rcar_drif.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499
  1. /*
  2. * R-Car Gen3 Digital Radio Interface (DRIF) driver
  3. *
  4. * Copyright (C) 2017 Renesas Electronics Corporation
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. */
  16. /*
  17. * The R-Car DRIF is a receive only MSIOF like controller with an
  18. * external master device driving the SCK. It receives data into a FIFO,
  19. * then this driver uses the SYS-DMAC engine to move the data from
  20. * the device to memory.
  21. *
  22. * Each DRIF channel DRIFx (as per datasheet) contains two internal
  23. * channels DRIFx0 & DRIFx1 within itself with each having its own resources
  24. * like module clk, register set, irq and dma. These internal channels share
  25. * common CLK & SYNC from master. The two data pins D0 & D1 shall be
  26. * considered to represent the two internal channels. This internal split
  27. * is not visible to the master device.
  28. *
  29. * Depending on the master device, a DRIF channel can use
  30. * (1) both internal channels (D0 & D1) to receive data in parallel (or)
  31. * (2) one internal channel (D0 or D1) to receive data
  32. *
  33. * The primary design goal of this controller is to act as a Digital Radio
  34. * Interface that receives digital samples from a tuner device. Hence the
  35. * driver exposes the device as a V4L2 SDR device. In order to qualify as
  36. * a V4L2 SDR device, it should possess a tuner interface as mandated by the
  37. * framework. This driver expects a tuner driver (sub-device) to bind
  38. * asynchronously with this device and the combined drivers shall expose
  39. * a V4L2 compliant SDR device. The DRIF driver is independent of the
  40. * tuner vendor.
  41. *
  42. * The DRIF h/w can support I2S mode and Frame start synchronization pulse mode.
  43. * This driver is tested for I2S mode only because of the availability of
  44. * suitable master devices. Hence, not all configurable options of DRIF h/w
  45. * like lsb/msb first, syncdl, dtdl etc. are exposed via DT and I2S defaults
  46. * are used. These can be exposed later if needed after testing.
  47. */
  48. #include <linux/bitops.h>
  49. #include <linux/clk.h>
  50. #include <linux/dma-mapping.h>
  51. #include <linux/dmaengine.h>
  52. #include <linux/ioctl.h>
  53. #include <linux/iopoll.h>
  54. #include <linux/module.h>
  55. #include <linux/of_graph.h>
  56. #include <linux/of_device.h>
  57. #include <linux/platform_device.h>
  58. #include <linux/sched.h>
  59. #include <media/v4l2-async.h>
  60. #include <media/v4l2-ctrls.h>
  61. #include <media/v4l2-device.h>
  62. #include <media/v4l2-event.h>
  63. #include <media/v4l2-fh.h>
  64. #include <media/v4l2-ioctl.h>
  65. #include <media/videobuf2-v4l2.h>
  66. #include <media/videobuf2-vmalloc.h>
  67. /* DRIF register offsets */
  68. #define RCAR_DRIF_SITMDR1 0x00
  69. #define RCAR_DRIF_SITMDR2 0x04
  70. #define RCAR_DRIF_SITMDR3 0x08
  71. #define RCAR_DRIF_SIRMDR1 0x10
  72. #define RCAR_DRIF_SIRMDR2 0x14
  73. #define RCAR_DRIF_SIRMDR3 0x18
  74. #define RCAR_DRIF_SICTR 0x28
  75. #define RCAR_DRIF_SIFCTR 0x30
  76. #define RCAR_DRIF_SISTR 0x40
  77. #define RCAR_DRIF_SIIER 0x44
  78. #define RCAR_DRIF_SIRFDR 0x60
  79. #define RCAR_DRIF_RFOVF BIT(3) /* Receive FIFO overflow */
  80. #define RCAR_DRIF_RFUDF BIT(4) /* Receive FIFO underflow */
  81. #define RCAR_DRIF_RFSERR BIT(5) /* Receive frame sync error */
  82. #define RCAR_DRIF_REOF BIT(7) /* Frame reception end */
  83. #define RCAR_DRIF_RDREQ BIT(12) /* Receive data xfer req */
  84. #define RCAR_DRIF_RFFUL BIT(13) /* Receive FIFO full */
  85. /* SIRMDR1 */
  86. #define RCAR_DRIF_SIRMDR1_SYNCMD_FRAME (0 << 28)
  87. #define RCAR_DRIF_SIRMDR1_SYNCMD_LR (3 << 28)
  88. #define RCAR_DRIF_SIRMDR1_SYNCAC_POL_HIGH (0 << 25)
  89. #define RCAR_DRIF_SIRMDR1_SYNCAC_POL_LOW (1 << 25)
  90. #define RCAR_DRIF_SIRMDR1_MSB_FIRST (0 << 24)
  91. #define RCAR_DRIF_SIRMDR1_LSB_FIRST (1 << 24)
  92. #define RCAR_DRIF_SIRMDR1_DTDL_0 (0 << 20)
  93. #define RCAR_DRIF_SIRMDR1_DTDL_1 (1 << 20)
  94. #define RCAR_DRIF_SIRMDR1_DTDL_2 (2 << 20)
  95. #define RCAR_DRIF_SIRMDR1_DTDL_0PT5 (5 << 20)
  96. #define RCAR_DRIF_SIRMDR1_DTDL_1PT5 (6 << 20)
  97. #define RCAR_DRIF_SIRMDR1_SYNCDL_0 (0 << 20)
  98. #define RCAR_DRIF_SIRMDR1_SYNCDL_1 (1 << 20)
  99. #define RCAR_DRIF_SIRMDR1_SYNCDL_2 (2 << 20)
  100. #define RCAR_DRIF_SIRMDR1_SYNCDL_3 (3 << 20)
  101. #define RCAR_DRIF_SIRMDR1_SYNCDL_0PT5 (5 << 20)
  102. #define RCAR_DRIF_SIRMDR1_SYNCDL_1PT5 (6 << 20)
  103. #define RCAR_DRIF_MDR_GRPCNT(n) (((n) - 1) << 30)
  104. #define RCAR_DRIF_MDR_BITLEN(n) (((n) - 1) << 24)
  105. #define RCAR_DRIF_MDR_WDCNT(n) (((n) - 1) << 16)
  106. /* Hidden Transmit register that controls CLK & SYNC */
  107. #define RCAR_DRIF_SITMDR1_PCON BIT(30)
  108. #define RCAR_DRIF_SICTR_RX_RISING_EDGE BIT(26)
  109. #define RCAR_DRIF_SICTR_RX_EN BIT(8)
  110. #define RCAR_DRIF_SICTR_RESET BIT(0)
  111. /* Constants */
  112. #define RCAR_DRIF_NUM_HWBUFS 32
  113. #define RCAR_DRIF_MAX_DEVS 4
  114. #define RCAR_DRIF_DEFAULT_NUM_HWBUFS 16
  115. #define RCAR_DRIF_DEFAULT_HWBUF_SIZE (4 * PAGE_SIZE)
  116. #define RCAR_DRIF_MAX_CHANNEL 2
  117. #define RCAR_SDR_BUFFER_SIZE SZ_64K
  118. /* Internal buffer status flags */
  119. #define RCAR_DRIF_BUF_DONE BIT(0) /* DMA completed */
  120. #define RCAR_DRIF_BUF_OVERFLOW BIT(1) /* Overflow detected */
  121. #define to_rcar_drif_buf_pair(sdr, ch_num, idx) \
  122. (&((sdr)->ch[!(ch_num)]->buf[(idx)]))
  123. #define for_each_rcar_drif_channel(ch, ch_mask) \
  124. for_each_set_bit(ch, ch_mask, RCAR_DRIF_MAX_CHANNEL)
  125. /* Debug */
  126. #define rdrif_dbg(sdr, fmt, arg...) \
  127. dev_dbg(sdr->v4l2_dev.dev, fmt, ## arg)
  128. #define rdrif_err(sdr, fmt, arg...) \
  129. dev_err(sdr->v4l2_dev.dev, fmt, ## arg)
  130. /* Stream formats */
  131. struct rcar_drif_format {
  132. u32 pixelformat;
  133. u32 buffersize;
  134. u32 bitlen;
  135. u32 wdcnt;
  136. u32 num_ch;
  137. };
  138. /* Format descriptions for capture */
  139. static const struct rcar_drif_format formats[] = {
  140. {
  141. .pixelformat = V4L2_SDR_FMT_PCU16BE,
  142. .buffersize = RCAR_SDR_BUFFER_SIZE,
  143. .bitlen = 16,
  144. .wdcnt = 1,
  145. .num_ch = 2,
  146. },
  147. {
  148. .pixelformat = V4L2_SDR_FMT_PCU18BE,
  149. .buffersize = RCAR_SDR_BUFFER_SIZE,
  150. .bitlen = 18,
  151. .wdcnt = 1,
  152. .num_ch = 2,
  153. },
  154. {
  155. .pixelformat = V4L2_SDR_FMT_PCU20BE,
  156. .buffersize = RCAR_SDR_BUFFER_SIZE,
  157. .bitlen = 20,
  158. .wdcnt = 1,
  159. .num_ch = 2,
  160. },
  161. };
  162. /* Buffer for a received frame from one or both internal channels */
  163. struct rcar_drif_frame_buf {
  164. /* Common v4l buffer stuff -- must be first */
  165. struct vb2_v4l2_buffer vb;
  166. struct list_head list;
  167. };
  168. /* OF graph endpoint's V4L2 async data */
  169. struct rcar_drif_graph_ep {
  170. struct v4l2_subdev *subdev; /* Async matched subdev */
  171. struct v4l2_async_subdev asd; /* Async sub-device descriptor */
  172. };
  173. /* DMA buffer */
  174. struct rcar_drif_hwbuf {
  175. void *addr; /* CPU-side address */
  176. unsigned int status; /* Buffer status flags */
  177. };
  178. /* Internal channel */
  179. struct rcar_drif {
  180. struct rcar_drif_sdr *sdr; /* Group device */
  181. struct platform_device *pdev; /* Channel's pdev */
  182. void __iomem *base; /* Base register address */
  183. resource_size_t start; /* I/O resource offset */
  184. struct dma_chan *dmach; /* Reserved DMA channel */
  185. struct clk *clk; /* Module clock */
  186. struct rcar_drif_hwbuf buf[RCAR_DRIF_NUM_HWBUFS]; /* H/W bufs */
  187. dma_addr_t dma_handle; /* Handle for all bufs */
  188. unsigned int num; /* Channel number */
  189. bool acting_sdr; /* Channel acting as SDR device */
  190. };
  191. /* DRIF V4L2 SDR */
  192. struct rcar_drif_sdr {
  193. struct device *dev; /* Platform device */
  194. struct video_device *vdev; /* V4L2 SDR device */
  195. struct v4l2_device v4l2_dev; /* V4L2 device */
  196. /* Videobuf2 queue and queued buffers list */
  197. struct vb2_queue vb_queue;
  198. struct list_head queued_bufs;
  199. spinlock_t queued_bufs_lock; /* Protects queued_bufs */
  200. spinlock_t dma_lock; /* To serialize DMA cb of channels */
  201. struct mutex v4l2_mutex; /* To serialize ioctls */
  202. struct mutex vb_queue_mutex; /* To serialize streaming ioctls */
  203. struct v4l2_ctrl_handler ctrl_hdl; /* SDR control handler */
  204. struct v4l2_async_notifier notifier; /* For subdev (tuner) */
  205. struct rcar_drif_graph_ep ep; /* Endpoint V4L2 async data */
  206. /* Current V4L2 SDR format ptr */
  207. const struct rcar_drif_format *fmt;
  208. /* Device tree SYNC properties */
  209. u32 mdr1;
  210. /* Internals */
  211. struct rcar_drif *ch[RCAR_DRIF_MAX_CHANNEL]; /* DRIFx0,1 */
  212. unsigned long hw_ch_mask; /* Enabled channels per DT */
  213. unsigned long cur_ch_mask; /* Used channels for an SDR FMT */
  214. u32 num_hw_ch; /* Num of DT enabled channels */
  215. u32 num_cur_ch; /* Num of used channels */
  216. u32 hwbuf_size; /* Each DMA buffer size */
  217. u32 produced; /* Buffers produced by sdr dev */
  218. };
  219. /* Register access functions */
  220. static void rcar_drif_write(struct rcar_drif *ch, u32 offset, u32 data)
  221. {
  222. writel(data, ch->base + offset);
  223. }
  224. static u32 rcar_drif_read(struct rcar_drif *ch, u32 offset)
  225. {
  226. return readl(ch->base + offset);
  227. }
  228. /* Release DMA channels */
  229. static void rcar_drif_release_dmachannels(struct rcar_drif_sdr *sdr)
  230. {
  231. unsigned int i;
  232. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask)
  233. if (sdr->ch[i]->dmach) {
  234. dma_release_channel(sdr->ch[i]->dmach);
  235. sdr->ch[i]->dmach = NULL;
  236. }
  237. }
  238. /* Allocate DMA channels */
  239. static int rcar_drif_alloc_dmachannels(struct rcar_drif_sdr *sdr)
  240. {
  241. struct dma_slave_config dma_cfg;
  242. unsigned int i;
  243. int ret = -ENODEV;
  244. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  245. struct rcar_drif *ch = sdr->ch[i];
  246. ch->dmach = dma_request_slave_channel(&ch->pdev->dev, "rx");
  247. if (!ch->dmach) {
  248. rdrif_err(sdr, "ch%u: dma channel req failed\n", i);
  249. goto dmach_error;
  250. }
  251. /* Configure slave */
  252. memset(&dma_cfg, 0, sizeof(dma_cfg));
  253. dma_cfg.src_addr = (phys_addr_t)(ch->start + RCAR_DRIF_SIRFDR);
  254. dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  255. ret = dmaengine_slave_config(ch->dmach, &dma_cfg);
  256. if (ret) {
  257. rdrif_err(sdr, "ch%u: dma slave config failed\n", i);
  258. goto dmach_error;
  259. }
  260. }
  261. return 0;
  262. dmach_error:
  263. rcar_drif_release_dmachannels(sdr);
  264. return ret;
  265. }
  266. /* Release queued vb2 buffers */
  267. static void rcar_drif_release_queued_bufs(struct rcar_drif_sdr *sdr,
  268. enum vb2_buffer_state state)
  269. {
  270. struct rcar_drif_frame_buf *fbuf, *tmp;
  271. unsigned long flags;
  272. spin_lock_irqsave(&sdr->queued_bufs_lock, flags);
  273. list_for_each_entry_safe(fbuf, tmp, &sdr->queued_bufs, list) {
  274. list_del(&fbuf->list);
  275. vb2_buffer_done(&fbuf->vb.vb2_buf, state);
  276. }
  277. spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags);
  278. }
  279. /* Set MDR defaults */
  280. static inline void rcar_drif_set_mdr1(struct rcar_drif_sdr *sdr)
  281. {
  282. unsigned int i;
  283. /* Set defaults for enabled internal channels */
  284. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  285. /* Refer MSIOF section in manual for this register setting */
  286. rcar_drif_write(sdr->ch[i], RCAR_DRIF_SITMDR1,
  287. RCAR_DRIF_SITMDR1_PCON);
  288. /* Setup MDR1 value */
  289. rcar_drif_write(sdr->ch[i], RCAR_DRIF_SIRMDR1, sdr->mdr1);
  290. rdrif_dbg(sdr, "ch%u: mdr1 = 0x%08x",
  291. i, rcar_drif_read(sdr->ch[i], RCAR_DRIF_SIRMDR1));
  292. }
  293. }
  294. /* Set DRIF receive format */
  295. static int rcar_drif_set_format(struct rcar_drif_sdr *sdr)
  296. {
  297. unsigned int i;
  298. rdrif_dbg(sdr, "setfmt: bitlen %u wdcnt %u num_ch %u\n",
  299. sdr->fmt->bitlen, sdr->fmt->wdcnt, sdr->fmt->num_ch);
  300. /* Sanity check */
  301. if (sdr->fmt->num_ch > sdr->num_cur_ch) {
  302. rdrif_err(sdr, "fmt num_ch %u cur_ch %u mismatch\n",
  303. sdr->fmt->num_ch, sdr->num_cur_ch);
  304. return -EINVAL;
  305. }
  306. /* Setup group, bitlen & wdcnt */
  307. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  308. u32 mdr;
  309. /* Two groups */
  310. mdr = RCAR_DRIF_MDR_GRPCNT(2) |
  311. RCAR_DRIF_MDR_BITLEN(sdr->fmt->bitlen) |
  312. RCAR_DRIF_MDR_WDCNT(sdr->fmt->wdcnt);
  313. rcar_drif_write(sdr->ch[i], RCAR_DRIF_SIRMDR2, mdr);
  314. mdr = RCAR_DRIF_MDR_BITLEN(sdr->fmt->bitlen) |
  315. RCAR_DRIF_MDR_WDCNT(sdr->fmt->wdcnt);
  316. rcar_drif_write(sdr->ch[i], RCAR_DRIF_SIRMDR3, mdr);
  317. rdrif_dbg(sdr, "ch%u: new mdr[2,3] = 0x%08x, 0x%08x\n",
  318. i, rcar_drif_read(sdr->ch[i], RCAR_DRIF_SIRMDR2),
  319. rcar_drif_read(sdr->ch[i], RCAR_DRIF_SIRMDR3));
  320. }
  321. return 0;
  322. }
  323. /* Release DMA buffers */
  324. static void rcar_drif_release_buf(struct rcar_drif_sdr *sdr)
  325. {
  326. unsigned int i;
  327. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  328. struct rcar_drif *ch = sdr->ch[i];
  329. /* First entry contains the dma buf ptr */
  330. if (ch->buf[0].addr) {
  331. dma_free_coherent(&ch->pdev->dev,
  332. sdr->hwbuf_size * RCAR_DRIF_NUM_HWBUFS,
  333. ch->buf[0].addr, ch->dma_handle);
  334. ch->buf[0].addr = NULL;
  335. }
  336. }
  337. }
  338. /* Request DMA buffers */
  339. static int rcar_drif_request_buf(struct rcar_drif_sdr *sdr)
  340. {
  341. int ret = -ENOMEM;
  342. unsigned int i, j;
  343. void *addr;
  344. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  345. struct rcar_drif *ch = sdr->ch[i];
  346. /* Allocate DMA buffers */
  347. addr = dma_alloc_coherent(&ch->pdev->dev,
  348. sdr->hwbuf_size * RCAR_DRIF_NUM_HWBUFS,
  349. &ch->dma_handle, GFP_KERNEL);
  350. if (!addr) {
  351. rdrif_err(sdr,
  352. "ch%u: dma alloc failed. num hwbufs %u size %u\n",
  353. i, RCAR_DRIF_NUM_HWBUFS, sdr->hwbuf_size);
  354. goto error;
  355. }
  356. /* Split the chunk and populate bufctxt */
  357. for (j = 0; j < RCAR_DRIF_NUM_HWBUFS; j++) {
  358. ch->buf[j].addr = addr + (j * sdr->hwbuf_size);
  359. ch->buf[j].status = 0;
  360. }
  361. }
  362. return 0;
  363. error:
  364. return ret;
  365. }
  366. /* Setup vb_queue minimum buffer requirements */
  367. static int rcar_drif_queue_setup(struct vb2_queue *vq,
  368. unsigned int *num_buffers, unsigned int *num_planes,
  369. unsigned int sizes[], struct device *alloc_devs[])
  370. {
  371. struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vq);
  372. /* Need at least 16 buffers */
  373. if (vq->num_buffers + *num_buffers < 16)
  374. *num_buffers = 16 - vq->num_buffers;
  375. *num_planes = 1;
  376. sizes[0] = PAGE_ALIGN(sdr->fmt->buffersize);
  377. rdrif_dbg(sdr, "num_bufs %d sizes[0] %d\n", *num_buffers, sizes[0]);
  378. return 0;
  379. }
  380. /* Enqueue buffer */
  381. static void rcar_drif_buf_queue(struct vb2_buffer *vb)
  382. {
  383. struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
  384. struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vb->vb2_queue);
  385. struct rcar_drif_frame_buf *fbuf =
  386. container_of(vbuf, struct rcar_drif_frame_buf, vb);
  387. unsigned long flags;
  388. rdrif_dbg(sdr, "buf_queue idx %u\n", vb->index);
  389. spin_lock_irqsave(&sdr->queued_bufs_lock, flags);
  390. list_add_tail(&fbuf->list, &sdr->queued_bufs);
  391. spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags);
  392. }
  393. /* Get a frame buf from list */
  394. static struct rcar_drif_frame_buf *
  395. rcar_drif_get_fbuf(struct rcar_drif_sdr *sdr)
  396. {
  397. struct rcar_drif_frame_buf *fbuf;
  398. unsigned long flags;
  399. spin_lock_irqsave(&sdr->queued_bufs_lock, flags);
  400. fbuf = list_first_entry_or_null(&sdr->queued_bufs, struct
  401. rcar_drif_frame_buf, list);
  402. if (!fbuf) {
  403. /*
  404. * App is late in enqueing buffers. Samples lost & there will
  405. * be a gap in sequence number when app recovers
  406. */
  407. rdrif_dbg(sdr, "\napp late: prod %u\n", sdr->produced);
  408. spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags);
  409. return NULL;
  410. }
  411. list_del(&fbuf->list);
  412. spin_unlock_irqrestore(&sdr->queued_bufs_lock, flags);
  413. return fbuf;
  414. }
  415. /* Helpers to set/clear buf pair status */
  416. static inline bool rcar_drif_bufs_done(struct rcar_drif_hwbuf **buf)
  417. {
  418. return (buf[0]->status & buf[1]->status & RCAR_DRIF_BUF_DONE);
  419. }
  420. static inline bool rcar_drif_bufs_overflow(struct rcar_drif_hwbuf **buf)
  421. {
  422. return ((buf[0]->status | buf[1]->status) & RCAR_DRIF_BUF_OVERFLOW);
  423. }
  424. static inline void rcar_drif_bufs_clear(struct rcar_drif_hwbuf **buf,
  425. unsigned int bit)
  426. {
  427. unsigned int i;
  428. for (i = 0; i < RCAR_DRIF_MAX_CHANNEL; i++)
  429. buf[i]->status &= ~bit;
  430. }
  431. /* Channel DMA complete */
  432. static void rcar_drif_channel_complete(struct rcar_drif *ch, u32 idx)
  433. {
  434. u32 str;
  435. ch->buf[idx].status |= RCAR_DRIF_BUF_DONE;
  436. /* Check for DRIF errors */
  437. str = rcar_drif_read(ch, RCAR_DRIF_SISTR);
  438. if (unlikely(str & RCAR_DRIF_RFOVF)) {
  439. /* Writing the same clears it */
  440. rcar_drif_write(ch, RCAR_DRIF_SISTR, str);
  441. /* Overflow: some samples are lost */
  442. ch->buf[idx].status |= RCAR_DRIF_BUF_OVERFLOW;
  443. }
  444. }
  445. /* DMA callback for each stage */
  446. static void rcar_drif_dma_complete(void *dma_async_param)
  447. {
  448. struct rcar_drif *ch = dma_async_param;
  449. struct rcar_drif_sdr *sdr = ch->sdr;
  450. struct rcar_drif_hwbuf *buf[RCAR_DRIF_MAX_CHANNEL];
  451. struct rcar_drif_frame_buf *fbuf;
  452. bool overflow = false;
  453. u32 idx, produced;
  454. unsigned int i;
  455. spin_lock(&sdr->dma_lock);
  456. /* DMA can be terminated while the callback was waiting on lock */
  457. if (!vb2_is_streaming(&sdr->vb_queue)) {
  458. spin_unlock(&sdr->dma_lock);
  459. return;
  460. }
  461. idx = sdr->produced % RCAR_DRIF_NUM_HWBUFS;
  462. rcar_drif_channel_complete(ch, idx);
  463. if (sdr->num_cur_ch == RCAR_DRIF_MAX_CHANNEL) {
  464. buf[0] = ch->num ? to_rcar_drif_buf_pair(sdr, ch->num, idx) :
  465. &ch->buf[idx];
  466. buf[1] = ch->num ? &ch->buf[idx] :
  467. to_rcar_drif_buf_pair(sdr, ch->num, idx);
  468. /* Check if both DMA buffers are done */
  469. if (!rcar_drif_bufs_done(buf)) {
  470. spin_unlock(&sdr->dma_lock);
  471. return;
  472. }
  473. /* Clear buf done status */
  474. rcar_drif_bufs_clear(buf, RCAR_DRIF_BUF_DONE);
  475. if (rcar_drif_bufs_overflow(buf)) {
  476. overflow = true;
  477. /* Clear the flag in status */
  478. rcar_drif_bufs_clear(buf, RCAR_DRIF_BUF_OVERFLOW);
  479. }
  480. } else {
  481. buf[0] = &ch->buf[idx];
  482. if (buf[0]->status & RCAR_DRIF_BUF_OVERFLOW) {
  483. overflow = true;
  484. /* Clear the flag in status */
  485. buf[0]->status &= ~RCAR_DRIF_BUF_OVERFLOW;
  486. }
  487. }
  488. /* Buffer produced for consumption */
  489. produced = sdr->produced++;
  490. spin_unlock(&sdr->dma_lock);
  491. rdrif_dbg(sdr, "ch%u: prod %u\n", ch->num, produced);
  492. /* Get fbuf */
  493. fbuf = rcar_drif_get_fbuf(sdr);
  494. if (!fbuf)
  495. return;
  496. for (i = 0; i < RCAR_DRIF_MAX_CHANNEL; i++)
  497. memcpy(vb2_plane_vaddr(&fbuf->vb.vb2_buf, 0) +
  498. i * sdr->hwbuf_size, buf[i]->addr, sdr->hwbuf_size);
  499. fbuf->vb.field = V4L2_FIELD_NONE;
  500. fbuf->vb.sequence = produced;
  501. fbuf->vb.vb2_buf.timestamp = ktime_get_ns();
  502. vb2_set_plane_payload(&fbuf->vb.vb2_buf, 0, sdr->fmt->buffersize);
  503. /* Set error state on overflow */
  504. vb2_buffer_done(&fbuf->vb.vb2_buf,
  505. overflow ? VB2_BUF_STATE_ERROR : VB2_BUF_STATE_DONE);
  506. }
  507. static int rcar_drif_qbuf(struct rcar_drif *ch)
  508. {
  509. struct rcar_drif_sdr *sdr = ch->sdr;
  510. dma_addr_t addr = ch->dma_handle;
  511. struct dma_async_tx_descriptor *rxd;
  512. dma_cookie_t cookie;
  513. int ret = -EIO;
  514. /* Setup cyclic DMA with given buffers */
  515. rxd = dmaengine_prep_dma_cyclic(ch->dmach, addr,
  516. sdr->hwbuf_size * RCAR_DRIF_NUM_HWBUFS,
  517. sdr->hwbuf_size, DMA_DEV_TO_MEM,
  518. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  519. if (!rxd) {
  520. rdrif_err(sdr, "ch%u: prep dma cyclic failed\n", ch->num);
  521. return ret;
  522. }
  523. /* Submit descriptor */
  524. rxd->callback = rcar_drif_dma_complete;
  525. rxd->callback_param = ch;
  526. cookie = dmaengine_submit(rxd);
  527. if (dma_submit_error(cookie)) {
  528. rdrif_err(sdr, "ch%u: dma submit failed\n", ch->num);
  529. return ret;
  530. }
  531. dma_async_issue_pending(ch->dmach);
  532. return 0;
  533. }
  534. /* Enable reception */
  535. static int rcar_drif_enable_rx(struct rcar_drif_sdr *sdr)
  536. {
  537. unsigned int i;
  538. u32 ctr;
  539. int ret;
  540. /*
  541. * When both internal channels are enabled, they can be synchronized
  542. * only by the master
  543. */
  544. /* Enable receive */
  545. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  546. ctr = rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR);
  547. ctr |= (RCAR_DRIF_SICTR_RX_RISING_EDGE |
  548. RCAR_DRIF_SICTR_RX_EN);
  549. rcar_drif_write(sdr->ch[i], RCAR_DRIF_SICTR, ctr);
  550. }
  551. /* Check receive enabled */
  552. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  553. ret = readl_poll_timeout(sdr->ch[i]->base + RCAR_DRIF_SICTR,
  554. ctr, ctr & RCAR_DRIF_SICTR_RX_EN, 7, 100000);
  555. if (ret) {
  556. rdrif_err(sdr, "ch%u: rx en failed. ctr 0x%08x\n", i,
  557. rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR));
  558. break;
  559. }
  560. }
  561. return ret;
  562. }
  563. /* Disable reception */
  564. static void rcar_drif_disable_rx(struct rcar_drif_sdr *sdr)
  565. {
  566. unsigned int i;
  567. u32 ctr;
  568. int ret;
  569. /* Disable receive */
  570. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  571. ctr = rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR);
  572. ctr &= ~RCAR_DRIF_SICTR_RX_EN;
  573. rcar_drif_write(sdr->ch[i], RCAR_DRIF_SICTR, ctr);
  574. }
  575. /* Check receive disabled */
  576. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  577. ret = readl_poll_timeout(sdr->ch[i]->base + RCAR_DRIF_SICTR,
  578. ctr, !(ctr & RCAR_DRIF_SICTR_RX_EN), 7, 100000);
  579. if (ret)
  580. dev_warn(&sdr->vdev->dev,
  581. "ch%u: failed to disable rx. ctr 0x%08x\n",
  582. i, rcar_drif_read(sdr->ch[i], RCAR_DRIF_SICTR));
  583. }
  584. }
  585. /* Stop channel */
  586. static void rcar_drif_stop_channel(struct rcar_drif *ch)
  587. {
  588. /* Disable DMA receive interrupt */
  589. rcar_drif_write(ch, RCAR_DRIF_SIIER, 0x00000000);
  590. /* Terminate all DMA transfers */
  591. dmaengine_terminate_sync(ch->dmach);
  592. }
  593. /* Stop receive operation */
  594. static void rcar_drif_stop(struct rcar_drif_sdr *sdr)
  595. {
  596. unsigned int i;
  597. /* Disable Rx */
  598. rcar_drif_disable_rx(sdr);
  599. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask)
  600. rcar_drif_stop_channel(sdr->ch[i]);
  601. }
  602. /* Start channel */
  603. static int rcar_drif_start_channel(struct rcar_drif *ch)
  604. {
  605. struct rcar_drif_sdr *sdr = ch->sdr;
  606. u32 ctr, str;
  607. int ret;
  608. /* Reset receive */
  609. rcar_drif_write(ch, RCAR_DRIF_SICTR, RCAR_DRIF_SICTR_RESET);
  610. ret = readl_poll_timeout(ch->base + RCAR_DRIF_SICTR, ctr,
  611. !(ctr & RCAR_DRIF_SICTR_RESET), 7, 100000);
  612. if (ret) {
  613. rdrif_err(sdr, "ch%u: failed to reset rx. ctr 0x%08x\n",
  614. ch->num, rcar_drif_read(ch, RCAR_DRIF_SICTR));
  615. return ret;
  616. }
  617. /* Queue buffers for DMA */
  618. ret = rcar_drif_qbuf(ch);
  619. if (ret)
  620. return ret;
  621. /* Clear status register flags */
  622. str = RCAR_DRIF_RFFUL | RCAR_DRIF_REOF | RCAR_DRIF_RFSERR |
  623. RCAR_DRIF_RFUDF | RCAR_DRIF_RFOVF;
  624. rcar_drif_write(ch, RCAR_DRIF_SISTR, str);
  625. /* Enable DMA receive interrupt */
  626. rcar_drif_write(ch, RCAR_DRIF_SIIER, 0x00009000);
  627. return ret;
  628. }
  629. /* Start receive operation */
  630. static int rcar_drif_start(struct rcar_drif_sdr *sdr)
  631. {
  632. unsigned long enabled = 0;
  633. unsigned int i;
  634. int ret;
  635. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  636. ret = rcar_drif_start_channel(sdr->ch[i]);
  637. if (ret)
  638. goto start_error;
  639. enabled |= BIT(i);
  640. }
  641. ret = rcar_drif_enable_rx(sdr);
  642. if (ret)
  643. goto enable_error;
  644. sdr->produced = 0;
  645. return ret;
  646. enable_error:
  647. rcar_drif_disable_rx(sdr);
  648. start_error:
  649. for_each_rcar_drif_channel(i, &enabled)
  650. rcar_drif_stop_channel(sdr->ch[i]);
  651. return ret;
  652. }
  653. /* Start streaming */
  654. static int rcar_drif_start_streaming(struct vb2_queue *vq, unsigned int count)
  655. {
  656. struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vq);
  657. unsigned long enabled = 0;
  658. unsigned int i;
  659. int ret;
  660. mutex_lock(&sdr->v4l2_mutex);
  661. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask) {
  662. ret = clk_prepare_enable(sdr->ch[i]->clk);
  663. if (ret)
  664. goto error;
  665. enabled |= BIT(i);
  666. }
  667. /* Set default MDRx settings */
  668. rcar_drif_set_mdr1(sdr);
  669. /* Set new format */
  670. ret = rcar_drif_set_format(sdr);
  671. if (ret)
  672. goto error;
  673. if (sdr->num_cur_ch == RCAR_DRIF_MAX_CHANNEL)
  674. sdr->hwbuf_size = sdr->fmt->buffersize / RCAR_DRIF_MAX_CHANNEL;
  675. else
  676. sdr->hwbuf_size = sdr->fmt->buffersize;
  677. rdrif_dbg(sdr, "num hwbufs %u, hwbuf_size %u\n",
  678. RCAR_DRIF_NUM_HWBUFS, sdr->hwbuf_size);
  679. /* Alloc DMA channel */
  680. ret = rcar_drif_alloc_dmachannels(sdr);
  681. if (ret)
  682. goto error;
  683. /* Request buffers */
  684. ret = rcar_drif_request_buf(sdr);
  685. if (ret)
  686. goto error;
  687. /* Start Rx */
  688. ret = rcar_drif_start(sdr);
  689. if (ret)
  690. goto error;
  691. mutex_unlock(&sdr->v4l2_mutex);
  692. return ret;
  693. error:
  694. rcar_drif_release_queued_bufs(sdr, VB2_BUF_STATE_QUEUED);
  695. rcar_drif_release_buf(sdr);
  696. rcar_drif_release_dmachannels(sdr);
  697. for_each_rcar_drif_channel(i, &enabled)
  698. clk_disable_unprepare(sdr->ch[i]->clk);
  699. mutex_unlock(&sdr->v4l2_mutex);
  700. return ret;
  701. }
  702. /* Stop streaming */
  703. static void rcar_drif_stop_streaming(struct vb2_queue *vq)
  704. {
  705. struct rcar_drif_sdr *sdr = vb2_get_drv_priv(vq);
  706. unsigned int i;
  707. mutex_lock(&sdr->v4l2_mutex);
  708. /* Stop hardware streaming */
  709. rcar_drif_stop(sdr);
  710. /* Return all queued buffers to vb2 */
  711. rcar_drif_release_queued_bufs(sdr, VB2_BUF_STATE_ERROR);
  712. /* Release buf */
  713. rcar_drif_release_buf(sdr);
  714. /* Release DMA channel resources */
  715. rcar_drif_release_dmachannels(sdr);
  716. for_each_rcar_drif_channel(i, &sdr->cur_ch_mask)
  717. clk_disable_unprepare(sdr->ch[i]->clk);
  718. mutex_unlock(&sdr->v4l2_mutex);
  719. }
  720. /* Vb2 ops */
  721. static const struct vb2_ops rcar_drif_vb2_ops = {
  722. .queue_setup = rcar_drif_queue_setup,
  723. .buf_queue = rcar_drif_buf_queue,
  724. .start_streaming = rcar_drif_start_streaming,
  725. .stop_streaming = rcar_drif_stop_streaming,
  726. .wait_prepare = vb2_ops_wait_prepare,
  727. .wait_finish = vb2_ops_wait_finish,
  728. };
  729. static int rcar_drif_querycap(struct file *file, void *fh,
  730. struct v4l2_capability *cap)
  731. {
  732. struct rcar_drif_sdr *sdr = video_drvdata(file);
  733. strlcpy(cap->driver, KBUILD_MODNAME, sizeof(cap->driver));
  734. strlcpy(cap->card, sdr->vdev->name, sizeof(cap->card));
  735. snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
  736. sdr->vdev->name);
  737. return 0;
  738. }
  739. static int rcar_drif_set_default_format(struct rcar_drif_sdr *sdr)
  740. {
  741. unsigned int i;
  742. for (i = 0; i < ARRAY_SIZE(formats); i++) {
  743. /* Matching fmt based on required channels is set as default */
  744. if (sdr->num_hw_ch == formats[i].num_ch) {
  745. sdr->fmt = &formats[i];
  746. sdr->cur_ch_mask = sdr->hw_ch_mask;
  747. sdr->num_cur_ch = sdr->num_hw_ch;
  748. dev_dbg(sdr->dev, "default fmt[%u]: mask %lu num %u\n",
  749. i, sdr->cur_ch_mask, sdr->num_cur_ch);
  750. return 0;
  751. }
  752. }
  753. return -EINVAL;
  754. }
  755. static int rcar_drif_enum_fmt_sdr_cap(struct file *file, void *priv,
  756. struct v4l2_fmtdesc *f)
  757. {
  758. if (f->index >= ARRAY_SIZE(formats))
  759. return -EINVAL;
  760. f->pixelformat = formats[f->index].pixelformat;
  761. return 0;
  762. }
  763. static int rcar_drif_g_fmt_sdr_cap(struct file *file, void *priv,
  764. struct v4l2_format *f)
  765. {
  766. struct rcar_drif_sdr *sdr = video_drvdata(file);
  767. f->fmt.sdr.pixelformat = sdr->fmt->pixelformat;
  768. f->fmt.sdr.buffersize = sdr->fmt->buffersize;
  769. return 0;
  770. }
  771. static int rcar_drif_s_fmt_sdr_cap(struct file *file, void *priv,
  772. struct v4l2_format *f)
  773. {
  774. struct rcar_drif_sdr *sdr = video_drvdata(file);
  775. struct vb2_queue *q = &sdr->vb_queue;
  776. unsigned int i;
  777. if (vb2_is_busy(q))
  778. return -EBUSY;
  779. for (i = 0; i < ARRAY_SIZE(formats); i++) {
  780. if (formats[i].pixelformat == f->fmt.sdr.pixelformat)
  781. break;
  782. }
  783. if (i == ARRAY_SIZE(formats))
  784. i = 0; /* Set the 1st format as default on no match */
  785. sdr->fmt = &formats[i];
  786. f->fmt.sdr.pixelformat = sdr->fmt->pixelformat;
  787. f->fmt.sdr.buffersize = formats[i].buffersize;
  788. memset(f->fmt.sdr.reserved, 0, sizeof(f->fmt.sdr.reserved));
  789. /*
  790. * If a format demands one channel only out of two
  791. * enabled channels, pick the 0th channel.
  792. */
  793. if (formats[i].num_ch < sdr->num_hw_ch) {
  794. sdr->cur_ch_mask = BIT(0);
  795. sdr->num_cur_ch = formats[i].num_ch;
  796. } else {
  797. sdr->cur_ch_mask = sdr->hw_ch_mask;
  798. sdr->num_cur_ch = sdr->num_hw_ch;
  799. }
  800. rdrif_dbg(sdr, "cur: idx %u mask %lu num %u\n",
  801. i, sdr->cur_ch_mask, sdr->num_cur_ch);
  802. return 0;
  803. }
  804. static int rcar_drif_try_fmt_sdr_cap(struct file *file, void *priv,
  805. struct v4l2_format *f)
  806. {
  807. unsigned int i;
  808. for (i = 0; i < ARRAY_SIZE(formats); i++) {
  809. if (formats[i].pixelformat == f->fmt.sdr.pixelformat) {
  810. f->fmt.sdr.buffersize = formats[i].buffersize;
  811. return 0;
  812. }
  813. }
  814. f->fmt.sdr.pixelformat = formats[0].pixelformat;
  815. f->fmt.sdr.buffersize = formats[0].buffersize;
  816. memset(f->fmt.sdr.reserved, 0, sizeof(f->fmt.sdr.reserved));
  817. return 0;
  818. }
  819. /* Tuner subdev ioctls */
  820. static int rcar_drif_enum_freq_bands(struct file *file, void *priv,
  821. struct v4l2_frequency_band *band)
  822. {
  823. struct rcar_drif_sdr *sdr = video_drvdata(file);
  824. return v4l2_subdev_call(sdr->ep.subdev, tuner, enum_freq_bands, band);
  825. }
  826. static int rcar_drif_g_frequency(struct file *file, void *priv,
  827. struct v4l2_frequency *f)
  828. {
  829. struct rcar_drif_sdr *sdr = video_drvdata(file);
  830. return v4l2_subdev_call(sdr->ep.subdev, tuner, g_frequency, f);
  831. }
  832. static int rcar_drif_s_frequency(struct file *file, void *priv,
  833. const struct v4l2_frequency *f)
  834. {
  835. struct rcar_drif_sdr *sdr = video_drvdata(file);
  836. return v4l2_subdev_call(sdr->ep.subdev, tuner, s_frequency, f);
  837. }
  838. static int rcar_drif_g_tuner(struct file *file, void *priv,
  839. struct v4l2_tuner *vt)
  840. {
  841. struct rcar_drif_sdr *sdr = video_drvdata(file);
  842. return v4l2_subdev_call(sdr->ep.subdev, tuner, g_tuner, vt);
  843. }
  844. static int rcar_drif_s_tuner(struct file *file, void *priv,
  845. const struct v4l2_tuner *vt)
  846. {
  847. struct rcar_drif_sdr *sdr = video_drvdata(file);
  848. return v4l2_subdev_call(sdr->ep.subdev, tuner, s_tuner, vt);
  849. }
  850. static const struct v4l2_ioctl_ops rcar_drif_ioctl_ops = {
  851. .vidioc_querycap = rcar_drif_querycap,
  852. .vidioc_enum_fmt_sdr_cap = rcar_drif_enum_fmt_sdr_cap,
  853. .vidioc_g_fmt_sdr_cap = rcar_drif_g_fmt_sdr_cap,
  854. .vidioc_s_fmt_sdr_cap = rcar_drif_s_fmt_sdr_cap,
  855. .vidioc_try_fmt_sdr_cap = rcar_drif_try_fmt_sdr_cap,
  856. .vidioc_reqbufs = vb2_ioctl_reqbufs,
  857. .vidioc_create_bufs = vb2_ioctl_create_bufs,
  858. .vidioc_prepare_buf = vb2_ioctl_prepare_buf,
  859. .vidioc_querybuf = vb2_ioctl_querybuf,
  860. .vidioc_qbuf = vb2_ioctl_qbuf,
  861. .vidioc_dqbuf = vb2_ioctl_dqbuf,
  862. .vidioc_streamon = vb2_ioctl_streamon,
  863. .vidioc_streamoff = vb2_ioctl_streamoff,
  864. .vidioc_s_frequency = rcar_drif_s_frequency,
  865. .vidioc_g_frequency = rcar_drif_g_frequency,
  866. .vidioc_s_tuner = rcar_drif_s_tuner,
  867. .vidioc_g_tuner = rcar_drif_g_tuner,
  868. .vidioc_enum_freq_bands = rcar_drif_enum_freq_bands,
  869. .vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
  870. .vidioc_unsubscribe_event = v4l2_event_unsubscribe,
  871. .vidioc_log_status = v4l2_ctrl_log_status,
  872. };
  873. static const struct v4l2_file_operations rcar_drif_fops = {
  874. .owner = THIS_MODULE,
  875. .open = v4l2_fh_open,
  876. .release = vb2_fop_release,
  877. .read = vb2_fop_read,
  878. .poll = vb2_fop_poll,
  879. .mmap = vb2_fop_mmap,
  880. .unlocked_ioctl = video_ioctl2,
  881. };
  882. static int rcar_drif_sdr_register(struct rcar_drif_sdr *sdr)
  883. {
  884. int ret;
  885. /* Init video_device structure */
  886. sdr->vdev = video_device_alloc();
  887. if (!sdr->vdev)
  888. return -ENOMEM;
  889. snprintf(sdr->vdev->name, sizeof(sdr->vdev->name), "R-Car DRIF");
  890. sdr->vdev->fops = &rcar_drif_fops;
  891. sdr->vdev->ioctl_ops = &rcar_drif_ioctl_ops;
  892. sdr->vdev->release = video_device_release;
  893. sdr->vdev->lock = &sdr->v4l2_mutex;
  894. sdr->vdev->queue = &sdr->vb_queue;
  895. sdr->vdev->queue->lock = &sdr->vb_queue_mutex;
  896. sdr->vdev->ctrl_handler = &sdr->ctrl_hdl;
  897. sdr->vdev->v4l2_dev = &sdr->v4l2_dev;
  898. sdr->vdev->device_caps = V4L2_CAP_SDR_CAPTURE | V4L2_CAP_TUNER |
  899. V4L2_CAP_STREAMING | V4L2_CAP_READWRITE;
  900. video_set_drvdata(sdr->vdev, sdr);
  901. /* Register V4L2 SDR device */
  902. ret = video_register_device(sdr->vdev, VFL_TYPE_SDR, -1);
  903. if (ret) {
  904. video_device_release(sdr->vdev);
  905. sdr->vdev = NULL;
  906. dev_err(sdr->dev, "failed video_register_device (%d)\n", ret);
  907. }
  908. return ret;
  909. }
  910. static void rcar_drif_sdr_unregister(struct rcar_drif_sdr *sdr)
  911. {
  912. video_unregister_device(sdr->vdev);
  913. sdr->vdev = NULL;
  914. }
  915. /* Sub-device bound callback */
  916. static int rcar_drif_notify_bound(struct v4l2_async_notifier *notifier,
  917. struct v4l2_subdev *subdev,
  918. struct v4l2_async_subdev *asd)
  919. {
  920. struct rcar_drif_sdr *sdr =
  921. container_of(notifier, struct rcar_drif_sdr, notifier);
  922. if (sdr->ep.asd.match.fwnode.fwnode !=
  923. of_fwnode_handle(subdev->dev->of_node)) {
  924. rdrif_err(sdr, "subdev %s cannot bind\n", subdev->name);
  925. return -EINVAL;
  926. }
  927. v4l2_set_subdev_hostdata(subdev, sdr);
  928. sdr->ep.subdev = subdev;
  929. rdrif_dbg(sdr, "bound asd %s\n", subdev->name);
  930. return 0;
  931. }
  932. /* Sub-device unbind callback */
  933. static void rcar_drif_notify_unbind(struct v4l2_async_notifier *notifier,
  934. struct v4l2_subdev *subdev,
  935. struct v4l2_async_subdev *asd)
  936. {
  937. struct rcar_drif_sdr *sdr =
  938. container_of(notifier, struct rcar_drif_sdr, notifier);
  939. if (sdr->ep.subdev != subdev) {
  940. rdrif_err(sdr, "subdev %s is not bound\n", subdev->name);
  941. return;
  942. }
  943. /* Free ctrl handler if initialized */
  944. v4l2_ctrl_handler_free(&sdr->ctrl_hdl);
  945. sdr->v4l2_dev.ctrl_handler = NULL;
  946. sdr->ep.subdev = NULL;
  947. rcar_drif_sdr_unregister(sdr);
  948. rdrif_dbg(sdr, "unbind asd %s\n", subdev->name);
  949. }
  950. /* Sub-device registered notification callback */
  951. static int rcar_drif_notify_complete(struct v4l2_async_notifier *notifier)
  952. {
  953. struct rcar_drif_sdr *sdr =
  954. container_of(notifier, struct rcar_drif_sdr, notifier);
  955. int ret;
  956. /*
  957. * The subdev tested at this point uses 4 controls. Using 10 as a worst
  958. * case scenario hint. When less controls are needed there will be some
  959. * unused memory and when more controls are needed the framework uses
  960. * hash to manage controls within this number.
  961. */
  962. ret = v4l2_ctrl_handler_init(&sdr->ctrl_hdl, 10);
  963. if (ret)
  964. return -ENOMEM;
  965. sdr->v4l2_dev.ctrl_handler = &sdr->ctrl_hdl;
  966. ret = v4l2_device_register_subdev_nodes(&sdr->v4l2_dev);
  967. if (ret) {
  968. rdrif_err(sdr, "failed: register subdev nodes ret %d\n", ret);
  969. goto error;
  970. }
  971. ret = v4l2_ctrl_add_handler(&sdr->ctrl_hdl,
  972. sdr->ep.subdev->ctrl_handler, NULL);
  973. if (ret) {
  974. rdrif_err(sdr, "failed: ctrl add hdlr ret %d\n", ret);
  975. goto error;
  976. }
  977. ret = rcar_drif_sdr_register(sdr);
  978. if (ret)
  979. goto error;
  980. return ret;
  981. error:
  982. v4l2_ctrl_handler_free(&sdr->ctrl_hdl);
  983. return ret;
  984. }
  985. /* Read endpoint properties */
  986. static void rcar_drif_get_ep_properties(struct rcar_drif_sdr *sdr,
  987. struct fwnode_handle *fwnode)
  988. {
  989. u32 val;
  990. /* Set the I2S defaults for SIRMDR1*/
  991. sdr->mdr1 = RCAR_DRIF_SIRMDR1_SYNCMD_LR | RCAR_DRIF_SIRMDR1_MSB_FIRST |
  992. RCAR_DRIF_SIRMDR1_DTDL_1 | RCAR_DRIF_SIRMDR1_SYNCDL_0;
  993. /* Parse sync polarity from endpoint */
  994. if (!fwnode_property_read_u32(fwnode, "sync-active", &val))
  995. sdr->mdr1 |= val ? RCAR_DRIF_SIRMDR1_SYNCAC_POL_HIGH :
  996. RCAR_DRIF_SIRMDR1_SYNCAC_POL_LOW;
  997. else
  998. sdr->mdr1 |= RCAR_DRIF_SIRMDR1_SYNCAC_POL_HIGH; /* default */
  999. dev_dbg(sdr->dev, "mdr1 0x%08x\n", sdr->mdr1);
  1000. }
  1001. /* Parse sub-devs (tuner) to find a matching device */
  1002. static int rcar_drif_parse_subdevs(struct rcar_drif_sdr *sdr)
  1003. {
  1004. struct v4l2_async_notifier *notifier = &sdr->notifier;
  1005. struct fwnode_handle *fwnode, *ep;
  1006. notifier->subdevs = devm_kzalloc(sdr->dev, sizeof(*notifier->subdevs),
  1007. GFP_KERNEL);
  1008. if (!notifier->subdevs)
  1009. return -ENOMEM;
  1010. ep = fwnode_graph_get_next_endpoint(of_fwnode_handle(sdr->dev->of_node),
  1011. NULL);
  1012. if (!ep)
  1013. return 0;
  1014. notifier->subdevs[notifier->num_subdevs] = &sdr->ep.asd;
  1015. fwnode = fwnode_graph_get_remote_port_parent(ep);
  1016. if (!fwnode) {
  1017. dev_warn(sdr->dev, "bad remote port parent\n");
  1018. fwnode_handle_put(ep);
  1019. return -EINVAL;
  1020. }
  1021. sdr->ep.asd.match.fwnode.fwnode = fwnode;
  1022. sdr->ep.asd.match_type = V4L2_ASYNC_MATCH_FWNODE;
  1023. notifier->num_subdevs++;
  1024. /* Get the endpoint properties */
  1025. rcar_drif_get_ep_properties(sdr, ep);
  1026. fwnode_handle_put(fwnode);
  1027. fwnode_handle_put(ep);
  1028. return 0;
  1029. }
  1030. /* Check if the given device is the primary bond */
  1031. static bool rcar_drif_primary_bond(struct platform_device *pdev)
  1032. {
  1033. return of_property_read_bool(pdev->dev.of_node, "renesas,primary-bond");
  1034. }
  1035. /* Check if both devices of the bond are enabled */
  1036. static struct device_node *rcar_drif_bond_enabled(struct platform_device *p)
  1037. {
  1038. struct device_node *np;
  1039. np = of_parse_phandle(p->dev.of_node, "renesas,bonding", 0);
  1040. if (np && of_device_is_available(np))
  1041. return np;
  1042. return NULL;
  1043. }
  1044. /* Check if the bonded device is probed */
  1045. static int rcar_drif_bond_available(struct rcar_drif_sdr *sdr,
  1046. struct device_node *np)
  1047. {
  1048. struct platform_device *pdev;
  1049. struct rcar_drif *ch;
  1050. int ret = 0;
  1051. pdev = of_find_device_by_node(np);
  1052. if (!pdev) {
  1053. dev_err(sdr->dev, "failed to get bonded device from node\n");
  1054. return -ENODEV;
  1055. }
  1056. device_lock(&pdev->dev);
  1057. ch = platform_get_drvdata(pdev);
  1058. if (ch) {
  1059. /* Update sdr data in the bonded device */
  1060. ch->sdr = sdr;
  1061. /* Update sdr with bonded device data */
  1062. sdr->ch[ch->num] = ch;
  1063. sdr->hw_ch_mask |= BIT(ch->num);
  1064. } else {
  1065. /* Defer */
  1066. dev_info(sdr->dev, "defer probe\n");
  1067. ret = -EPROBE_DEFER;
  1068. }
  1069. device_unlock(&pdev->dev);
  1070. put_device(&pdev->dev);
  1071. return ret;
  1072. }
  1073. /* V4L2 SDR device probe */
  1074. static int rcar_drif_sdr_probe(struct rcar_drif_sdr *sdr)
  1075. {
  1076. int ret;
  1077. /* Validate any supported format for enabled channels */
  1078. ret = rcar_drif_set_default_format(sdr);
  1079. if (ret) {
  1080. dev_err(sdr->dev, "failed to set default format\n");
  1081. return ret;
  1082. }
  1083. /* Set defaults */
  1084. sdr->hwbuf_size = RCAR_DRIF_DEFAULT_HWBUF_SIZE;
  1085. mutex_init(&sdr->v4l2_mutex);
  1086. mutex_init(&sdr->vb_queue_mutex);
  1087. spin_lock_init(&sdr->queued_bufs_lock);
  1088. spin_lock_init(&sdr->dma_lock);
  1089. INIT_LIST_HEAD(&sdr->queued_bufs);
  1090. /* Init videobuf2 queue structure */
  1091. sdr->vb_queue.type = V4L2_BUF_TYPE_SDR_CAPTURE;
  1092. sdr->vb_queue.io_modes = VB2_READ | VB2_MMAP | VB2_DMABUF;
  1093. sdr->vb_queue.drv_priv = sdr;
  1094. sdr->vb_queue.buf_struct_size = sizeof(struct rcar_drif_frame_buf);
  1095. sdr->vb_queue.ops = &rcar_drif_vb2_ops;
  1096. sdr->vb_queue.mem_ops = &vb2_vmalloc_memops;
  1097. sdr->vb_queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
  1098. /* Init videobuf2 queue */
  1099. ret = vb2_queue_init(&sdr->vb_queue);
  1100. if (ret) {
  1101. dev_err(sdr->dev, "failed: vb2_queue_init ret %d\n", ret);
  1102. return ret;
  1103. }
  1104. /* Register the v4l2_device */
  1105. ret = v4l2_device_register(sdr->dev, &sdr->v4l2_dev);
  1106. if (ret) {
  1107. dev_err(sdr->dev, "failed: v4l2_device_register ret %d\n", ret);
  1108. return ret;
  1109. }
  1110. /*
  1111. * Parse subdevs after v4l2_device_register because if the subdev
  1112. * is already probed, bound and complete will be called immediately
  1113. */
  1114. ret = rcar_drif_parse_subdevs(sdr);
  1115. if (ret)
  1116. goto error;
  1117. sdr->notifier.bound = rcar_drif_notify_bound;
  1118. sdr->notifier.unbind = rcar_drif_notify_unbind;
  1119. sdr->notifier.complete = rcar_drif_notify_complete;
  1120. /* Register notifier */
  1121. ret = v4l2_async_notifier_register(&sdr->v4l2_dev, &sdr->notifier);
  1122. if (ret < 0) {
  1123. dev_err(sdr->dev, "failed: notifier register ret %d\n", ret);
  1124. goto error;
  1125. }
  1126. return ret;
  1127. error:
  1128. v4l2_device_unregister(&sdr->v4l2_dev);
  1129. return ret;
  1130. }
  1131. /* V4L2 SDR device remove */
  1132. static void rcar_drif_sdr_remove(struct rcar_drif_sdr *sdr)
  1133. {
  1134. v4l2_async_notifier_unregister(&sdr->notifier);
  1135. v4l2_device_unregister(&sdr->v4l2_dev);
  1136. }
  1137. /* DRIF channel probe */
  1138. static int rcar_drif_probe(struct platform_device *pdev)
  1139. {
  1140. struct rcar_drif_sdr *sdr;
  1141. struct device_node *np;
  1142. struct rcar_drif *ch;
  1143. struct resource *res;
  1144. int ret;
  1145. /* Reserve memory for enabled channel */
  1146. ch = devm_kzalloc(&pdev->dev, sizeof(*ch), GFP_KERNEL);
  1147. if (!ch)
  1148. return -ENOMEM;
  1149. ch->pdev = pdev;
  1150. /* Module clock */
  1151. ch->clk = devm_clk_get(&pdev->dev, "fck");
  1152. if (IS_ERR(ch->clk)) {
  1153. ret = PTR_ERR(ch->clk);
  1154. dev_err(&pdev->dev, "clk get failed (%d)\n", ret);
  1155. return ret;
  1156. }
  1157. /* Register map */
  1158. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1159. ch->base = devm_ioremap_resource(&pdev->dev, res);
  1160. if (IS_ERR(ch->base)) {
  1161. ret = PTR_ERR(ch->base);
  1162. dev_err(&pdev->dev, "ioremap failed (%d)\n", ret);
  1163. return ret;
  1164. }
  1165. ch->start = res->start;
  1166. platform_set_drvdata(pdev, ch);
  1167. /* Check if both channels of the bond are enabled */
  1168. np = rcar_drif_bond_enabled(pdev);
  1169. if (np) {
  1170. /* Check if current channel acting as primary-bond */
  1171. if (!rcar_drif_primary_bond(pdev)) {
  1172. ch->num = 1; /* Primary bond is channel 0 always */
  1173. of_node_put(np);
  1174. return 0;
  1175. }
  1176. }
  1177. /* Reserve memory for SDR structure */
  1178. sdr = devm_kzalloc(&pdev->dev, sizeof(*sdr), GFP_KERNEL);
  1179. if (!sdr) {
  1180. of_node_put(np);
  1181. return -ENOMEM;
  1182. }
  1183. ch->sdr = sdr;
  1184. sdr->dev = &pdev->dev;
  1185. /* Establish links between SDR and channel(s) */
  1186. sdr->ch[ch->num] = ch;
  1187. sdr->hw_ch_mask = BIT(ch->num);
  1188. if (np) {
  1189. /* Check if bonded device is ready */
  1190. ret = rcar_drif_bond_available(sdr, np);
  1191. of_node_put(np);
  1192. if (ret)
  1193. return ret;
  1194. }
  1195. sdr->num_hw_ch = hweight_long(sdr->hw_ch_mask);
  1196. return rcar_drif_sdr_probe(sdr);
  1197. }
  1198. /* DRIF channel remove */
  1199. static int rcar_drif_remove(struct platform_device *pdev)
  1200. {
  1201. struct rcar_drif *ch = platform_get_drvdata(pdev);
  1202. struct rcar_drif_sdr *sdr = ch->sdr;
  1203. /* Channel 0 will be the SDR instance */
  1204. if (ch->num)
  1205. return 0;
  1206. /* SDR instance */
  1207. rcar_drif_sdr_remove(sdr);
  1208. return 0;
  1209. }
  1210. /* FIXME: Implement suspend/resume support */
  1211. static int __maybe_unused rcar_drif_suspend(struct device *dev)
  1212. {
  1213. return 0;
  1214. }
  1215. static int __maybe_unused rcar_drif_resume(struct device *dev)
  1216. {
  1217. return 0;
  1218. }
  1219. static SIMPLE_DEV_PM_OPS(rcar_drif_pm_ops, rcar_drif_suspend,
  1220. rcar_drif_resume);
  1221. static const struct of_device_id rcar_drif_of_table[] = {
  1222. { .compatible = "renesas,rcar-gen3-drif" },
  1223. { }
  1224. };
  1225. MODULE_DEVICE_TABLE(of, rcar_drif_of_table);
  1226. #define RCAR_DRIF_DRV_NAME "rcar_drif"
  1227. static struct platform_driver rcar_drif_driver = {
  1228. .driver = {
  1229. .name = RCAR_DRIF_DRV_NAME,
  1230. .of_match_table = of_match_ptr(rcar_drif_of_table),
  1231. .pm = &rcar_drif_pm_ops,
  1232. },
  1233. .probe = rcar_drif_probe,
  1234. .remove = rcar_drif_remove,
  1235. };
  1236. module_platform_driver(rcar_drif_driver);
  1237. MODULE_DESCRIPTION("Renesas R-Car Gen3 DRIF driver");
  1238. MODULE_ALIAS("platform:" RCAR_DRIF_DRV_NAME);
  1239. MODULE_LICENSE("GPL v2");
  1240. MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");