nand" as the compatible in your
- * device-tree file.
- */
- if (of_device_is_compatible(pdev->dev.of_node,
- "ti,keystone-nand")) {
- pdata->options |= NAND_NO_SUBPAGE_WRITE;
- }
- }
- return dev_get_platdata(&pdev->dev);
- }
- #else
- static struct davinci_nand_pdata
- *nand_davinci_get_pdata(struct platform_device *pdev)
- {
- return dev_get_platdata(&pdev->dev);
- }
- #endif
- static int nand_davinci_probe(struct platform_device *pdev)
- {
- struct davinci_nand_pdata *pdata;
- struct davinci_nand_info *info;
- struct resource *res1;
- struct resource *res2;
- void __iomem *vaddr;
- void __iomem *base;
- int ret;
- uint32_t val;
- struct mtd_info *mtd;
- pdata = nand_davinci_get_pdata(pdev);
- if (IS_ERR(pdata))
- return PTR_ERR(pdata);
- /* insist on board-specific configuration */
- if (!pdata)
- return -ENODEV;
- /* which external chipselect will we be managing? */
- if (pdev->id < 0 || pdev->id > 3)
- return -ENODEV;
- info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
- if (!info)
- return -ENOMEM;
- platform_set_drvdata(pdev, info);
- res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
- res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
- if (!res1 || !res2) {
- dev_err(&pdev->dev, "resource missing\n");
- return -EINVAL;
- }
- vaddr = devm_ioremap_resource(&pdev->dev, res1);
- if (IS_ERR(vaddr))
- return PTR_ERR(vaddr);
- /*
- * This registers range is used to setup NAND settings. In case with
- * TI AEMIF driver, the same memory address range is requested already
- * by AEMIF, so we cannot request it twice, just ioremap.
- * The AEMIF and NAND drivers not use the same registers in this range.
- */
- base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
- if (!base) {
- dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
- return -EADDRNOTAVAIL;
- }
- info->dev = &pdev->dev;
- info->base = base;
- info->vaddr = vaddr;
- mtd = nand_to_mtd(&info->chip);
- mtd->dev.parent = &pdev->dev;
- nand_set_flash_node(&info->chip, pdev->dev.of_node);
- info->chip.IO_ADDR_R = vaddr;
- info->chip.IO_ADDR_W = vaddr;
- info->chip.chip_delay = 0;
- info->chip.select_chip = nand_davinci_select_chip;
- /* options such as NAND_BBT_USE_FLASH */
- info->chip.bbt_options = pdata->bbt_options;
- /* options such as 16-bit widths */
- info->chip.options = pdata->options;
- info->chip.bbt_td = pdata->bbt_td;
- info->chip.bbt_md = pdata->bbt_md;
- info->timing = pdata->timing;
- info->ioaddr = (uint32_t __force) vaddr;
- info->current_cs = info->ioaddr;
- info->core_chipsel = pdev->id;
- info->mask_chipsel = pdata->mask_chipsel;
- /* use nandboot-capable ALE/CLE masks by default */
- info->mask_ale = pdata->mask_ale ? : MASK_ALE;
- info->mask_cle = pdata->mask_cle ? : MASK_CLE;
- /* Set address of hardware control function */
- info->chip.cmd_ctrl = nand_davinci_hwcontrol;
- info->chip.dev_ready = nand_davinci_dev_ready;
- /* Speed up buffer I/O */
- info->chip.read_buf = nand_davinci_read_buf;
- info->chip.write_buf = nand_davinci_write_buf;
- /* Use board-specific ECC config */
- info->chip.ecc.mode = pdata->ecc_mode;
- ret = -EINVAL;
- info->clk = devm_clk_get(&pdev->dev, "aemif");
- if (IS_ERR(info->clk)) {
- ret = PTR_ERR(info->clk);
- dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
- return ret;
- }
- ret = clk_prepare_enable(info->clk);
- if (ret < 0) {
- dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
- ret);
- goto err_clk_enable;
- }
- spin_lock_irq(&davinci_nand_lock);
- /* put CSxNAND into NAND mode */
- val = davinci_nand_readl(info, NANDFCR_OFFSET);
- val |= BIT(info->core_chipsel);
- davinci_nand_writel(info, NANDFCR_OFFSET, val);
- spin_unlock_irq(&davinci_nand_lock);
- /* Scan to find existence of the device(s) */
- ret = nand_scan_ident(mtd, pdata->mask_chipsel ? 2 : 1, NULL);
- if (ret < 0) {
- dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
- goto err;
- }
- switch (info->chip.ecc.mode) {
- case NAND_ECC_NONE:
- pdata->ecc_bits = 0;
- break;
- case NAND_ECC_SOFT:
- pdata->ecc_bits = 0;
- /*
- * This driver expects Hamming based ECC when ecc_mode is set
- * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to
- * avoid adding an extra ->ecc_algo field to
- * davinci_nand_pdata.
- */
- info->chip.ecc.algo = NAND_ECC_HAMMING;
- break;
- case NAND_ECC_HW:
- if (pdata->ecc_bits == 4) {
- /* No sanity checks: CPUs must support this,
- * and the chips may not use NAND_BUSWIDTH_16.
- */
- /* No sharing 4-bit hardware between chipselects yet */
- spin_lock_irq(&davinci_nand_lock);
- if (ecc4_busy)
- ret = -EBUSY;
- else
- ecc4_busy = true;
- spin_unlock_irq(&davinci_nand_lock);
- if (ret == -EBUSY)
- return ret;
- info->chip.ecc.calculate = nand_davinci_calculate_4bit;
- info->chip.ecc.correct = nand_davinci_correct_4bit;
- info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
- info->chip.ecc.bytes = 10;
- info->chip.ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
- info->chip.ecc.algo = NAND_ECC_BCH;
- } else {
- /* 1bit ecc hamming */
- info->chip.ecc.calculate = nand_davinci_calculate_1bit;
- info->chip.ecc.correct = nand_davinci_correct_1bit;
- info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
- info->chip.ecc.bytes = 3;
- info->chip.ecc.algo = NAND_ECC_HAMMING;
- }
- info->chip.ecc.size = 512;
- info->chip.ecc.strength = pdata->ecc_bits;
- break;
- default:
- return -EINVAL;
- }
- /* Update ECC layout if needed ... for 1-bit HW ECC, the default
- * is OK, but it allocates 6 bytes when only 3 are needed (for
- * each 512 bytes). For the 4-bit HW ECC, that default is not
- * usable: 10 bytes are needed, not 6.
- */
- if (pdata->ecc_bits == 4) {
- int chunks = mtd->writesize / 512;
- if (!chunks || mtd->oobsize < 16) {
- dev_dbg(&pdev->dev, "too small\n");
- ret = -EINVAL;
- goto err;
- }
- /* For small page chips, preserve the manufacturer's
- * badblock marking data ... and make sure a flash BBT
- * table marker fits in the free bytes.
- */
- if (chunks == 1) {
- mtd_set_ooblayout(mtd, &hwecc4_small_ooblayout_ops);
- } else if (chunks == 4 || chunks == 8) {
- mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
- info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
- } else {
- ret = -EIO;
- goto err;
- }
- }
- ret = nand_scan_tail(mtd);
- if (ret < 0)
- goto err;
- if (pdata->parts)
- ret = mtd_device_parse_register(mtd, NULL, NULL,
- pdata->parts, pdata->nr_parts);
- else
- ret = mtd_device_register(mtd, NULL, 0);
- if (ret < 0)
- goto err;
- val = davinci_nand_readl(info, NRCSR_OFFSET);
- dev_info(&pdev->dev, "controller rev. %d.%d\n",
- (val >> 8) & 0xff, val & 0xff);
- return 0;
- err:
- clk_disable_unprepare(info->clk);
- err_clk_enable:
- spin_lock_irq(&davinci_nand_lock);
- if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
- ecc4_busy = false;
- spin_unlock_irq(&davinci_nand_lock);
- return ret;
- }
- static int nand_davinci_remove(struct platform_device *pdev)
- {
- struct davinci_nand_info *info = platform_get_drvdata(pdev);
- spin_lock_irq(&davinci_nand_lock);
- if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
- ecc4_busy = false;
- spin_unlock_irq(&davinci_nand_lock);
- nand_release(&info->chip);
- clk_disable_unprepare(info->clk);
- return 0;
- }
- static struct platform_driver nand_davinci_driver = {
- .probe = nand_davinci_probe,
- .remove = nand_davinci_remove,
- .driver = {
- .name = "davinci_nand",
- .of_match_table = of_match_ptr(davinci_nand_of_match),
- },
- };
- MODULE_ALIAS("platform:davinci_nand");
- module_platform_driver(nand_davinci_driver);
- MODULE_LICENSE("GPL");
- MODULE_AUTHOR("Texas Instruments");
- MODULE_DESCRIPTION("Davinci NAND flash driver");
|