synaptics_tcm_i2c.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555
  1. /*
  2. * Synaptics TCM touchscreen driver
  3. *
  4. * Copyright (C) 2017-2018 Synaptics Incorporated. All rights reserved.
  5. *
  6. * Copyright (C) 2017-2018 Scott Lin <scott.lin@tw.synaptics.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED "AS-IS," AND SYNAPTICS
  19. * EXPRESSLY DISCLAIMS ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING ANY
  20. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
  21. * AND ANY WARRANTIES OF NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHTS.
  22. * IN NO EVENT SHALL SYNAPTICS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  23. * SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR IN CONNECTION
  24. * WITH THE USE OF THE INFORMATION CONTAINED IN THIS DOCUMENT, HOWEVER CAUSED
  25. * AND BASED ON ANY THEORY OF LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  26. * NEGLIGENCE OR OTHER TORTIOUS ACTION, AND EVEN IF SYNAPTICS WAS ADVISED OF
  27. * THE POSSIBILITY OF SUCH DAMAGE. IF A TRIBUNAL OF COMPETENT JURISDICTION DOES
  28. * NOT PERMIT THE DISCLAIMER OF DIRECT DAMAGES OR ANY OTHER DAMAGES, SYNAPTICS'
  29. * TOTAL CUMULATIVE LIABILITY TO ANY PARTY SHALL NOT EXCEED ONE HUNDRED U.S.
  30. * DOLLARS.
  31. */
  32. #include <linux/i2c.h>
  33. #include <linux/of_gpio.h>
  34. #include <linux/of_irq.h>
  35. #include <linux/pinctrl/pinctrl.h>
  36. #include "synaptics_tcm_core.h"
  37. #define XFER_ATTEMPTS 10
  38. static unsigned char *buf;
  39. static unsigned int buf_size;
  40. static struct syna_tcm_bus_io bus_io;
  41. static struct syna_tcm_hw_interface hw_if;
  42. static struct platform_device *syna_tcm_i2c_device;
  43. #ifdef CONFIG_OF
  44. static int parse_dt(struct device *dev, struct syna_tcm_board_data *bdata)
  45. {
  46. int retval;
  47. u32 value;
  48. struct property *prop;
  49. struct device_node *np = dev->of_node;
  50. const char *name;
  51. retval = of_property_read_u32(np, "synaptics,irq-gpio", &value);
  52. if (retval < 0)
  53. bdata->irq_gpio = -1;
  54. else
  55. bdata->irq_gpio = irq_of_parse_and_map(np, 0);
  56. retval = of_property_read_u32(np, "synaptics,irq-on-state", &value);
  57. if (retval < 0)
  58. bdata->irq_on_state = 0;
  59. else
  60. bdata->irq_on_state = value;
  61. retval = of_property_read_string(np, "synaptics,pwr-reg-name", &name);
  62. if (retval < 0)
  63. bdata->pwr_reg_name = NULL;
  64. else
  65. bdata->pwr_reg_name = name;
  66. retval = of_property_read_string(np, "synaptics,bus-reg-name", &name);
  67. if (retval < 0)
  68. bdata->bus_reg_name = NULL;
  69. else
  70. bdata->bus_reg_name = name;
  71. prop = of_find_property(np, "synaptics,power-gpio", NULL);
  72. if (prop && prop->length) {
  73. bdata->power_gpio = of_get_named_gpio_flags(np,
  74. "synaptics,power-gpio", 0, NULL);
  75. } else {
  76. bdata->power_gpio = -1;
  77. }
  78. prop = of_find_property(np, "synaptics,power-on-state", NULL);
  79. if (prop && prop->length) {
  80. retval = of_property_read_u32(np, "synaptics,power-on-state",
  81. &value);
  82. if (retval < 0) {
  83. LOG_ERR(dev,
  84. "Failed to read synaptics,power-on-state property\n");
  85. return retval;
  86. }
  87. bdata->power_on_state = value;
  88. } else {
  89. bdata->power_on_state = 0;
  90. }
  91. prop = of_find_property(np, "synaptics,power-delay-ms", NULL);
  92. if (prop && prop->length) {
  93. retval = of_property_read_u32(np, "synaptics,power-delay-ms",
  94. &value);
  95. if (retval < 0) {
  96. LOG_ERR(dev,
  97. "Failed to read synaptics,power-delay-ms property\n");
  98. return retval;
  99. }
  100. bdata->power_delay_ms = value;
  101. } else {
  102. bdata->power_delay_ms = 0;
  103. }
  104. prop = of_find_property(np, "synaptics,reset-gpio", NULL);
  105. if (prop && prop->length) {
  106. bdata->reset_gpio = of_get_named_gpio_flags(np,
  107. "synaptics,reset-gpio", 0, NULL);
  108. } else {
  109. bdata->reset_gpio = -1;
  110. }
  111. prop = of_find_property(np, "synaptics,reset-on-state", NULL);
  112. if (prop && prop->length) {
  113. retval = of_property_read_u32(np, "synaptics,reset-on-state",
  114. &value);
  115. if (retval < 0) {
  116. LOG_ERR(dev,
  117. "Failed to read synaptics,reset-on-state property\n");
  118. return retval;
  119. }
  120. bdata->reset_on_state = value;
  121. } else {
  122. bdata->reset_on_state = 0;
  123. }
  124. prop = of_find_property(np, "synaptics,reset-active-ms", NULL);
  125. if (prop && prop->length) {
  126. retval = of_property_read_u32(np, "synaptics,reset-active-ms",
  127. &value);
  128. if (retval < 0) {
  129. LOG_ERR(dev,
  130. "Failed to read synaptics,reset-active-ms property\n");
  131. return retval;
  132. }
  133. bdata->reset_active_ms = value;
  134. } else {
  135. bdata->reset_active_ms = 0;
  136. }
  137. prop = of_find_property(np, "synaptics,reset-delay-ms", NULL);
  138. if (prop && prop->length) {
  139. retval = of_property_read_u32(np, "synaptics,reset-delay-ms",
  140. &value);
  141. if (retval < 0) {
  142. LOG_ERR(dev,
  143. "Unable to read synaptics,reset-delay-ms property\n");
  144. return retval;
  145. }
  146. bdata->reset_delay_ms = value;
  147. } else {
  148. bdata->reset_delay_ms = 0;
  149. }
  150. prop = of_find_property(np, "synaptics,x-flip", NULL);
  151. bdata->x_flip = prop > 0 ? true : false;
  152. prop = of_find_property(np, "synaptics,y-flip", NULL);
  153. bdata->y_flip = prop > 0 ? true : false;
  154. prop = of_find_property(np, "synaptics,max_x", NULL);
  155. if (prop && prop->length) {
  156. retval = of_property_read_u32(np, "synaptics,max_x",
  157. &value);
  158. if (retval < 0) {
  159. LOG_ERR(dev,
  160. "Unable to read synaptics,max_x property\n");
  161. return retval;
  162. }
  163. bdata->max_x = value;
  164. } else {
  165. bdata->max_x = 0;
  166. }
  167. prop = of_find_property(np, "synaptics,max_y", NULL);
  168. if (prop && prop->length) {
  169. retval = of_property_read_u32(np, "synaptics,max_y",
  170. &value);
  171. if (retval < 0) {
  172. LOG_ERR(dev,
  173. "Unable to read synaptics,max_y property\n");
  174. return retval;
  175. }
  176. bdata->max_y = value;
  177. } else {
  178. bdata->max_y = 0;
  179. }
  180. prop = of_find_property(np, "synaptics,swap-axes", NULL);
  181. bdata->swap_axes = prop > 0 ? true : false;
  182. prop = of_find_property(np, "synaptics,ubl-i2c-addr", NULL);
  183. if (prop && prop->length) {
  184. retval = of_property_read_u32(np, "synaptics,ubl-i2c-addr",
  185. &value);
  186. if (retval < 0) {
  187. LOG_ERR(dev,
  188. "Unable to read synaptics,ubl-i2c-addr property\n");
  189. return retval;
  190. }
  191. bdata->ubl_i2c_addr = value;
  192. } else {
  193. bdata->ubl_i2c_addr = 0;
  194. }
  195. pr_info("parse dts:bdata->irq_gpio = %d,\n"
  196. "bdata->irq_on_state = %d,\n"
  197. "bdata->pwr_reg_name = %d, bdata->bus_reg_name = %d,\n"
  198. "bdata->power_gpio= %d, bdata->power_on_state = %d,\n"
  199. "bdata->power_delay_ms = %d,bdata->reset_gpio = %d,\n"
  200. "bdata->reset_on_state = %d, bdata->reset_active_ms = %d,\n"
  201. "bdata->reset_delay_ms = %d, bdata->x_flip = %d,\n"
  202. "bdata->y_flip = %d, bdata->swap_axes = %d,\n"
  203. "bdata->ubl_i2c_addr = %d, bdata->max_x, bdata->max_y,\n"
  204. "\n",
  205. bdata->irq_gpio,
  206. bdata->irq_on_state,
  207. bdata->pwr_reg_name,
  208. bdata->bus_reg_name,
  209. bdata->power_gpio,
  210. bdata->power_on_state,
  211. bdata->power_delay_ms,
  212. bdata->reset_gpio,
  213. bdata->reset_on_state,
  214. bdata->reset_active_ms,
  215. bdata->reset_delay_ms,
  216. bdata->x_flip,
  217. bdata->y_flip,
  218. bdata->swap_axes,
  219. bdata->ubl_i2c_addr,
  220. bdata->max_x,
  221. bdata->max_y);
  222. return 0;
  223. }
  224. #endif
  225. static int syna_tcm_i2c_alloc_mem(struct syna_tcm_hcd *tcm_hcd,
  226. unsigned int size)
  227. {
  228. struct i2c_client *i2c = to_i2c_client(tcm_hcd->pdev->dev.parent);
  229. if (size > buf_size) {
  230. if (buf_size)
  231. kfree(buf);
  232. buf = kmalloc(size, GFP_KERNEL);
  233. if (!buf) {
  234. LOG_ERR(&i2c->dev,
  235. "Failed to allocate memory for buf\n");
  236. buf_size = 0;
  237. return -ENOMEM;
  238. }
  239. buf_size = size;
  240. }
  241. return 0;
  242. }
  243. static int syna_tcm_i2c_rmi_read(struct syna_tcm_hcd *tcm_hcd,
  244. unsigned short addr, unsigned char *data, unsigned int length)
  245. {
  246. int retval;
  247. unsigned char address;
  248. unsigned int attempt;
  249. struct i2c_msg msg[2];
  250. struct i2c_client *i2c = to_i2c_client(tcm_hcd->pdev->dev.parent);
  251. const struct syna_tcm_board_data *bdata = tcm_hcd->hw_if->bdata;
  252. mutex_lock(&tcm_hcd->io_ctrl_mutex);
  253. address = (unsigned char)addr;
  254. msg[0].addr = bdata->ubl_i2c_addr;
  255. msg[0].flags = 0;
  256. msg[0].len = 1;
  257. msg[0].buf = &address;
  258. msg[1].addr = bdata->ubl_i2c_addr;
  259. msg[1].flags = I2C_M_RD;
  260. msg[1].len = length;
  261. msg[1].buf = data;
  262. for (attempt = 0; attempt < XFER_ATTEMPTS; attempt++) {
  263. if (i2c_transfer(i2c->adapter, msg, 2) == 2) {
  264. retval = length;
  265. goto exit;
  266. }
  267. LOG_ERR(&i2c->dev,
  268. "Transfer attempt %d failed\n",
  269. attempt + 1);
  270. if (attempt + 1 == XFER_ATTEMPTS) {
  271. retval = -EIO;
  272. goto exit;
  273. }
  274. msleep(20);
  275. }
  276. exit:
  277. mutex_unlock(&tcm_hcd->io_ctrl_mutex);
  278. return retval;
  279. }
  280. static int syna_tcm_i2c_rmi_write(struct syna_tcm_hcd *tcm_hcd,
  281. unsigned short addr, unsigned char *data, unsigned int length)
  282. {
  283. int retval;
  284. unsigned int attempt;
  285. unsigned int byte_count;
  286. struct i2c_msg msg;
  287. struct i2c_client *i2c = to_i2c_client(tcm_hcd->pdev->dev.parent);
  288. const struct syna_tcm_board_data *bdata = tcm_hcd->hw_if->bdata;
  289. mutex_lock(&tcm_hcd->io_ctrl_mutex);
  290. byte_count = length + 1;
  291. retval = syna_tcm_i2c_alloc_mem(tcm_hcd, byte_count);
  292. if (retval < 0) {
  293. LOG_ERR(&i2c->dev,
  294. "Failed to allocate memory\n");
  295. goto exit;
  296. }
  297. buf[0] = (unsigned char)addr;
  298. retval = secure_memcpy(&buf[1],
  299. buf_size - 1,
  300. data,
  301. length,
  302. length);
  303. if (retval < 0) {
  304. LOG_ERR(&i2c->dev,
  305. "Failed to copy write data\n");
  306. goto exit;
  307. }
  308. msg.addr = bdata->ubl_i2c_addr;
  309. msg.flags = 0;
  310. msg.len = byte_count;
  311. msg.buf = buf;
  312. for (attempt = 0; attempt < XFER_ATTEMPTS; attempt++) {
  313. if (i2c_transfer(i2c->adapter, &msg, 1) == 1) {
  314. retval = length;
  315. goto exit;
  316. }
  317. LOG_ERR(&i2c->dev,
  318. "Transfer attempt %d failed\n",
  319. attempt + 1);
  320. if (attempt + 1 == XFER_ATTEMPTS) {
  321. retval = -EIO;
  322. goto exit;
  323. }
  324. msleep(20);
  325. }
  326. exit:
  327. mutex_unlock(&tcm_hcd->io_ctrl_mutex);
  328. return retval;
  329. }
  330. static int syna_tcm_i2c_read(struct syna_tcm_hcd *tcm_hcd, unsigned char *data,
  331. unsigned int length)
  332. {
  333. int retval;
  334. unsigned int attempt;
  335. struct i2c_msg msg;
  336. struct i2c_client *i2c = to_i2c_client(tcm_hcd->pdev->dev.parent);
  337. mutex_lock(&tcm_hcd->io_ctrl_mutex);
  338. msg.addr = i2c->addr;
  339. msg.flags = I2C_M_RD;
  340. msg.len = length;
  341. msg.buf = data;
  342. for (attempt = 0; attempt < XFER_ATTEMPTS; attempt++) {
  343. if (i2c_transfer(i2c->adapter, &msg, 1) == 1) {
  344. retval = length;
  345. goto exit;
  346. }
  347. LOG_ERR(&i2c->dev,
  348. "Transfer attempt %d failed\n",
  349. attempt + 1);
  350. if (attempt + 1 == XFER_ATTEMPTS) {
  351. retval = -EIO;
  352. goto exit;
  353. }
  354. msleep(20);
  355. }
  356. exit:
  357. mutex_unlock(&tcm_hcd->io_ctrl_mutex);
  358. return retval;
  359. }
  360. static int syna_tcm_i2c_write(struct syna_tcm_hcd *tcm_hcd, unsigned char *data,
  361. unsigned int length)
  362. {
  363. int retval;
  364. unsigned int attempt;
  365. struct i2c_msg msg;
  366. struct i2c_client *i2c = to_i2c_client(tcm_hcd->pdev->dev.parent);
  367. mutex_lock(&tcm_hcd->io_ctrl_mutex);
  368. msg.addr = i2c->addr;
  369. msg.flags = 0;
  370. msg.len = length;
  371. msg.buf = data;
  372. for (attempt = 0; attempt < XFER_ATTEMPTS; attempt++) {
  373. if (i2c_transfer(i2c->adapter, &msg, 1) == 1) {
  374. retval = length;
  375. goto exit;
  376. }
  377. LOG_ERR(&i2c->dev,
  378. "Transfer attempt %d failed\n",
  379. attempt + 1);
  380. if (attempt + 1 == XFER_ATTEMPTS) {
  381. retval = -EIO;
  382. goto exit;
  383. }
  384. msleep(20);
  385. }
  386. exit:
  387. mutex_unlock(&tcm_hcd->io_ctrl_mutex);
  388. return retval;
  389. }
  390. static int syna_tcm_i2c_probe(struct i2c_client *i2c,
  391. const struct i2c_device_id *dev_id)
  392. {
  393. int retval;
  394. syna_tcm_i2c_device = platform_device_alloc(PLATFORM_DRIVER_NAME, 0);
  395. if (!syna_tcm_i2c_device) {
  396. LOG_ERR(&i2c->dev,
  397. "Failed to allocate platform device\n");
  398. return -ENOMEM;
  399. }
  400. #ifdef CONFIG_OF
  401. hw_if.bdata = devm_kzalloc(&i2c->dev, sizeof(*hw_if.bdata), GFP_KERNEL);
  402. if (!hw_if.bdata) {
  403. LOG_ERR(&i2c->dev,
  404. "Failed to allocate memory for board data\n");
  405. return -ENOMEM;
  406. }
  407. parse_dt(&i2c->dev, hw_if.bdata);
  408. #else
  409. hw_if.bdata = i2c->dev.platform_data;
  410. #endif
  411. bus_io.type = BUS_I2C;
  412. bus_io.read = syna_tcm_i2c_read;
  413. bus_io.write = syna_tcm_i2c_write;
  414. bus_io.rmi_read = syna_tcm_i2c_rmi_read;
  415. bus_io.rmi_write = syna_tcm_i2c_rmi_write;
  416. hw_if.bus_io = &bus_io;
  417. syna_tcm_i2c_device->dev.parent = &i2c->dev;
  418. syna_tcm_i2c_device->dev.platform_data = &hw_if;
  419. retval = platform_device_add(syna_tcm_i2c_device);
  420. if (retval < 0) {
  421. LOG_ERR(&i2c->dev,
  422. "Failed to add platform device\n");
  423. return retval;
  424. }
  425. return 0;
  426. }
  427. static int syna_tcm_i2c_remove(struct i2c_client *i2c)
  428. {
  429. syna_tcm_i2c_device->dev.platform_data = NULL;
  430. platform_device_unregister(syna_tcm_i2c_device);
  431. return 0;
  432. }
  433. static const struct i2c_device_id syna_tcm_id_table[] = {
  434. {I2C_MODULE_NAME, 0},
  435. {},
  436. };
  437. MODULE_DEVICE_TABLE(i2c, syna_tcm_id_table);
  438. #ifdef CONFIG_OF
  439. static const struct of_device_id syna_tcm_of_match_table[] = {
  440. {
  441. .compatible = "synaptics,tcm-i2c",
  442. },
  443. {},
  444. };
  445. MODULE_DEVICE_TABLE(of, syna_tcm_of_match_table);
  446. #else
  447. #define syna_tcm_of_match_table NULL
  448. #endif
  449. static struct i2c_driver syna_tcm_i2c_driver = {
  450. .driver = {
  451. .name = I2C_MODULE_NAME,
  452. .owner = THIS_MODULE,
  453. .of_match_table = syna_tcm_of_match_table,
  454. },
  455. .probe = syna_tcm_i2c_probe,
  456. .remove = syna_tcm_i2c_remove,
  457. .id_table = syna_tcm_id_table,
  458. };
  459. int syna_tcm_bus_init(void)
  460. {
  461. return i2c_add_driver(&syna_tcm_i2c_driver);
  462. }
  463. EXPORT_SYMBOL(syna_tcm_bus_init);
  464. void syna_tcm_bus_exit(void)
  465. {
  466. kfree(buf);
  467. i2c_del_driver(&syna_tcm_i2c_driver);
  468. }
  469. EXPORT_SYMBOL(syna_tcm_bus_exit);
  470. MODULE_AUTHOR("Synaptics, Inc.");
  471. MODULE_DESCRIPTION("Synaptics TCM I2C Bus Module");
  472. MODULE_LICENSE("GPL v2");