t4.h 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727
  1. /*
  2. * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. * - Redistributions in binary form must reproduce the above
  18. * copyright notice, this list of conditions and the following
  19. * disclaimer in the documentation and/or other materials
  20. * provided with the distribution.
  21. *
  22. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  23. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  24. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  25. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  26. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  27. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  28. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  29. * SOFTWARE.
  30. */
  31. #ifndef __T4_H__
  32. #define __T4_H__
  33. #include "t4_hw.h"
  34. #include "t4_regs.h"
  35. #include "t4_values.h"
  36. #include "t4_msg.h"
  37. #include "t4fw_ri_api.h"
  38. #define T4_MAX_NUM_PD 65536
  39. #define T4_MAX_MR_SIZE (~0ULL)
  40. #define T4_PAGESIZE_MASK 0xffff000 /* 4KB-128MB */
  41. #define T4_STAG_UNSET 0xffffffff
  42. #define T4_FW_MAJ 0
  43. #define PCIE_MA_SYNC_A 0x30b4
  44. struct t4_status_page {
  45. __be32 rsvd1; /* flit 0 - hw owns */
  46. __be16 rsvd2;
  47. __be16 qid;
  48. __be16 cidx;
  49. __be16 pidx;
  50. u8 qp_err; /* flit 1 - sw owns */
  51. u8 db_off;
  52. u8 pad;
  53. u16 host_wq_pidx;
  54. u16 host_cidx;
  55. u16 host_pidx;
  56. };
  57. #define T4_EQ_ENTRY_SIZE 64
  58. #define T4_SQ_NUM_SLOTS 5
  59. #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
  60. #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
  61. sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
  62. #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
  63. sizeof(struct fw_ri_immd)))
  64. #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
  65. sizeof(struct fw_ri_rdma_write_wr) - \
  66. sizeof(struct fw_ri_immd)))
  67. #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
  68. sizeof(struct fw_ri_rdma_write_wr) - \
  69. sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
  70. #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
  71. sizeof(struct fw_ri_immd)) & ~31UL)
  72. #define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
  73. #define T4_MAX_FR_DSGL 1024
  74. #define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
  75. static inline int t4_max_fr_depth(int use_dsgl)
  76. {
  77. return use_dsgl ? T4_MAX_FR_DSGL_DEPTH : T4_MAX_FR_IMMD_DEPTH;
  78. }
  79. #define T4_RQ_NUM_SLOTS 2
  80. #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
  81. #define T4_MAX_RECV_SGE 4
  82. union t4_wr {
  83. struct fw_ri_res_wr res;
  84. struct fw_ri_wr ri;
  85. struct fw_ri_rdma_write_wr write;
  86. struct fw_ri_send_wr send;
  87. struct fw_ri_rdma_read_wr read;
  88. struct fw_ri_bind_mw_wr bind;
  89. struct fw_ri_fr_nsmr_wr fr;
  90. struct fw_ri_fr_nsmr_tpte_wr fr_tpte;
  91. struct fw_ri_inv_lstag_wr inv;
  92. struct t4_status_page status;
  93. __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
  94. };
  95. union t4_recv_wr {
  96. struct fw_ri_recv_wr recv;
  97. struct t4_status_page status;
  98. __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
  99. };
  100. static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
  101. enum fw_wr_opcodes opcode, u8 flags, u8 len16)
  102. {
  103. wqe->send.opcode = (u8)opcode;
  104. wqe->send.flags = flags;
  105. wqe->send.wrid = wrid;
  106. wqe->send.r1[0] = 0;
  107. wqe->send.r1[1] = 0;
  108. wqe->send.r1[2] = 0;
  109. wqe->send.len16 = len16;
  110. }
  111. /* CQE/AE status codes */
  112. #define T4_ERR_SUCCESS 0x0
  113. #define T4_ERR_STAG 0x1 /* STAG invalid: either the */
  114. /* STAG is offlimt, being 0, */
  115. /* or STAG_key mismatch */
  116. #define T4_ERR_PDID 0x2 /* PDID mismatch */
  117. #define T4_ERR_QPID 0x3 /* QPID mismatch */
  118. #define T4_ERR_ACCESS 0x4 /* Invalid access right */
  119. #define T4_ERR_WRAP 0x5 /* Wrap error */
  120. #define T4_ERR_BOUND 0x6 /* base and bounds voilation */
  121. #define T4_ERR_INVALIDATE_SHARED_MR 0x7 /* attempt to invalidate a */
  122. /* shared memory region */
  123. #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8 /* attempt to invalidate a */
  124. /* shared memory region */
  125. #define T4_ERR_ECC 0x9 /* ECC error detected */
  126. #define T4_ERR_ECC_PSTAG 0xA /* ECC error detected when */
  127. /* reading PSTAG for a MW */
  128. /* Invalidate */
  129. #define T4_ERR_PBL_ADDR_BOUND 0xB /* pbl addr out of bounds: */
  130. /* software error */
  131. #define T4_ERR_SWFLUSH 0xC /* SW FLUSHED */
  132. #define T4_ERR_CRC 0x10 /* CRC error */
  133. #define T4_ERR_MARKER 0x11 /* Marker error */
  134. #define T4_ERR_PDU_LEN_ERR 0x12 /* invalid PDU length */
  135. #define T4_ERR_OUT_OF_RQE 0x13 /* out of RQE */
  136. #define T4_ERR_DDP_VERSION 0x14 /* wrong DDP version */
  137. #define T4_ERR_RDMA_VERSION 0x15 /* wrong RDMA version */
  138. #define T4_ERR_OPCODE 0x16 /* invalid rdma opcode */
  139. #define T4_ERR_DDP_QUEUE_NUM 0x17 /* invalid ddp queue number */
  140. #define T4_ERR_MSN 0x18 /* MSN error */
  141. #define T4_ERR_TBIT 0x19 /* tag bit not set correctly */
  142. #define T4_ERR_MO 0x1A /* MO not 0 for TERMINATE */
  143. /* or READ_REQ */
  144. #define T4_ERR_MSN_GAP 0x1B
  145. #define T4_ERR_MSN_RANGE 0x1C
  146. #define T4_ERR_IRD_OVERFLOW 0x1D
  147. #define T4_ERR_RQE_ADDR_BOUND 0x1E /* RQE addr out of bounds: */
  148. /* software error */
  149. #define T4_ERR_INTERNAL_ERR 0x1F /* internal error (opcode */
  150. /* mismatch) */
  151. /*
  152. * CQE defs
  153. */
  154. struct t4_cqe {
  155. __be32 header;
  156. __be32 len;
  157. union {
  158. struct {
  159. __be32 stag;
  160. __be32 msn;
  161. } rcqe;
  162. struct {
  163. __be32 stag;
  164. u16 nada2;
  165. u16 cidx;
  166. } scqe;
  167. struct {
  168. __be32 wrid_hi;
  169. __be32 wrid_low;
  170. } gen;
  171. u64 drain_cookie;
  172. } u;
  173. __be64 reserved;
  174. __be64 bits_type_ts;
  175. };
  176. /* macros for flit 0 of the cqe */
  177. #define CQE_QPID_S 12
  178. #define CQE_QPID_M 0xFFFFF
  179. #define CQE_QPID_G(x) ((((x) >> CQE_QPID_S)) & CQE_QPID_M)
  180. #define CQE_QPID_V(x) ((x)<<CQE_QPID_S)
  181. #define CQE_SWCQE_S 11
  182. #define CQE_SWCQE_M 0x1
  183. #define CQE_SWCQE_G(x) ((((x) >> CQE_SWCQE_S)) & CQE_SWCQE_M)
  184. #define CQE_SWCQE_V(x) ((x)<<CQE_SWCQE_S)
  185. #define CQE_DRAIN_S 10
  186. #define CQE_DRAIN_M 0x1
  187. #define CQE_DRAIN_G(x) ((((x) >> CQE_DRAIN_S)) & CQE_DRAIN_M)
  188. #define CQE_DRAIN_V(x) ((x)<<CQE_DRAIN_S)
  189. #define CQE_STATUS_S 5
  190. #define CQE_STATUS_M 0x1F
  191. #define CQE_STATUS_G(x) ((((x) >> CQE_STATUS_S)) & CQE_STATUS_M)
  192. #define CQE_STATUS_V(x) ((x)<<CQE_STATUS_S)
  193. #define CQE_TYPE_S 4
  194. #define CQE_TYPE_M 0x1
  195. #define CQE_TYPE_G(x) ((((x) >> CQE_TYPE_S)) & CQE_TYPE_M)
  196. #define CQE_TYPE_V(x) ((x)<<CQE_TYPE_S)
  197. #define CQE_OPCODE_S 0
  198. #define CQE_OPCODE_M 0xF
  199. #define CQE_OPCODE_G(x) ((((x) >> CQE_OPCODE_S)) & CQE_OPCODE_M)
  200. #define CQE_OPCODE_V(x) ((x)<<CQE_OPCODE_S)
  201. #define SW_CQE(x) (CQE_SWCQE_G(be32_to_cpu((x)->header)))
  202. #define DRAIN_CQE(x) (CQE_DRAIN_G(be32_to_cpu((x)->header)))
  203. #define CQE_QPID(x) (CQE_QPID_G(be32_to_cpu((x)->header)))
  204. #define CQE_TYPE(x) (CQE_TYPE_G(be32_to_cpu((x)->header)))
  205. #define SQ_TYPE(x) (CQE_TYPE((x)))
  206. #define RQ_TYPE(x) (!CQE_TYPE((x)))
  207. #define CQE_STATUS(x) (CQE_STATUS_G(be32_to_cpu((x)->header)))
  208. #define CQE_OPCODE(x) (CQE_OPCODE_G(be32_to_cpu((x)->header)))
  209. #define CQE_SEND_OPCODE(x)( \
  210. (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
  211. (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
  212. (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
  213. (CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
  214. #define CQE_LEN(x) (be32_to_cpu((x)->len))
  215. /* used for RQ completion processing */
  216. #define CQE_WRID_STAG(x) (be32_to_cpu((x)->u.rcqe.stag))
  217. #define CQE_WRID_MSN(x) (be32_to_cpu((x)->u.rcqe.msn))
  218. /* used for SQ completion processing */
  219. #define CQE_WRID_SQ_IDX(x) ((x)->u.scqe.cidx)
  220. #define CQE_WRID_FR_STAG(x) (be32_to_cpu((x)->u.scqe.stag))
  221. /* generic accessor macros */
  222. #define CQE_WRID_HI(x) (be32_to_cpu((x)->u.gen.wrid_hi))
  223. #define CQE_WRID_LOW(x) (be32_to_cpu((x)->u.gen.wrid_low))
  224. #define CQE_DRAIN_COOKIE(x) ((x)->u.drain_cookie)
  225. /* macros for flit 3 of the cqe */
  226. #define CQE_GENBIT_S 63
  227. #define CQE_GENBIT_M 0x1
  228. #define CQE_GENBIT_G(x) (((x) >> CQE_GENBIT_S) & CQE_GENBIT_M)
  229. #define CQE_GENBIT_V(x) ((x)<<CQE_GENBIT_S)
  230. #define CQE_OVFBIT_S 62
  231. #define CQE_OVFBIT_M 0x1
  232. #define CQE_OVFBIT_G(x) ((((x) >> CQE_OVFBIT_S)) & CQE_OVFBIT_M)
  233. #define CQE_IQTYPE_S 60
  234. #define CQE_IQTYPE_M 0x3
  235. #define CQE_IQTYPE_G(x) ((((x) >> CQE_IQTYPE_S)) & CQE_IQTYPE_M)
  236. #define CQE_TS_M 0x0fffffffffffffffULL
  237. #define CQE_TS_G(x) ((x) & CQE_TS_M)
  238. #define CQE_OVFBIT(x) ((unsigned)CQE_OVFBIT_G(be64_to_cpu((x)->bits_type_ts)))
  239. #define CQE_GENBIT(x) ((unsigned)CQE_GENBIT_G(be64_to_cpu((x)->bits_type_ts)))
  240. #define CQE_TS(x) (CQE_TS_G(be64_to_cpu((x)->bits_type_ts)))
  241. struct t4_swsqe {
  242. u64 wr_id;
  243. struct t4_cqe cqe;
  244. int read_len;
  245. int opcode;
  246. int complete;
  247. int signaled;
  248. u16 idx;
  249. int flushed;
  250. struct timespec host_ts;
  251. u64 sge_ts;
  252. };
  253. static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
  254. {
  255. #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
  256. return pgprot_writecombine(prot);
  257. #else
  258. return pgprot_noncached(prot);
  259. #endif
  260. }
  261. enum {
  262. T4_SQ_ONCHIP = (1<<0),
  263. };
  264. struct t4_sq {
  265. union t4_wr *queue;
  266. dma_addr_t dma_addr;
  267. DEFINE_DMA_UNMAP_ADDR(mapping);
  268. unsigned long phys_addr;
  269. struct t4_swsqe *sw_sq;
  270. struct t4_swsqe *oldest_read;
  271. void __iomem *bar2_va;
  272. u64 bar2_pa;
  273. size_t memsize;
  274. u32 bar2_qid;
  275. u32 qid;
  276. u16 in_use;
  277. u16 size;
  278. u16 cidx;
  279. u16 pidx;
  280. u16 wq_pidx;
  281. u16 wq_pidx_inc;
  282. u16 flags;
  283. short flush_cidx;
  284. };
  285. struct t4_swrqe {
  286. u64 wr_id;
  287. struct timespec host_ts;
  288. u64 sge_ts;
  289. };
  290. struct t4_rq {
  291. union t4_recv_wr *queue;
  292. dma_addr_t dma_addr;
  293. DEFINE_DMA_UNMAP_ADDR(mapping);
  294. struct t4_swrqe *sw_rq;
  295. void __iomem *bar2_va;
  296. u64 bar2_pa;
  297. size_t memsize;
  298. u32 bar2_qid;
  299. u32 qid;
  300. u32 msn;
  301. u32 rqt_hwaddr;
  302. u16 rqt_size;
  303. u16 in_use;
  304. u16 size;
  305. u16 cidx;
  306. u16 pidx;
  307. u16 wq_pidx;
  308. u16 wq_pidx_inc;
  309. };
  310. struct t4_wq {
  311. struct t4_sq sq;
  312. struct t4_rq rq;
  313. void __iomem *db;
  314. struct c4iw_rdev *rdev;
  315. int flushed;
  316. };
  317. static inline int t4_rqes_posted(struct t4_wq *wq)
  318. {
  319. return wq->rq.in_use;
  320. }
  321. static inline int t4_rq_empty(struct t4_wq *wq)
  322. {
  323. return wq->rq.in_use == 0;
  324. }
  325. static inline int t4_rq_full(struct t4_wq *wq)
  326. {
  327. return wq->rq.in_use == (wq->rq.size - 1);
  328. }
  329. static inline u32 t4_rq_avail(struct t4_wq *wq)
  330. {
  331. return wq->rq.size - 1 - wq->rq.in_use;
  332. }
  333. static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
  334. {
  335. wq->rq.in_use++;
  336. if (++wq->rq.pidx == wq->rq.size)
  337. wq->rq.pidx = 0;
  338. wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
  339. if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
  340. wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
  341. }
  342. static inline void t4_rq_consume(struct t4_wq *wq)
  343. {
  344. wq->rq.in_use--;
  345. wq->rq.msn++;
  346. if (++wq->rq.cidx == wq->rq.size)
  347. wq->rq.cidx = 0;
  348. }
  349. static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
  350. {
  351. return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
  352. }
  353. static inline u16 t4_rq_wq_size(struct t4_wq *wq)
  354. {
  355. return wq->rq.size * T4_RQ_NUM_SLOTS;
  356. }
  357. static inline int t4_sq_onchip(struct t4_sq *sq)
  358. {
  359. return sq->flags & T4_SQ_ONCHIP;
  360. }
  361. static inline int t4_sq_empty(struct t4_wq *wq)
  362. {
  363. return wq->sq.in_use == 0;
  364. }
  365. static inline int t4_sq_full(struct t4_wq *wq)
  366. {
  367. return wq->sq.in_use == (wq->sq.size - 1);
  368. }
  369. static inline u32 t4_sq_avail(struct t4_wq *wq)
  370. {
  371. return wq->sq.size - 1 - wq->sq.in_use;
  372. }
  373. static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
  374. {
  375. wq->sq.in_use++;
  376. if (++wq->sq.pidx == wq->sq.size)
  377. wq->sq.pidx = 0;
  378. wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
  379. if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
  380. wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
  381. }
  382. static inline void t4_sq_consume(struct t4_wq *wq)
  383. {
  384. BUG_ON(wq->sq.in_use < 1);
  385. if (wq->sq.cidx == wq->sq.flush_cidx)
  386. wq->sq.flush_cidx = -1;
  387. wq->sq.in_use--;
  388. if (++wq->sq.cidx == wq->sq.size)
  389. wq->sq.cidx = 0;
  390. }
  391. static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
  392. {
  393. return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
  394. }
  395. static inline u16 t4_sq_wq_size(struct t4_wq *wq)
  396. {
  397. return wq->sq.size * T4_SQ_NUM_SLOTS;
  398. }
  399. /* This function copies 64 byte coalesced work request to memory
  400. * mapped BAR2 space. For coalesced WRs, the SGE fetches data
  401. * from the FIFO instead of from Host.
  402. */
  403. static inline void pio_copy(u64 __iomem *dst, u64 *src)
  404. {
  405. int count = 8;
  406. while (count) {
  407. writeq(*src, dst);
  408. src++;
  409. dst++;
  410. count--;
  411. }
  412. }
  413. static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc, union t4_wr *wqe)
  414. {
  415. /* Flush host queue memory writes. */
  416. wmb();
  417. if (wq->sq.bar2_va) {
  418. if (inc == 1 && wq->sq.bar2_qid == 0 && wqe) {
  419. pr_debug("%s: WC wq->sq.pidx = %d\n",
  420. __func__, wq->sq.pidx);
  421. pio_copy((u64 __iomem *)
  422. (wq->sq.bar2_va + SGE_UDB_WCDOORBELL),
  423. (u64 *)wqe);
  424. } else {
  425. pr_debug("%s: DB wq->sq.pidx = %d\n",
  426. __func__, wq->sq.pidx);
  427. writel(PIDX_T5_V(inc) | QID_V(wq->sq.bar2_qid),
  428. wq->sq.bar2_va + SGE_UDB_KDOORBELL);
  429. }
  430. /* Flush user doorbell area writes. */
  431. wmb();
  432. return;
  433. }
  434. writel(QID_V(wq->sq.qid) | PIDX_V(inc), wq->db);
  435. }
  436. static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc,
  437. union t4_recv_wr *wqe)
  438. {
  439. /* Flush host queue memory writes. */
  440. wmb();
  441. if (wq->rq.bar2_va) {
  442. if (inc == 1 && wq->rq.bar2_qid == 0 && wqe) {
  443. pr_debug("%s: WC wq->rq.pidx = %d\n",
  444. __func__, wq->rq.pidx);
  445. pio_copy((u64 __iomem *)
  446. (wq->rq.bar2_va + SGE_UDB_WCDOORBELL),
  447. (void *)wqe);
  448. } else {
  449. pr_debug("%s: DB wq->rq.pidx = %d\n",
  450. __func__, wq->rq.pidx);
  451. writel(PIDX_T5_V(inc) | QID_V(wq->rq.bar2_qid),
  452. wq->rq.bar2_va + SGE_UDB_KDOORBELL);
  453. }
  454. /* Flush user doorbell area writes. */
  455. wmb();
  456. return;
  457. }
  458. writel(QID_V(wq->rq.qid) | PIDX_V(inc), wq->db);
  459. }
  460. static inline int t4_wq_in_error(struct t4_wq *wq)
  461. {
  462. return wq->rq.queue[wq->rq.size].status.qp_err;
  463. }
  464. static inline void t4_set_wq_in_error(struct t4_wq *wq)
  465. {
  466. wq->rq.queue[wq->rq.size].status.qp_err = 1;
  467. }
  468. static inline void t4_disable_wq_db(struct t4_wq *wq)
  469. {
  470. wq->rq.queue[wq->rq.size].status.db_off = 1;
  471. }
  472. static inline void t4_enable_wq_db(struct t4_wq *wq)
  473. {
  474. wq->rq.queue[wq->rq.size].status.db_off = 0;
  475. }
  476. static inline int t4_wq_db_enabled(struct t4_wq *wq)
  477. {
  478. return !wq->rq.queue[wq->rq.size].status.db_off;
  479. }
  480. enum t4_cq_flags {
  481. CQ_ARMED = 1,
  482. };
  483. struct t4_cq {
  484. struct t4_cqe *queue;
  485. dma_addr_t dma_addr;
  486. DEFINE_DMA_UNMAP_ADDR(mapping);
  487. struct t4_cqe *sw_queue;
  488. void __iomem *gts;
  489. void __iomem *bar2_va;
  490. u64 bar2_pa;
  491. u32 bar2_qid;
  492. struct c4iw_rdev *rdev;
  493. size_t memsize;
  494. __be64 bits_type_ts;
  495. u32 cqid;
  496. u32 qid_mask;
  497. int vector;
  498. u16 size; /* including status page */
  499. u16 cidx;
  500. u16 sw_pidx;
  501. u16 sw_cidx;
  502. u16 sw_in_use;
  503. u16 cidx_inc;
  504. u8 gen;
  505. u8 error;
  506. unsigned long flags;
  507. };
  508. static inline void write_gts(struct t4_cq *cq, u32 val)
  509. {
  510. if (cq->bar2_va)
  511. writel(val | INGRESSQID_V(cq->bar2_qid),
  512. cq->bar2_va + SGE_UDB_GTS);
  513. else
  514. writel(val | INGRESSQID_V(cq->cqid), cq->gts);
  515. }
  516. static inline int t4_clear_cq_armed(struct t4_cq *cq)
  517. {
  518. return test_and_clear_bit(CQ_ARMED, &cq->flags);
  519. }
  520. static inline int t4_arm_cq(struct t4_cq *cq, int se)
  521. {
  522. u32 val;
  523. set_bit(CQ_ARMED, &cq->flags);
  524. while (cq->cidx_inc > CIDXINC_M) {
  525. val = SEINTARM_V(0) | CIDXINC_V(CIDXINC_M) | TIMERREG_V(7);
  526. write_gts(cq, val);
  527. cq->cidx_inc -= CIDXINC_M;
  528. }
  529. val = SEINTARM_V(se) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(6);
  530. write_gts(cq, val);
  531. cq->cidx_inc = 0;
  532. return 0;
  533. }
  534. static inline void t4_swcq_produce(struct t4_cq *cq)
  535. {
  536. cq->sw_in_use++;
  537. if (cq->sw_in_use == cq->size) {
  538. pr_debug("%s cxgb4 sw cq overflow cqid %u\n",
  539. __func__, cq->cqid);
  540. cq->error = 1;
  541. BUG_ON(1);
  542. }
  543. if (++cq->sw_pidx == cq->size)
  544. cq->sw_pidx = 0;
  545. }
  546. static inline void t4_swcq_consume(struct t4_cq *cq)
  547. {
  548. BUG_ON(cq->sw_in_use < 1);
  549. cq->sw_in_use--;
  550. if (++cq->sw_cidx == cq->size)
  551. cq->sw_cidx = 0;
  552. }
  553. static inline void t4_hwcq_consume(struct t4_cq *cq)
  554. {
  555. cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
  556. if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == CIDXINC_M) {
  557. u32 val;
  558. val = SEINTARM_V(0) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(7);
  559. write_gts(cq, val);
  560. cq->cidx_inc = 0;
  561. }
  562. if (++cq->cidx == cq->size) {
  563. cq->cidx = 0;
  564. cq->gen ^= 1;
  565. }
  566. }
  567. static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
  568. {
  569. return (CQE_GENBIT(cqe) == cq->gen);
  570. }
  571. static inline int t4_cq_notempty(struct t4_cq *cq)
  572. {
  573. return cq->sw_in_use || t4_valid_cqe(cq, &cq->queue[cq->cidx]);
  574. }
  575. static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
  576. {
  577. int ret;
  578. u16 prev_cidx;
  579. if (cq->cidx == 0)
  580. prev_cidx = cq->size - 1;
  581. else
  582. prev_cidx = cq->cidx - 1;
  583. if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
  584. ret = -EOVERFLOW;
  585. cq->error = 1;
  586. pr_err("cq overflow cqid %u\n", cq->cqid);
  587. BUG_ON(1);
  588. } else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
  589. /* Ensure CQE is flushed to memory */
  590. rmb();
  591. *cqe = &cq->queue[cq->cidx];
  592. ret = 0;
  593. } else
  594. ret = -ENODATA;
  595. return ret;
  596. }
  597. static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
  598. {
  599. if (cq->sw_in_use == cq->size) {
  600. pr_debug("%s cxgb4 sw cq overflow cqid %u\n",
  601. __func__, cq->cqid);
  602. cq->error = 1;
  603. BUG_ON(1);
  604. return NULL;
  605. }
  606. if (cq->sw_in_use)
  607. return &cq->sw_queue[cq->sw_cidx];
  608. return NULL;
  609. }
  610. static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
  611. {
  612. int ret = 0;
  613. if (cq->error)
  614. ret = -ENODATA;
  615. else if (cq->sw_in_use)
  616. *cqe = &cq->sw_queue[cq->sw_cidx];
  617. else
  618. ret = t4_next_hw_cqe(cq, cqe);
  619. return ret;
  620. }
  621. static inline int t4_cq_in_error(struct t4_cq *cq)
  622. {
  623. return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
  624. }
  625. static inline void t4_set_cq_in_error(struct t4_cq *cq)
  626. {
  627. ((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
  628. }
  629. #endif
  630. struct t4_dev_status_page {
  631. u8 db_off;
  632. u8 pad1;
  633. u16 pad2;
  634. u32 pad3;
  635. u64 qp_start;
  636. u64 qp_size;
  637. u64 cq_start;
  638. u64 cq_size;
  639. };