ngene-core.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694
  1. /*
  2. * ngene.c: nGene PCIe bridge driver
  3. *
  4. * Copyright (C) 2005-2007 Micronas
  5. *
  6. * Copyright (C) 2008-2009 Ralph Metzler <rjkm@metzlerbros.de>
  7. * Modifications for new nGene firmware,
  8. * support for EEPROM-copying,
  9. * support for new dual DVB-S2 card prototype
  10. *
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License
  14. * version 2 only, as published by the Free Software Foundation.
  15. *
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * To obtain the license, point your browser to
  23. * http://www.gnu.org/copyleft/gpl.html
  24. */
  25. #include <linux/module.h>
  26. #include <linux/init.h>
  27. #include <linux/delay.h>
  28. #include <linux/poll.h>
  29. #include <linux/io.h>
  30. #include <asm/div64.h>
  31. #include <linux/pci.h>
  32. #include <linux/timer.h>
  33. #include <linux/byteorder/generic.h>
  34. #include <linux/firmware.h>
  35. #include <linux/vmalloc.h>
  36. #include "ngene.h"
  37. static int one_adapter;
  38. module_param(one_adapter, int, 0444);
  39. MODULE_PARM_DESC(one_adapter, "Use only one adapter.");
  40. static int shutdown_workaround;
  41. module_param(shutdown_workaround, int, 0644);
  42. MODULE_PARM_DESC(shutdown_workaround, "Activate workaround for shutdown problem with some chipsets.");
  43. static int debug;
  44. module_param(debug, int, 0444);
  45. MODULE_PARM_DESC(debug, "Print debugging information.");
  46. DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr);
  47. #define dprintk if (debug) printk
  48. #define ngwriteb(dat, adr) writeb((dat), dev->iomem + (adr))
  49. #define ngwritel(dat, adr) writel((dat), dev->iomem + (adr))
  50. #define ngwriteb(dat, adr) writeb((dat), dev->iomem + (adr))
  51. #define ngreadl(adr) readl(dev->iomem + (adr))
  52. #define ngreadb(adr) readb(dev->iomem + (adr))
  53. #define ngcpyto(adr, src, count) memcpy_toio(dev->iomem + (adr), (src), (count))
  54. #define ngcpyfrom(dst, adr, count) memcpy_fromio((dst), dev->iomem + (adr), (count))
  55. /****************************************************************************/
  56. /* nGene interrupt handler **************************************************/
  57. /****************************************************************************/
  58. static void event_tasklet(unsigned long data)
  59. {
  60. struct ngene *dev = (struct ngene *)data;
  61. while (dev->EventQueueReadIndex != dev->EventQueueWriteIndex) {
  62. struct EVENT_BUFFER Event =
  63. dev->EventQueue[dev->EventQueueReadIndex];
  64. dev->EventQueueReadIndex =
  65. (dev->EventQueueReadIndex + 1) & (EVENT_QUEUE_SIZE - 1);
  66. if ((Event.UARTStatus & 0x01) && (dev->TxEventNotify))
  67. dev->TxEventNotify(dev, Event.TimeStamp);
  68. if ((Event.UARTStatus & 0x02) && (dev->RxEventNotify))
  69. dev->RxEventNotify(dev, Event.TimeStamp,
  70. Event.RXCharacter);
  71. }
  72. }
  73. static void demux_tasklet(unsigned long data)
  74. {
  75. struct ngene_channel *chan = (struct ngene_channel *)data;
  76. struct SBufferHeader *Cur = chan->nextBuffer;
  77. spin_lock_irq(&chan->state_lock);
  78. while (Cur->ngeneBuffer.SR.Flags & 0x80) {
  79. if (chan->mode & NGENE_IO_TSOUT) {
  80. u32 Flags = chan->DataFormatFlags;
  81. if (Cur->ngeneBuffer.SR.Flags & 0x20)
  82. Flags |= BEF_OVERFLOW;
  83. if (chan->pBufferExchange) {
  84. if (!chan->pBufferExchange(chan,
  85. Cur->Buffer1,
  86. chan->Capture1Length,
  87. Cur->ngeneBuffer.SR.
  88. Clock, Flags)) {
  89. /*
  90. We didn't get data
  91. Clear in service flag to make sure we
  92. get called on next interrupt again.
  93. leave fill/empty (0x80) flag alone
  94. to avoid hardware running out of
  95. buffers during startup, we hold only
  96. in run state ( the source may be late
  97. delivering data )
  98. */
  99. if (chan->HWState == HWSTATE_RUN) {
  100. Cur->ngeneBuffer.SR.Flags &=
  101. ~0x40;
  102. break;
  103. /* Stop processing stream */
  104. }
  105. } else {
  106. /* We got a valid buffer,
  107. so switch to run state */
  108. chan->HWState = HWSTATE_RUN;
  109. }
  110. } else {
  111. printk(KERN_ERR DEVICE_NAME ": OOPS\n");
  112. if (chan->HWState == HWSTATE_RUN) {
  113. Cur->ngeneBuffer.SR.Flags &= ~0x40;
  114. break; /* Stop processing stream */
  115. }
  116. }
  117. if (chan->AudioDTOUpdated) {
  118. printk(KERN_INFO DEVICE_NAME
  119. ": Update AudioDTO = %d\n",
  120. chan->AudioDTOValue);
  121. Cur->ngeneBuffer.SR.DTOUpdate =
  122. chan->AudioDTOValue;
  123. chan->AudioDTOUpdated = 0;
  124. }
  125. } else {
  126. if (chan->HWState == HWSTATE_RUN) {
  127. u32 Flags = chan->DataFormatFlags;
  128. IBufferExchange *exch1 = chan->pBufferExchange;
  129. IBufferExchange *exch2 = chan->pBufferExchange2;
  130. if (Cur->ngeneBuffer.SR.Flags & 0x01)
  131. Flags |= BEF_EVEN_FIELD;
  132. if (Cur->ngeneBuffer.SR.Flags & 0x20)
  133. Flags |= BEF_OVERFLOW;
  134. spin_unlock_irq(&chan->state_lock);
  135. if (exch1)
  136. exch1(chan, Cur->Buffer1,
  137. chan->Capture1Length,
  138. Cur->ngeneBuffer.SR.Clock,
  139. Flags);
  140. if (exch2)
  141. exch2(chan, Cur->Buffer2,
  142. chan->Capture2Length,
  143. Cur->ngeneBuffer.SR.Clock,
  144. Flags);
  145. spin_lock_irq(&chan->state_lock);
  146. } else if (chan->HWState != HWSTATE_STOP)
  147. chan->HWState = HWSTATE_RUN;
  148. }
  149. Cur->ngeneBuffer.SR.Flags = 0x00;
  150. Cur = Cur->Next;
  151. }
  152. chan->nextBuffer = Cur;
  153. spin_unlock_irq(&chan->state_lock);
  154. }
  155. static irqreturn_t irq_handler(int irq, void *dev_id)
  156. {
  157. struct ngene *dev = (struct ngene *)dev_id;
  158. u32 icounts = 0;
  159. irqreturn_t rc = IRQ_NONE;
  160. u32 i = MAX_STREAM;
  161. u8 *tmpCmdDoneByte;
  162. if (dev->BootFirmware) {
  163. icounts = ngreadl(NGENE_INT_COUNTS);
  164. if (icounts != dev->icounts) {
  165. ngwritel(0, FORCE_NMI);
  166. dev->cmd_done = 1;
  167. wake_up(&dev->cmd_wq);
  168. dev->icounts = icounts;
  169. rc = IRQ_HANDLED;
  170. }
  171. return rc;
  172. }
  173. ngwritel(0, FORCE_NMI);
  174. spin_lock(&dev->cmd_lock);
  175. tmpCmdDoneByte = dev->CmdDoneByte;
  176. if (tmpCmdDoneByte &&
  177. (*tmpCmdDoneByte ||
  178. (dev->ngenetohost[0] == 1 && dev->ngenetohost[1] != 0))) {
  179. dev->CmdDoneByte = NULL;
  180. dev->cmd_done = 1;
  181. wake_up(&dev->cmd_wq);
  182. rc = IRQ_HANDLED;
  183. }
  184. spin_unlock(&dev->cmd_lock);
  185. if (dev->EventBuffer->EventStatus & 0x80) {
  186. u8 nextWriteIndex =
  187. (dev->EventQueueWriteIndex + 1) &
  188. (EVENT_QUEUE_SIZE - 1);
  189. if (nextWriteIndex != dev->EventQueueReadIndex) {
  190. dev->EventQueue[dev->EventQueueWriteIndex] =
  191. *(dev->EventBuffer);
  192. dev->EventQueueWriteIndex = nextWriteIndex;
  193. } else {
  194. printk(KERN_ERR DEVICE_NAME ": event overflow\n");
  195. dev->EventQueueOverflowCount += 1;
  196. dev->EventQueueOverflowFlag = 1;
  197. }
  198. dev->EventBuffer->EventStatus &= ~0x80;
  199. tasklet_schedule(&dev->event_tasklet);
  200. rc = IRQ_HANDLED;
  201. }
  202. while (i > 0) {
  203. i--;
  204. spin_lock(&dev->channel[i].state_lock);
  205. /* if (dev->channel[i].State>=KSSTATE_RUN) { */
  206. if (dev->channel[i].nextBuffer) {
  207. if ((dev->channel[i].nextBuffer->
  208. ngeneBuffer.SR.Flags & 0xC0) == 0x80) {
  209. dev->channel[i].nextBuffer->
  210. ngeneBuffer.SR.Flags |= 0x40;
  211. tasklet_schedule(
  212. &dev->channel[i].demux_tasklet);
  213. rc = IRQ_HANDLED;
  214. }
  215. }
  216. spin_unlock(&dev->channel[i].state_lock);
  217. }
  218. /* Request might have been processed by a previous call. */
  219. return IRQ_HANDLED;
  220. }
  221. /****************************************************************************/
  222. /* nGene command interface **************************************************/
  223. /****************************************************************************/
  224. static void dump_command_io(struct ngene *dev)
  225. {
  226. u8 buf[8], *b;
  227. ngcpyfrom(buf, HOST_TO_NGENE, 8);
  228. printk(KERN_ERR "host_to_ngene (%04x): %*ph\n", HOST_TO_NGENE, 8, buf);
  229. ngcpyfrom(buf, NGENE_TO_HOST, 8);
  230. printk(KERN_ERR "ngene_to_host (%04x): %*ph\n", NGENE_TO_HOST, 8, buf);
  231. b = dev->hosttongene;
  232. printk(KERN_ERR "dev->hosttongene (%p): %*ph\n", b, 8, b);
  233. b = dev->ngenetohost;
  234. printk(KERN_ERR "dev->ngenetohost (%p): %*ph\n", b, 8, b);
  235. }
  236. static int ngene_command_mutex(struct ngene *dev, struct ngene_command *com)
  237. {
  238. int ret;
  239. u8 *tmpCmdDoneByte;
  240. dev->cmd_done = 0;
  241. if (com->cmd.hdr.Opcode == CMD_FWLOAD_PREPARE) {
  242. dev->BootFirmware = 1;
  243. dev->icounts = ngreadl(NGENE_INT_COUNTS);
  244. ngwritel(0, NGENE_COMMAND);
  245. ngwritel(0, NGENE_COMMAND_HI);
  246. ngwritel(0, NGENE_STATUS);
  247. ngwritel(0, NGENE_STATUS_HI);
  248. ngwritel(0, NGENE_EVENT);
  249. ngwritel(0, NGENE_EVENT_HI);
  250. } else if (com->cmd.hdr.Opcode == CMD_FWLOAD_FINISH) {
  251. u64 fwio = dev->PAFWInterfaceBuffer;
  252. ngwritel(fwio & 0xffffffff, NGENE_COMMAND);
  253. ngwritel(fwio >> 32, NGENE_COMMAND_HI);
  254. ngwritel((fwio + 256) & 0xffffffff, NGENE_STATUS);
  255. ngwritel((fwio + 256) >> 32, NGENE_STATUS_HI);
  256. ngwritel((fwio + 512) & 0xffffffff, NGENE_EVENT);
  257. ngwritel((fwio + 512) >> 32, NGENE_EVENT_HI);
  258. }
  259. memcpy(dev->FWInterfaceBuffer, com->cmd.raw8, com->in_len + 2);
  260. if (dev->BootFirmware)
  261. ngcpyto(HOST_TO_NGENE, com->cmd.raw8, com->in_len + 2);
  262. spin_lock_irq(&dev->cmd_lock);
  263. tmpCmdDoneByte = dev->ngenetohost + com->out_len;
  264. if (!com->out_len)
  265. tmpCmdDoneByte++;
  266. *tmpCmdDoneByte = 0;
  267. dev->ngenetohost[0] = 0;
  268. dev->ngenetohost[1] = 0;
  269. dev->CmdDoneByte = tmpCmdDoneByte;
  270. spin_unlock_irq(&dev->cmd_lock);
  271. /* Notify 8051. */
  272. ngwritel(1, FORCE_INT);
  273. ret = wait_event_timeout(dev->cmd_wq, dev->cmd_done == 1, 2 * HZ);
  274. if (!ret) {
  275. /*ngwritel(0, FORCE_NMI);*/
  276. printk(KERN_ERR DEVICE_NAME
  277. ": Command timeout cmd=%02x prev=%02x\n",
  278. com->cmd.hdr.Opcode, dev->prev_cmd);
  279. dump_command_io(dev);
  280. return -1;
  281. }
  282. if (com->cmd.hdr.Opcode == CMD_FWLOAD_FINISH)
  283. dev->BootFirmware = 0;
  284. dev->prev_cmd = com->cmd.hdr.Opcode;
  285. if (!com->out_len)
  286. return 0;
  287. memcpy(com->cmd.raw8, dev->ngenetohost, com->out_len);
  288. return 0;
  289. }
  290. int ngene_command(struct ngene *dev, struct ngene_command *com)
  291. {
  292. int result;
  293. mutex_lock(&dev->cmd_mutex);
  294. result = ngene_command_mutex(dev, com);
  295. mutex_unlock(&dev->cmd_mutex);
  296. return result;
  297. }
  298. static int ngene_command_load_firmware(struct ngene *dev,
  299. u8 *ngene_fw, u32 size)
  300. {
  301. #define FIRSTCHUNK (1024)
  302. u32 cleft;
  303. struct ngene_command com;
  304. com.cmd.hdr.Opcode = CMD_FWLOAD_PREPARE;
  305. com.cmd.hdr.Length = 0;
  306. com.in_len = 0;
  307. com.out_len = 0;
  308. ngene_command(dev, &com);
  309. cleft = (size + 3) & ~3;
  310. if (cleft > FIRSTCHUNK) {
  311. ngcpyto(PROGRAM_SRAM + FIRSTCHUNK, ngene_fw + FIRSTCHUNK,
  312. cleft - FIRSTCHUNK);
  313. cleft = FIRSTCHUNK;
  314. }
  315. ngcpyto(DATA_FIFO_AREA, ngene_fw, cleft);
  316. memset(&com, 0, sizeof(struct ngene_command));
  317. com.cmd.hdr.Opcode = CMD_FWLOAD_FINISH;
  318. com.cmd.hdr.Length = 4;
  319. com.cmd.FWLoadFinish.Address = DATA_FIFO_AREA;
  320. com.cmd.FWLoadFinish.Length = (unsigned short)cleft;
  321. com.in_len = 4;
  322. com.out_len = 0;
  323. return ngene_command(dev, &com);
  324. }
  325. static int ngene_command_config_buf(struct ngene *dev, u8 config)
  326. {
  327. struct ngene_command com;
  328. com.cmd.hdr.Opcode = CMD_CONFIGURE_BUFFER;
  329. com.cmd.hdr.Length = 1;
  330. com.cmd.ConfigureBuffers.config = config;
  331. com.in_len = 1;
  332. com.out_len = 0;
  333. if (ngene_command(dev, &com) < 0)
  334. return -EIO;
  335. return 0;
  336. }
  337. static int ngene_command_config_free_buf(struct ngene *dev, u8 *config)
  338. {
  339. struct ngene_command com;
  340. com.cmd.hdr.Opcode = CMD_CONFIGURE_FREE_BUFFER;
  341. com.cmd.hdr.Length = 6;
  342. memcpy(&com.cmd.ConfigureBuffers.config, config, 6);
  343. com.in_len = 6;
  344. com.out_len = 0;
  345. if (ngene_command(dev, &com) < 0)
  346. return -EIO;
  347. return 0;
  348. }
  349. int ngene_command_gpio_set(struct ngene *dev, u8 select, u8 level)
  350. {
  351. struct ngene_command com;
  352. com.cmd.hdr.Opcode = CMD_SET_GPIO_PIN;
  353. com.cmd.hdr.Length = 1;
  354. com.cmd.SetGpioPin.select = select | (level << 7);
  355. com.in_len = 1;
  356. com.out_len = 0;
  357. return ngene_command(dev, &com);
  358. }
  359. /*
  360. 02000640 is sample on rising edge.
  361. 02000740 is sample on falling edge.
  362. 02000040 is ignore "valid" signal
  363. 0: FD_CTL1 Bit 7,6 must be 0,1
  364. 7 disable(fw controlled)
  365. 6 0-AUX,1-TS
  366. 5 0-par,1-ser
  367. 4 0-lsb/1-msb
  368. 3,2 reserved
  369. 1,0 0-no sync, 1-use ext. start, 2-use 0x47, 3-both
  370. 1: FD_CTL2 has 3-valid must be hi, 2-use valid, 1-edge
  371. 2: FD_STA is read-only. 0-sync
  372. 3: FD_INSYNC is number of 47s to trigger "in sync".
  373. 4: FD_OUTSYNC is number of 47s to trigger "out of sync".
  374. 5: FD_MAXBYTE1 is low-order of bytes per packet.
  375. 6: FD_MAXBYTE2 is high-order of bytes per packet.
  376. 7: Top byte is unused.
  377. */
  378. /****************************************************************************/
  379. static u8 TSFeatureDecoderSetup[8 * 5] = {
  380. 0x42, 0x00, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00,
  381. 0x40, 0x06, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* DRXH */
  382. 0x71, 0x07, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* DRXHser */
  383. 0x72, 0x00, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* S2ser */
  384. 0x40, 0x07, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* LGDT3303 */
  385. };
  386. /* Set NGENE I2S Config to 16 bit packed */
  387. static u8 I2SConfiguration[] = {
  388. 0x00, 0x10, 0x00, 0x00,
  389. 0x80, 0x10, 0x00, 0x00,
  390. };
  391. static u8 SPDIFConfiguration[10] = {
  392. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
  393. };
  394. /* Set NGENE I2S Config to transport stream compatible mode */
  395. static u8 TS_I2SConfiguration[4] = { 0x3E, 0x18, 0x00, 0x00 };
  396. static u8 TS_I2SOutConfiguration[4] = { 0x80, 0x04, 0x00, 0x00 };
  397. static u8 ITUDecoderSetup[4][16] = {
  398. {0x1c, 0x13, 0x01, 0x68, 0x3d, 0x90, 0x14, 0x20, /* SDTV */
  399. 0x00, 0x00, 0x01, 0xb0, 0x9c, 0x00, 0x00, 0x00},
  400. {0x9c, 0x03, 0x23, 0xC0, 0x60, 0x0E, 0x13, 0x00,
  401. 0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00},
  402. {0x9f, 0x00, 0x23, 0xC0, 0x60, 0x0F, 0x13, 0x00, /* HDTV 1080i50 */
  403. 0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00},
  404. {0x9c, 0x01, 0x23, 0xC0, 0x60, 0x0E, 0x13, 0x00, /* HDTV 1080i60 */
  405. 0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00},
  406. };
  407. /*
  408. * 50 48 60 gleich
  409. * 27p50 9f 00 22 80 42 69 18 ...
  410. * 27p60 93 00 22 80 82 69 1c ...
  411. */
  412. /* Maxbyte to 1144 (for raw data) */
  413. static u8 ITUFeatureDecoderSetup[8] = {
  414. 0x00, 0x00, 0x00, 0x00, 0x00, 0x78, 0x04, 0x00
  415. };
  416. void FillTSBuffer(void *Buffer, int Length, u32 Flags)
  417. {
  418. u32 *ptr = Buffer;
  419. memset(Buffer, TS_FILLER, Length);
  420. while (Length > 0) {
  421. if (Flags & DF_SWAP32)
  422. *ptr = 0x471FFF10;
  423. else
  424. *ptr = 0x10FF1F47;
  425. ptr += (188 / 4);
  426. Length -= 188;
  427. }
  428. }
  429. static void flush_buffers(struct ngene_channel *chan)
  430. {
  431. u8 val;
  432. do {
  433. msleep(1);
  434. spin_lock_irq(&chan->state_lock);
  435. val = chan->nextBuffer->ngeneBuffer.SR.Flags & 0x80;
  436. spin_unlock_irq(&chan->state_lock);
  437. } while (val);
  438. }
  439. static void clear_buffers(struct ngene_channel *chan)
  440. {
  441. struct SBufferHeader *Cur = chan->nextBuffer;
  442. do {
  443. memset(&Cur->ngeneBuffer.SR, 0, sizeof(Cur->ngeneBuffer.SR));
  444. if (chan->mode & NGENE_IO_TSOUT)
  445. FillTSBuffer(Cur->Buffer1,
  446. chan->Capture1Length,
  447. chan->DataFormatFlags);
  448. Cur = Cur->Next;
  449. } while (Cur != chan->nextBuffer);
  450. if (chan->mode & NGENE_IO_TSOUT) {
  451. chan->nextBuffer->ngeneBuffer.SR.DTOUpdate =
  452. chan->AudioDTOValue;
  453. chan->AudioDTOUpdated = 0;
  454. Cur = chan->TSIdleBuffer.Head;
  455. do {
  456. memset(&Cur->ngeneBuffer.SR, 0,
  457. sizeof(Cur->ngeneBuffer.SR));
  458. FillTSBuffer(Cur->Buffer1,
  459. chan->Capture1Length,
  460. chan->DataFormatFlags);
  461. Cur = Cur->Next;
  462. } while (Cur != chan->TSIdleBuffer.Head);
  463. }
  464. }
  465. static int ngene_command_stream_control(struct ngene *dev, u8 stream,
  466. u8 control, u8 mode, u8 flags)
  467. {
  468. struct ngene_channel *chan = &dev->channel[stream];
  469. struct ngene_command com;
  470. u16 BsUVI = ((stream & 1) ? 0x9400 : 0x9300);
  471. u16 BsSDI = ((stream & 1) ? 0x9600 : 0x9500);
  472. u16 BsSPI = ((stream & 1) ? 0x9800 : 0x9700);
  473. u16 BsSDO = 0x9B00;
  474. memset(&com, 0, sizeof(com));
  475. com.cmd.hdr.Opcode = CMD_CONTROL;
  476. com.cmd.hdr.Length = sizeof(struct FW_STREAM_CONTROL) - 2;
  477. com.cmd.StreamControl.Stream = stream | (control ? 8 : 0);
  478. if (chan->mode & NGENE_IO_TSOUT)
  479. com.cmd.StreamControl.Stream |= 0x07;
  480. com.cmd.StreamControl.Control = control |
  481. (flags & SFLAG_ORDER_LUMA_CHROMA);
  482. com.cmd.StreamControl.Mode = mode;
  483. com.in_len = sizeof(struct FW_STREAM_CONTROL);
  484. com.out_len = 0;
  485. dprintk(KERN_INFO DEVICE_NAME
  486. ": Stream=%02x, Control=%02x, Mode=%02x\n",
  487. com.cmd.StreamControl.Stream, com.cmd.StreamControl.Control,
  488. com.cmd.StreamControl.Mode);
  489. chan->Mode = mode;
  490. if (!(control & 0x80)) {
  491. spin_lock_irq(&chan->state_lock);
  492. if (chan->State == KSSTATE_RUN) {
  493. chan->State = KSSTATE_ACQUIRE;
  494. chan->HWState = HWSTATE_STOP;
  495. spin_unlock_irq(&chan->state_lock);
  496. if (ngene_command(dev, &com) < 0)
  497. return -1;
  498. /* clear_buffers(chan); */
  499. flush_buffers(chan);
  500. return 0;
  501. }
  502. spin_unlock_irq(&chan->state_lock);
  503. return 0;
  504. }
  505. if (mode & SMODE_AUDIO_CAPTURE) {
  506. com.cmd.StreamControl.CaptureBlockCount =
  507. chan->Capture1Length / AUDIO_BLOCK_SIZE;
  508. com.cmd.StreamControl.Buffer_Address = chan->RingBuffer.PAHead;
  509. } else if (mode & SMODE_TRANSPORT_STREAM) {
  510. com.cmd.StreamControl.CaptureBlockCount =
  511. chan->Capture1Length / TS_BLOCK_SIZE;
  512. com.cmd.StreamControl.MaxLinesPerField =
  513. chan->Capture1Length / TS_BLOCK_SIZE;
  514. com.cmd.StreamControl.Buffer_Address =
  515. chan->TSRingBuffer.PAHead;
  516. if (chan->mode & NGENE_IO_TSOUT) {
  517. com.cmd.StreamControl.BytesPerVBILine =
  518. chan->Capture1Length / TS_BLOCK_SIZE;
  519. com.cmd.StreamControl.Stream |= 0x07;
  520. }
  521. } else {
  522. com.cmd.StreamControl.BytesPerVideoLine = chan->nBytesPerLine;
  523. com.cmd.StreamControl.MaxLinesPerField = chan->nLines;
  524. com.cmd.StreamControl.MinLinesPerField = 100;
  525. com.cmd.StreamControl.Buffer_Address = chan->RingBuffer.PAHead;
  526. if (mode & SMODE_VBI_CAPTURE) {
  527. com.cmd.StreamControl.MaxVBILinesPerField =
  528. chan->nVBILines;
  529. com.cmd.StreamControl.MinVBILinesPerField = 0;
  530. com.cmd.StreamControl.BytesPerVBILine =
  531. chan->nBytesPerVBILine;
  532. }
  533. if (flags & SFLAG_COLORBAR)
  534. com.cmd.StreamControl.Stream |= 0x04;
  535. }
  536. spin_lock_irq(&chan->state_lock);
  537. if (mode & SMODE_AUDIO_CAPTURE) {
  538. chan->nextBuffer = chan->RingBuffer.Head;
  539. if (mode & SMODE_AUDIO_SPDIF) {
  540. com.cmd.StreamControl.SetupDataLen =
  541. sizeof(SPDIFConfiguration);
  542. com.cmd.StreamControl.SetupDataAddr = BsSPI;
  543. memcpy(com.cmd.StreamControl.SetupData,
  544. SPDIFConfiguration, sizeof(SPDIFConfiguration));
  545. } else {
  546. com.cmd.StreamControl.SetupDataLen = 4;
  547. com.cmd.StreamControl.SetupDataAddr = BsSDI;
  548. memcpy(com.cmd.StreamControl.SetupData,
  549. I2SConfiguration +
  550. 4 * dev->card_info->i2s[stream], 4);
  551. }
  552. } else if (mode & SMODE_TRANSPORT_STREAM) {
  553. chan->nextBuffer = chan->TSRingBuffer.Head;
  554. if (stream >= STREAM_AUDIOIN1) {
  555. if (chan->mode & NGENE_IO_TSOUT) {
  556. com.cmd.StreamControl.SetupDataLen =
  557. sizeof(TS_I2SOutConfiguration);
  558. com.cmd.StreamControl.SetupDataAddr = BsSDO;
  559. memcpy(com.cmd.StreamControl.SetupData,
  560. TS_I2SOutConfiguration,
  561. sizeof(TS_I2SOutConfiguration));
  562. } else {
  563. com.cmd.StreamControl.SetupDataLen =
  564. sizeof(TS_I2SConfiguration);
  565. com.cmd.StreamControl.SetupDataAddr = BsSDI;
  566. memcpy(com.cmd.StreamControl.SetupData,
  567. TS_I2SConfiguration,
  568. sizeof(TS_I2SConfiguration));
  569. }
  570. } else {
  571. com.cmd.StreamControl.SetupDataLen = 8;
  572. com.cmd.StreamControl.SetupDataAddr = BsUVI + 0x10;
  573. memcpy(com.cmd.StreamControl.SetupData,
  574. TSFeatureDecoderSetup +
  575. 8 * dev->card_info->tsf[stream], 8);
  576. }
  577. } else {
  578. chan->nextBuffer = chan->RingBuffer.Head;
  579. com.cmd.StreamControl.SetupDataLen =
  580. 16 + sizeof(ITUFeatureDecoderSetup);
  581. com.cmd.StreamControl.SetupDataAddr = BsUVI;
  582. memcpy(com.cmd.StreamControl.SetupData,
  583. ITUDecoderSetup[chan->itumode], 16);
  584. memcpy(com.cmd.StreamControl.SetupData + 16,
  585. ITUFeatureDecoderSetup, sizeof(ITUFeatureDecoderSetup));
  586. }
  587. clear_buffers(chan);
  588. chan->State = KSSTATE_RUN;
  589. if (mode & SMODE_TRANSPORT_STREAM)
  590. chan->HWState = HWSTATE_RUN;
  591. else
  592. chan->HWState = HWSTATE_STARTUP;
  593. spin_unlock_irq(&chan->state_lock);
  594. if (ngene_command(dev, &com) < 0)
  595. return -1;
  596. return 0;
  597. }
  598. void set_transfer(struct ngene_channel *chan, int state)
  599. {
  600. u8 control = 0, mode = 0, flags = 0;
  601. struct ngene *dev = chan->dev;
  602. int ret;
  603. /*
  604. printk(KERN_INFO DEVICE_NAME ": st %d\n", state);
  605. msleep(100);
  606. */
  607. if (state) {
  608. if (chan->running) {
  609. printk(KERN_INFO DEVICE_NAME ": already running\n");
  610. return;
  611. }
  612. } else {
  613. if (!chan->running) {
  614. printk(KERN_INFO DEVICE_NAME ": already stopped\n");
  615. return;
  616. }
  617. }
  618. if (dev->card_info->switch_ctrl)
  619. dev->card_info->switch_ctrl(chan, 1, state ^ 1);
  620. if (state) {
  621. spin_lock_irq(&chan->state_lock);
  622. /* printk(KERN_INFO DEVICE_NAME ": lock=%08x\n",
  623. ngreadl(0x9310)); */
  624. dvb_ringbuffer_flush(&dev->tsout_rbuf);
  625. control = 0x80;
  626. if (chan->mode & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
  627. chan->Capture1Length = 512 * 188;
  628. mode = SMODE_TRANSPORT_STREAM;
  629. }
  630. if (chan->mode & NGENE_IO_TSOUT) {
  631. chan->pBufferExchange = tsout_exchange;
  632. /* 0x66666666 = 50MHz *2^33 /250MHz */
  633. chan->AudioDTOValue = 0x80000000;
  634. chan->AudioDTOUpdated = 1;
  635. }
  636. if (chan->mode & NGENE_IO_TSIN)
  637. chan->pBufferExchange = tsin_exchange;
  638. spin_unlock_irq(&chan->state_lock);
  639. }
  640. /* else printk(KERN_INFO DEVICE_NAME ": lock=%08x\n",
  641. ngreadl(0x9310)); */
  642. mutex_lock(&dev->stream_mutex);
  643. ret = ngene_command_stream_control(dev, chan->number,
  644. control, mode, flags);
  645. mutex_unlock(&dev->stream_mutex);
  646. if (!ret)
  647. chan->running = state;
  648. else
  649. printk(KERN_ERR DEVICE_NAME ": set_transfer %d failed\n",
  650. state);
  651. if (!state) {
  652. spin_lock_irq(&chan->state_lock);
  653. chan->pBufferExchange = NULL;
  654. dvb_ringbuffer_flush(&dev->tsout_rbuf);
  655. spin_unlock_irq(&chan->state_lock);
  656. }
  657. }
  658. /****************************************************************************/
  659. /* nGene hardware init and release functions ********************************/
  660. /****************************************************************************/
  661. static void free_ringbuffer(struct ngene *dev, struct SRingBufferDescriptor *rb)
  662. {
  663. struct SBufferHeader *Cur = rb->Head;
  664. u32 j;
  665. if (!Cur)
  666. return;
  667. for (j = 0; j < rb->NumBuffers; j++, Cur = Cur->Next) {
  668. if (Cur->Buffer1)
  669. pci_free_consistent(dev->pci_dev,
  670. rb->Buffer1Length,
  671. Cur->Buffer1,
  672. Cur->scList1->Address);
  673. if (Cur->Buffer2)
  674. pci_free_consistent(dev->pci_dev,
  675. rb->Buffer2Length,
  676. Cur->Buffer2,
  677. Cur->scList2->Address);
  678. }
  679. if (rb->SCListMem)
  680. pci_free_consistent(dev->pci_dev, rb->SCListMemSize,
  681. rb->SCListMem, rb->PASCListMem);
  682. pci_free_consistent(dev->pci_dev, rb->MemSize, rb->Head, rb->PAHead);
  683. }
  684. static void free_idlebuffer(struct ngene *dev,
  685. struct SRingBufferDescriptor *rb,
  686. struct SRingBufferDescriptor *tb)
  687. {
  688. int j;
  689. struct SBufferHeader *Cur = tb->Head;
  690. if (!rb->Head)
  691. return;
  692. free_ringbuffer(dev, rb);
  693. for (j = 0; j < tb->NumBuffers; j++, Cur = Cur->Next) {
  694. Cur->Buffer2 = NULL;
  695. Cur->scList2 = NULL;
  696. Cur->ngeneBuffer.Address_of_first_entry_2 = 0;
  697. Cur->ngeneBuffer.Number_of_entries_2 = 0;
  698. }
  699. }
  700. static void free_common_buffers(struct ngene *dev)
  701. {
  702. u32 i;
  703. struct ngene_channel *chan;
  704. for (i = STREAM_VIDEOIN1; i < MAX_STREAM; i++) {
  705. chan = &dev->channel[i];
  706. free_idlebuffer(dev, &chan->TSIdleBuffer, &chan->TSRingBuffer);
  707. free_ringbuffer(dev, &chan->RingBuffer);
  708. free_ringbuffer(dev, &chan->TSRingBuffer);
  709. }
  710. if (dev->OverflowBuffer)
  711. pci_free_consistent(dev->pci_dev,
  712. OVERFLOW_BUFFER_SIZE,
  713. dev->OverflowBuffer, dev->PAOverflowBuffer);
  714. if (dev->FWInterfaceBuffer)
  715. pci_free_consistent(dev->pci_dev,
  716. 4096,
  717. dev->FWInterfaceBuffer,
  718. dev->PAFWInterfaceBuffer);
  719. }
  720. /****************************************************************************/
  721. /* Ring buffer handling *****************************************************/
  722. /****************************************************************************/
  723. static int create_ring_buffer(struct pci_dev *pci_dev,
  724. struct SRingBufferDescriptor *descr, u32 NumBuffers)
  725. {
  726. dma_addr_t tmp;
  727. struct SBufferHeader *Head;
  728. u32 i;
  729. u32 MemSize = SIZEOF_SBufferHeader * NumBuffers;
  730. u64 PARingBufferHead;
  731. u64 PARingBufferCur;
  732. u64 PARingBufferNext;
  733. struct SBufferHeader *Cur, *Next;
  734. descr->Head = NULL;
  735. descr->MemSize = 0;
  736. descr->PAHead = 0;
  737. descr->NumBuffers = 0;
  738. if (MemSize < 4096)
  739. MemSize = 4096;
  740. Head = pci_alloc_consistent(pci_dev, MemSize, &tmp);
  741. PARingBufferHead = tmp;
  742. if (!Head)
  743. return -ENOMEM;
  744. memset(Head, 0, MemSize);
  745. PARingBufferCur = PARingBufferHead;
  746. Cur = Head;
  747. for (i = 0; i < NumBuffers - 1; i++) {
  748. Next = (struct SBufferHeader *)
  749. (((u8 *) Cur) + SIZEOF_SBufferHeader);
  750. PARingBufferNext = PARingBufferCur + SIZEOF_SBufferHeader;
  751. Cur->Next = Next;
  752. Cur->ngeneBuffer.Next = PARingBufferNext;
  753. Cur = Next;
  754. PARingBufferCur = PARingBufferNext;
  755. }
  756. /* Last Buffer points back to first one */
  757. Cur->Next = Head;
  758. Cur->ngeneBuffer.Next = PARingBufferHead;
  759. descr->Head = Head;
  760. descr->MemSize = MemSize;
  761. descr->PAHead = PARingBufferHead;
  762. descr->NumBuffers = NumBuffers;
  763. return 0;
  764. }
  765. static int AllocateRingBuffers(struct pci_dev *pci_dev,
  766. dma_addr_t of,
  767. struct SRingBufferDescriptor *pRingBuffer,
  768. u32 Buffer1Length, u32 Buffer2Length)
  769. {
  770. dma_addr_t tmp;
  771. u32 i, j;
  772. u32 SCListMemSize = pRingBuffer->NumBuffers
  773. * ((Buffer2Length != 0) ? (NUM_SCATTER_GATHER_ENTRIES * 2) :
  774. NUM_SCATTER_GATHER_ENTRIES)
  775. * sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  776. u64 PASCListMem;
  777. struct HW_SCATTER_GATHER_ELEMENT *SCListEntry;
  778. u64 PASCListEntry;
  779. struct SBufferHeader *Cur;
  780. void *SCListMem;
  781. if (SCListMemSize < 4096)
  782. SCListMemSize = 4096;
  783. SCListMem = pci_alloc_consistent(pci_dev, SCListMemSize, &tmp);
  784. PASCListMem = tmp;
  785. if (SCListMem == NULL)
  786. return -ENOMEM;
  787. memset(SCListMem, 0, SCListMemSize);
  788. pRingBuffer->SCListMem = SCListMem;
  789. pRingBuffer->PASCListMem = PASCListMem;
  790. pRingBuffer->SCListMemSize = SCListMemSize;
  791. pRingBuffer->Buffer1Length = Buffer1Length;
  792. pRingBuffer->Buffer2Length = Buffer2Length;
  793. SCListEntry = SCListMem;
  794. PASCListEntry = PASCListMem;
  795. Cur = pRingBuffer->Head;
  796. for (i = 0; i < pRingBuffer->NumBuffers; i += 1, Cur = Cur->Next) {
  797. u64 PABuffer;
  798. void *Buffer = pci_alloc_consistent(pci_dev, Buffer1Length,
  799. &tmp);
  800. PABuffer = tmp;
  801. if (Buffer == NULL)
  802. return -ENOMEM;
  803. Cur->Buffer1 = Buffer;
  804. SCListEntry->Address = PABuffer;
  805. SCListEntry->Length = Buffer1Length;
  806. Cur->scList1 = SCListEntry;
  807. Cur->ngeneBuffer.Address_of_first_entry_1 = PASCListEntry;
  808. Cur->ngeneBuffer.Number_of_entries_1 =
  809. NUM_SCATTER_GATHER_ENTRIES;
  810. SCListEntry += 1;
  811. PASCListEntry += sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  812. #if NUM_SCATTER_GATHER_ENTRIES > 1
  813. for (j = 0; j < NUM_SCATTER_GATHER_ENTRIES - 1; j += 1) {
  814. SCListEntry->Address = of;
  815. SCListEntry->Length = OVERFLOW_BUFFER_SIZE;
  816. SCListEntry += 1;
  817. PASCListEntry +=
  818. sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  819. }
  820. #endif
  821. if (!Buffer2Length)
  822. continue;
  823. Buffer = pci_alloc_consistent(pci_dev, Buffer2Length, &tmp);
  824. PABuffer = tmp;
  825. if (Buffer == NULL)
  826. return -ENOMEM;
  827. Cur->Buffer2 = Buffer;
  828. SCListEntry->Address = PABuffer;
  829. SCListEntry->Length = Buffer2Length;
  830. Cur->scList2 = SCListEntry;
  831. Cur->ngeneBuffer.Address_of_first_entry_2 = PASCListEntry;
  832. Cur->ngeneBuffer.Number_of_entries_2 =
  833. NUM_SCATTER_GATHER_ENTRIES;
  834. SCListEntry += 1;
  835. PASCListEntry += sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  836. #if NUM_SCATTER_GATHER_ENTRIES > 1
  837. for (j = 0; j < NUM_SCATTER_GATHER_ENTRIES - 1; j++) {
  838. SCListEntry->Address = of;
  839. SCListEntry->Length = OVERFLOW_BUFFER_SIZE;
  840. SCListEntry += 1;
  841. PASCListEntry +=
  842. sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  843. }
  844. #endif
  845. }
  846. return 0;
  847. }
  848. static int FillTSIdleBuffer(struct SRingBufferDescriptor *pIdleBuffer,
  849. struct SRingBufferDescriptor *pRingBuffer)
  850. {
  851. /* Copy pointer to scatter gather list in TSRingbuffer
  852. structure for buffer 2
  853. Load number of buffer
  854. */
  855. u32 n = pRingBuffer->NumBuffers;
  856. /* Point to first buffer entry */
  857. struct SBufferHeader *Cur = pRingBuffer->Head;
  858. int i;
  859. /* Loop thru all buffer and set Buffer 2 pointers to TSIdlebuffer */
  860. for (i = 0; i < n; i++) {
  861. Cur->Buffer2 = pIdleBuffer->Head->Buffer1;
  862. Cur->scList2 = pIdleBuffer->Head->scList1;
  863. Cur->ngeneBuffer.Address_of_first_entry_2 =
  864. pIdleBuffer->Head->ngeneBuffer.
  865. Address_of_first_entry_1;
  866. Cur->ngeneBuffer.Number_of_entries_2 =
  867. pIdleBuffer->Head->ngeneBuffer.Number_of_entries_1;
  868. Cur = Cur->Next;
  869. }
  870. return 0;
  871. }
  872. static u32 RingBufferSizes[MAX_STREAM] = {
  873. RING_SIZE_VIDEO,
  874. RING_SIZE_VIDEO,
  875. RING_SIZE_AUDIO,
  876. RING_SIZE_AUDIO,
  877. RING_SIZE_AUDIO,
  878. };
  879. static u32 Buffer1Sizes[MAX_STREAM] = {
  880. MAX_VIDEO_BUFFER_SIZE,
  881. MAX_VIDEO_BUFFER_SIZE,
  882. MAX_AUDIO_BUFFER_SIZE,
  883. MAX_AUDIO_BUFFER_SIZE,
  884. MAX_AUDIO_BUFFER_SIZE
  885. };
  886. static u32 Buffer2Sizes[MAX_STREAM] = {
  887. MAX_VBI_BUFFER_SIZE,
  888. MAX_VBI_BUFFER_SIZE,
  889. 0,
  890. 0,
  891. 0
  892. };
  893. static int AllocCommonBuffers(struct ngene *dev)
  894. {
  895. int status = 0, i;
  896. dev->FWInterfaceBuffer = pci_alloc_consistent(dev->pci_dev, 4096,
  897. &dev->PAFWInterfaceBuffer);
  898. if (!dev->FWInterfaceBuffer)
  899. return -ENOMEM;
  900. dev->hosttongene = dev->FWInterfaceBuffer;
  901. dev->ngenetohost = dev->FWInterfaceBuffer + 256;
  902. dev->EventBuffer = dev->FWInterfaceBuffer + 512;
  903. dev->OverflowBuffer = pci_zalloc_consistent(dev->pci_dev,
  904. OVERFLOW_BUFFER_SIZE,
  905. &dev->PAOverflowBuffer);
  906. if (!dev->OverflowBuffer)
  907. return -ENOMEM;
  908. for (i = STREAM_VIDEOIN1; i < MAX_STREAM; i++) {
  909. int type = dev->card_info->io_type[i];
  910. dev->channel[i].State = KSSTATE_STOP;
  911. if (type & (NGENE_IO_TV | NGENE_IO_HDTV | NGENE_IO_AIN)) {
  912. status = create_ring_buffer(dev->pci_dev,
  913. &dev->channel[i].RingBuffer,
  914. RingBufferSizes[i]);
  915. if (status < 0)
  916. break;
  917. if (type & (NGENE_IO_TV | NGENE_IO_AIN)) {
  918. status = AllocateRingBuffers(dev->pci_dev,
  919. dev->
  920. PAOverflowBuffer,
  921. &dev->channel[i].
  922. RingBuffer,
  923. Buffer1Sizes[i],
  924. Buffer2Sizes[i]);
  925. if (status < 0)
  926. break;
  927. } else if (type & NGENE_IO_HDTV) {
  928. status = AllocateRingBuffers(dev->pci_dev,
  929. dev->
  930. PAOverflowBuffer,
  931. &dev->channel[i].
  932. RingBuffer,
  933. MAX_HDTV_BUFFER_SIZE,
  934. 0);
  935. if (status < 0)
  936. break;
  937. }
  938. }
  939. if (type & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
  940. status = create_ring_buffer(dev->pci_dev,
  941. &dev->channel[i].
  942. TSRingBuffer, RING_SIZE_TS);
  943. if (status < 0)
  944. break;
  945. status = AllocateRingBuffers(dev->pci_dev,
  946. dev->PAOverflowBuffer,
  947. &dev->channel[i].
  948. TSRingBuffer,
  949. MAX_TS_BUFFER_SIZE, 0);
  950. if (status)
  951. break;
  952. }
  953. if (type & NGENE_IO_TSOUT) {
  954. status = create_ring_buffer(dev->pci_dev,
  955. &dev->channel[i].
  956. TSIdleBuffer, 1);
  957. if (status < 0)
  958. break;
  959. status = AllocateRingBuffers(dev->pci_dev,
  960. dev->PAOverflowBuffer,
  961. &dev->channel[i].
  962. TSIdleBuffer,
  963. MAX_TS_BUFFER_SIZE, 0);
  964. if (status)
  965. break;
  966. FillTSIdleBuffer(&dev->channel[i].TSIdleBuffer,
  967. &dev->channel[i].TSRingBuffer);
  968. }
  969. }
  970. return status;
  971. }
  972. static void ngene_release_buffers(struct ngene *dev)
  973. {
  974. if (dev->iomem)
  975. iounmap(dev->iomem);
  976. free_common_buffers(dev);
  977. vfree(dev->tsout_buf);
  978. vfree(dev->tsin_buf);
  979. vfree(dev->ain_buf);
  980. vfree(dev->vin_buf);
  981. vfree(dev);
  982. }
  983. static int ngene_get_buffers(struct ngene *dev)
  984. {
  985. if (AllocCommonBuffers(dev))
  986. return -ENOMEM;
  987. if (dev->card_info->io_type[4] & NGENE_IO_TSOUT) {
  988. dev->tsout_buf = vmalloc(TSOUT_BUF_SIZE);
  989. if (!dev->tsout_buf)
  990. return -ENOMEM;
  991. dvb_ringbuffer_init(&dev->tsout_rbuf,
  992. dev->tsout_buf, TSOUT_BUF_SIZE);
  993. }
  994. if (dev->card_info->io_type[2]&NGENE_IO_TSIN) {
  995. dev->tsin_buf = vmalloc(TSIN_BUF_SIZE);
  996. if (!dev->tsin_buf)
  997. return -ENOMEM;
  998. dvb_ringbuffer_init(&dev->tsin_rbuf,
  999. dev->tsin_buf, TSIN_BUF_SIZE);
  1000. }
  1001. if (dev->card_info->io_type[2] & NGENE_IO_AIN) {
  1002. dev->ain_buf = vmalloc(AIN_BUF_SIZE);
  1003. if (!dev->ain_buf)
  1004. return -ENOMEM;
  1005. dvb_ringbuffer_init(&dev->ain_rbuf, dev->ain_buf, AIN_BUF_SIZE);
  1006. }
  1007. if (dev->card_info->io_type[0] & NGENE_IO_HDTV) {
  1008. dev->vin_buf = vmalloc(VIN_BUF_SIZE);
  1009. if (!dev->vin_buf)
  1010. return -ENOMEM;
  1011. dvb_ringbuffer_init(&dev->vin_rbuf, dev->vin_buf, VIN_BUF_SIZE);
  1012. }
  1013. dev->iomem = ioremap(pci_resource_start(dev->pci_dev, 0),
  1014. pci_resource_len(dev->pci_dev, 0));
  1015. if (!dev->iomem)
  1016. return -ENOMEM;
  1017. return 0;
  1018. }
  1019. static void ngene_init(struct ngene *dev)
  1020. {
  1021. int i;
  1022. tasklet_init(&dev->event_tasklet, event_tasklet, (unsigned long)dev);
  1023. memset_io(dev->iomem + 0xc000, 0x00, 0x220);
  1024. memset_io(dev->iomem + 0xc400, 0x00, 0x100);
  1025. for (i = 0; i < MAX_STREAM; i++) {
  1026. dev->channel[i].dev = dev;
  1027. dev->channel[i].number = i;
  1028. }
  1029. dev->fw_interface_version = 0;
  1030. ngwritel(0, NGENE_INT_ENABLE);
  1031. dev->icounts = ngreadl(NGENE_INT_COUNTS);
  1032. dev->device_version = ngreadl(DEV_VER) & 0x0f;
  1033. printk(KERN_INFO DEVICE_NAME ": Device version %d\n",
  1034. dev->device_version);
  1035. }
  1036. static int ngene_load_firm(struct ngene *dev)
  1037. {
  1038. u32 size;
  1039. const struct firmware *fw = NULL;
  1040. u8 *ngene_fw;
  1041. char *fw_name;
  1042. int err, version;
  1043. version = dev->card_info->fw_version;
  1044. switch (version) {
  1045. default:
  1046. case 15:
  1047. version = 15;
  1048. size = 23466;
  1049. fw_name = "ngene_15.fw";
  1050. dev->cmd_timeout_workaround = true;
  1051. break;
  1052. case 16:
  1053. size = 23498;
  1054. fw_name = "ngene_16.fw";
  1055. dev->cmd_timeout_workaround = true;
  1056. break;
  1057. case 17:
  1058. size = 24446;
  1059. fw_name = "ngene_17.fw";
  1060. dev->cmd_timeout_workaround = true;
  1061. break;
  1062. case 18:
  1063. size = 0;
  1064. fw_name = "ngene_18.fw";
  1065. break;
  1066. }
  1067. if (request_firmware(&fw, fw_name, &dev->pci_dev->dev) < 0) {
  1068. printk(KERN_ERR DEVICE_NAME
  1069. ": Could not load firmware file %s.\n", fw_name);
  1070. printk(KERN_INFO DEVICE_NAME
  1071. ": Copy %s to your hotplug directory!\n", fw_name);
  1072. return -1;
  1073. }
  1074. if (size == 0)
  1075. size = fw->size;
  1076. if (size != fw->size) {
  1077. printk(KERN_ERR DEVICE_NAME
  1078. ": Firmware %s has invalid size!", fw_name);
  1079. err = -1;
  1080. } else {
  1081. printk(KERN_INFO DEVICE_NAME
  1082. ": Loading firmware file %s.\n", fw_name);
  1083. ngene_fw = (u8 *) fw->data;
  1084. err = ngene_command_load_firmware(dev, ngene_fw, size);
  1085. }
  1086. release_firmware(fw);
  1087. return err;
  1088. }
  1089. static void ngene_stop(struct ngene *dev)
  1090. {
  1091. mutex_destroy(&dev->cmd_mutex);
  1092. i2c_del_adapter(&(dev->channel[0].i2c_adapter));
  1093. i2c_del_adapter(&(dev->channel[1].i2c_adapter));
  1094. ngwritel(0, NGENE_INT_ENABLE);
  1095. ngwritel(0, NGENE_COMMAND);
  1096. ngwritel(0, NGENE_COMMAND_HI);
  1097. ngwritel(0, NGENE_STATUS);
  1098. ngwritel(0, NGENE_STATUS_HI);
  1099. ngwritel(0, NGENE_EVENT);
  1100. ngwritel(0, NGENE_EVENT_HI);
  1101. free_irq(dev->pci_dev->irq, dev);
  1102. #ifdef CONFIG_PCI_MSI
  1103. if (dev->msi_enabled)
  1104. pci_disable_msi(dev->pci_dev);
  1105. #endif
  1106. }
  1107. static int ngene_buffer_config(struct ngene *dev)
  1108. {
  1109. int stat;
  1110. if (dev->card_info->fw_version >= 17) {
  1111. u8 tsin12_config[6] = { 0x60, 0x60, 0x00, 0x00, 0x00, 0x00 };
  1112. u8 tsin1234_config[6] = { 0x30, 0x30, 0x00, 0x30, 0x30, 0x00 };
  1113. u8 tsio1235_config[6] = { 0x30, 0x30, 0x00, 0x28, 0x00, 0x38 };
  1114. u8 *bconf = tsin12_config;
  1115. if (dev->card_info->io_type[2]&NGENE_IO_TSIN &&
  1116. dev->card_info->io_type[3]&NGENE_IO_TSIN) {
  1117. bconf = tsin1234_config;
  1118. if (dev->card_info->io_type[4]&NGENE_IO_TSOUT &&
  1119. dev->ci.en)
  1120. bconf = tsio1235_config;
  1121. }
  1122. stat = ngene_command_config_free_buf(dev, bconf);
  1123. } else {
  1124. int bconf = BUFFER_CONFIG_4422;
  1125. if (dev->card_info->io_type[3] == NGENE_IO_TSIN)
  1126. bconf = BUFFER_CONFIG_3333;
  1127. stat = ngene_command_config_buf(dev, bconf);
  1128. }
  1129. return stat;
  1130. }
  1131. static int ngene_start(struct ngene *dev)
  1132. {
  1133. int stat;
  1134. int i;
  1135. pci_set_master(dev->pci_dev);
  1136. ngene_init(dev);
  1137. stat = request_irq(dev->pci_dev->irq, irq_handler,
  1138. IRQF_SHARED, "nGene",
  1139. (void *)dev);
  1140. if (stat < 0)
  1141. return stat;
  1142. init_waitqueue_head(&dev->cmd_wq);
  1143. init_waitqueue_head(&dev->tx_wq);
  1144. init_waitqueue_head(&dev->rx_wq);
  1145. mutex_init(&dev->cmd_mutex);
  1146. mutex_init(&dev->stream_mutex);
  1147. sema_init(&dev->pll_mutex, 1);
  1148. mutex_init(&dev->i2c_switch_mutex);
  1149. spin_lock_init(&dev->cmd_lock);
  1150. for (i = 0; i < MAX_STREAM; i++)
  1151. spin_lock_init(&dev->channel[i].state_lock);
  1152. ngwritel(1, TIMESTAMPS);
  1153. ngwritel(1, NGENE_INT_ENABLE);
  1154. stat = ngene_load_firm(dev);
  1155. if (stat < 0)
  1156. goto fail;
  1157. #ifdef CONFIG_PCI_MSI
  1158. /* enable MSI if kernel and card support it */
  1159. if (pci_msi_enabled() && dev->card_info->msi_supported) {
  1160. unsigned long flags;
  1161. ngwritel(0, NGENE_INT_ENABLE);
  1162. free_irq(dev->pci_dev->irq, dev);
  1163. stat = pci_enable_msi(dev->pci_dev);
  1164. if (stat) {
  1165. printk(KERN_INFO DEVICE_NAME
  1166. ": MSI not available\n");
  1167. flags = IRQF_SHARED;
  1168. } else {
  1169. flags = 0;
  1170. dev->msi_enabled = true;
  1171. }
  1172. stat = request_irq(dev->pci_dev->irq, irq_handler,
  1173. flags, "nGene", dev);
  1174. if (stat < 0)
  1175. goto fail2;
  1176. ngwritel(1, NGENE_INT_ENABLE);
  1177. }
  1178. #endif
  1179. stat = ngene_i2c_init(dev, 0);
  1180. if (stat < 0)
  1181. goto fail;
  1182. stat = ngene_i2c_init(dev, 1);
  1183. if (stat < 0)
  1184. goto fail;
  1185. return 0;
  1186. fail:
  1187. ngwritel(0, NGENE_INT_ENABLE);
  1188. free_irq(dev->pci_dev->irq, dev);
  1189. #ifdef CONFIG_PCI_MSI
  1190. fail2:
  1191. if (dev->msi_enabled)
  1192. pci_disable_msi(dev->pci_dev);
  1193. #endif
  1194. return stat;
  1195. }
  1196. /****************************************************************************/
  1197. /****************************************************************************/
  1198. /****************************************************************************/
  1199. static void release_channel(struct ngene_channel *chan)
  1200. {
  1201. struct dvb_demux *dvbdemux = &chan->demux;
  1202. struct ngene *dev = chan->dev;
  1203. if (chan->running)
  1204. set_transfer(chan, 0);
  1205. tasklet_kill(&chan->demux_tasklet);
  1206. if (chan->ci_dev) {
  1207. dvb_unregister_device(chan->ci_dev);
  1208. chan->ci_dev = NULL;
  1209. }
  1210. if (chan->fe2)
  1211. dvb_unregister_frontend(chan->fe2);
  1212. if (chan->fe) {
  1213. dvb_unregister_frontend(chan->fe);
  1214. dvb_frontend_detach(chan->fe);
  1215. chan->fe = NULL;
  1216. }
  1217. if (chan->has_demux) {
  1218. dvb_net_release(&chan->dvbnet);
  1219. dvbdemux->dmx.close(&dvbdemux->dmx);
  1220. dvbdemux->dmx.remove_frontend(&dvbdemux->dmx,
  1221. &chan->hw_frontend);
  1222. dvbdemux->dmx.remove_frontend(&dvbdemux->dmx,
  1223. &chan->mem_frontend);
  1224. dvb_dmxdev_release(&chan->dmxdev);
  1225. dvb_dmx_release(&chan->demux);
  1226. chan->has_demux = false;
  1227. }
  1228. if (chan->has_adapter) {
  1229. dvb_unregister_adapter(&dev->adapter[chan->number]);
  1230. chan->has_adapter = false;
  1231. }
  1232. }
  1233. static int init_channel(struct ngene_channel *chan)
  1234. {
  1235. int ret = 0, nr = chan->number;
  1236. struct dvb_adapter *adapter = NULL;
  1237. struct dvb_demux *dvbdemux = &chan->demux;
  1238. struct ngene *dev = chan->dev;
  1239. struct ngene_info *ni = dev->card_info;
  1240. int io = ni->io_type[nr];
  1241. tasklet_init(&chan->demux_tasklet, demux_tasklet, (unsigned long)chan);
  1242. chan->users = 0;
  1243. chan->type = io;
  1244. chan->mode = chan->type; /* for now only one mode */
  1245. if (io & NGENE_IO_TSIN) {
  1246. chan->fe = NULL;
  1247. if (ni->demod_attach[nr]) {
  1248. ret = ni->demod_attach[nr](chan);
  1249. if (ret < 0)
  1250. goto err;
  1251. }
  1252. if (chan->fe && ni->tuner_attach[nr]) {
  1253. ret = ni->tuner_attach[nr](chan);
  1254. if (ret < 0)
  1255. goto err;
  1256. }
  1257. }
  1258. if (!dev->ci.en && (io & NGENE_IO_TSOUT))
  1259. return 0;
  1260. if (io & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
  1261. if (nr >= STREAM_AUDIOIN1)
  1262. chan->DataFormatFlags = DF_SWAP32;
  1263. if (nr == 0 || !one_adapter || dev->first_adapter == NULL) {
  1264. adapter = &dev->adapter[nr];
  1265. ret = dvb_register_adapter(adapter, "nGene",
  1266. THIS_MODULE,
  1267. &chan->dev->pci_dev->dev,
  1268. adapter_nr);
  1269. if (ret < 0)
  1270. goto err;
  1271. if (dev->first_adapter == NULL)
  1272. dev->first_adapter = adapter;
  1273. chan->has_adapter = true;
  1274. } else
  1275. adapter = dev->first_adapter;
  1276. }
  1277. if (dev->ci.en && (io & NGENE_IO_TSOUT)) {
  1278. dvb_ca_en50221_init(adapter, dev->ci.en, 0, 1);
  1279. set_transfer(chan, 1);
  1280. chan->dev->channel[2].DataFormatFlags = DF_SWAP32;
  1281. set_transfer(&chan->dev->channel[2], 1);
  1282. dvb_register_device(adapter, &chan->ci_dev,
  1283. &ngene_dvbdev_ci, (void *) chan,
  1284. DVB_DEVICE_SEC, 0);
  1285. if (!chan->ci_dev)
  1286. goto err;
  1287. }
  1288. if (chan->fe) {
  1289. if (dvb_register_frontend(adapter, chan->fe) < 0)
  1290. goto err;
  1291. chan->has_demux = true;
  1292. }
  1293. if (chan->fe2) {
  1294. if (dvb_register_frontend(adapter, chan->fe2) < 0)
  1295. goto err;
  1296. if (chan->fe) {
  1297. chan->fe2->tuner_priv = chan->fe->tuner_priv;
  1298. memcpy(&chan->fe2->ops.tuner_ops,
  1299. &chan->fe->ops.tuner_ops,
  1300. sizeof(struct dvb_tuner_ops));
  1301. }
  1302. }
  1303. if (chan->has_demux) {
  1304. ret = my_dvb_dmx_ts_card_init(dvbdemux, "SW demux",
  1305. ngene_start_feed,
  1306. ngene_stop_feed, chan);
  1307. ret = my_dvb_dmxdev_ts_card_init(&chan->dmxdev, &chan->demux,
  1308. &chan->hw_frontend,
  1309. &chan->mem_frontend, adapter);
  1310. ret = dvb_net_init(adapter, &chan->dvbnet, &chan->demux.dmx);
  1311. }
  1312. return ret;
  1313. err:
  1314. if (chan->fe) {
  1315. dvb_frontend_detach(chan->fe);
  1316. chan->fe = NULL;
  1317. }
  1318. release_channel(chan);
  1319. return 0;
  1320. }
  1321. static int init_channels(struct ngene *dev)
  1322. {
  1323. int i, j;
  1324. for (i = 0; i < MAX_STREAM; i++) {
  1325. dev->channel[i].number = i;
  1326. if (init_channel(&dev->channel[i]) < 0) {
  1327. for (j = i - 1; j >= 0; j--)
  1328. release_channel(&dev->channel[j]);
  1329. return -1;
  1330. }
  1331. }
  1332. return 0;
  1333. }
  1334. static struct cxd2099_cfg cxd_cfg = {
  1335. .bitrate = 62000,
  1336. .adr = 0x40,
  1337. .polarity = 0,
  1338. .clock_mode = 0,
  1339. };
  1340. static void cxd_attach(struct ngene *dev)
  1341. {
  1342. struct ngene_ci *ci = &dev->ci;
  1343. ci->en = cxd2099_attach(&cxd_cfg, dev, &dev->channel[0].i2c_adapter);
  1344. ci->dev = dev;
  1345. return;
  1346. }
  1347. static void cxd_detach(struct ngene *dev)
  1348. {
  1349. struct ngene_ci *ci = &dev->ci;
  1350. dvb_ca_en50221_release(ci->en);
  1351. kfree(ci->en);
  1352. ci->en = NULL;
  1353. }
  1354. /***********************************/
  1355. /* workaround for shutdown failure */
  1356. /***********************************/
  1357. static void ngene_unlink(struct ngene *dev)
  1358. {
  1359. struct ngene_command com;
  1360. com.cmd.hdr.Opcode = CMD_MEM_WRITE;
  1361. com.cmd.hdr.Length = 3;
  1362. com.cmd.MemoryWrite.address = 0x910c;
  1363. com.cmd.MemoryWrite.data = 0xff;
  1364. com.in_len = 3;
  1365. com.out_len = 1;
  1366. mutex_lock(&dev->cmd_mutex);
  1367. ngwritel(0, NGENE_INT_ENABLE);
  1368. ngene_command_mutex(dev, &com);
  1369. mutex_unlock(&dev->cmd_mutex);
  1370. }
  1371. void ngene_shutdown(struct pci_dev *pdev)
  1372. {
  1373. struct ngene *dev = pci_get_drvdata(pdev);
  1374. if (!dev || !shutdown_workaround)
  1375. return;
  1376. printk(KERN_INFO DEVICE_NAME ": shutdown workaround...\n");
  1377. ngene_unlink(dev);
  1378. pci_disable_device(pdev);
  1379. }
  1380. /****************************************************************************/
  1381. /* device probe/remove calls ************************************************/
  1382. /****************************************************************************/
  1383. void ngene_remove(struct pci_dev *pdev)
  1384. {
  1385. struct ngene *dev = pci_get_drvdata(pdev);
  1386. int i;
  1387. tasklet_kill(&dev->event_tasklet);
  1388. for (i = MAX_STREAM - 1; i >= 0; i--)
  1389. release_channel(&dev->channel[i]);
  1390. if (dev->ci.en)
  1391. cxd_detach(dev);
  1392. ngene_stop(dev);
  1393. ngene_release_buffers(dev);
  1394. pci_disable_device(pdev);
  1395. }
  1396. int ngene_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  1397. {
  1398. struct ngene *dev;
  1399. int stat = 0;
  1400. if (pci_enable_device(pci_dev) < 0)
  1401. return -ENODEV;
  1402. dev = vzalloc(sizeof(struct ngene));
  1403. if (dev == NULL) {
  1404. stat = -ENOMEM;
  1405. goto fail0;
  1406. }
  1407. dev->pci_dev = pci_dev;
  1408. dev->card_info = (struct ngene_info *)id->driver_data;
  1409. printk(KERN_INFO DEVICE_NAME ": Found %s\n", dev->card_info->name);
  1410. pci_set_drvdata(pci_dev, dev);
  1411. /* Alloc buffers and start nGene */
  1412. stat = ngene_get_buffers(dev);
  1413. if (stat < 0)
  1414. goto fail1;
  1415. stat = ngene_start(dev);
  1416. if (stat < 0)
  1417. goto fail1;
  1418. cxd_attach(dev);
  1419. stat = ngene_buffer_config(dev);
  1420. if (stat < 0)
  1421. goto fail1;
  1422. dev->i2c_current_bus = -1;
  1423. /* Register DVB adapters and devices for both channels */
  1424. stat = init_channels(dev);
  1425. if (stat < 0)
  1426. goto fail2;
  1427. return 0;
  1428. fail2:
  1429. ngene_stop(dev);
  1430. fail1:
  1431. ngene_release_buffers(dev);
  1432. fail0:
  1433. pci_disable_device(pci_dev);
  1434. return stat;
  1435. }