mem.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787
  1. /*
  2. * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #include <linux/module.h>
  33. #include <linux/moduleparam.h>
  34. #include <rdma/ib_umem.h>
  35. #include <linux/atomic.h>
  36. #include <rdma/ib_user_verbs.h>
  37. #include "iw_cxgb4.h"
  38. int use_dsgl = 1;
  39. module_param(use_dsgl, int, 0644);
  40. MODULE_PARM_DESC(use_dsgl, "Use DSGL for PBL/FastReg (default=1) (DEPRECATED)");
  41. #define T4_ULPTX_MIN_IO 32
  42. #define C4IW_MAX_INLINE_SIZE 96
  43. #define T4_ULPTX_MAX_DMA 1024
  44. #define C4IW_INLINE_THRESHOLD 128
  45. static int inline_threshold = C4IW_INLINE_THRESHOLD;
  46. module_param(inline_threshold, int, 0644);
  47. MODULE_PARM_DESC(inline_threshold, "inline vs dsgl threshold (default=128)");
  48. static int mr_exceeds_hw_limits(struct c4iw_dev *dev, u64 length)
  49. {
  50. return (is_t4(dev->rdev.lldi.adapter_type) ||
  51. is_t5(dev->rdev.lldi.adapter_type)) &&
  52. length >= 8*1024*1024*1024ULL;
  53. }
  54. static int _c4iw_write_mem_dma_aligned(struct c4iw_rdev *rdev, u32 addr,
  55. u32 len, dma_addr_t data,
  56. int wait, struct sk_buff *skb)
  57. {
  58. struct ulp_mem_io *req;
  59. struct ulptx_sgl *sgl;
  60. u8 wr_len;
  61. int ret = 0;
  62. struct c4iw_wr_wait wr_wait;
  63. addr &= 0x7FFFFFF;
  64. if (wait)
  65. c4iw_init_wr_wait(&wr_wait);
  66. wr_len = roundup(sizeof(*req) + sizeof(*sgl), 16);
  67. if (!skb) {
  68. skb = alloc_skb(wr_len, GFP_KERNEL | __GFP_NOFAIL);
  69. if (!skb)
  70. return -ENOMEM;
  71. }
  72. set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
  73. req = __skb_put_zero(skb, wr_len);
  74. INIT_ULPTX_WR(req, wr_len, 0, 0);
  75. req->wr.wr_hi = cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR) |
  76. (wait ? FW_WR_COMPL_F : 0));
  77. req->wr.wr_lo = wait ? (__force __be64)(unsigned long) &wr_wait : 0L;
  78. req->wr.wr_mid = cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(wr_len, 16)));
  79. req->cmd = cpu_to_be32(ULPTX_CMD_V(ULP_TX_MEM_WRITE) |
  80. T5_ULP_MEMIO_ORDER_V(1) |
  81. T5_ULP_MEMIO_FID_V(rdev->lldi.rxq_ids[0]));
  82. req->dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN_V(len>>5));
  83. req->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(req->wr), 16));
  84. req->lock_addr = cpu_to_be32(ULP_MEMIO_ADDR_V(addr));
  85. sgl = (struct ulptx_sgl *)(req + 1);
  86. sgl->cmd_nsge = cpu_to_be32(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
  87. ULPTX_NSGE_V(1));
  88. sgl->len0 = cpu_to_be32(len);
  89. sgl->addr0 = cpu_to_be64(data);
  90. ret = c4iw_ofld_send(rdev, skb);
  91. if (ret)
  92. return ret;
  93. if (wait)
  94. ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__);
  95. return ret;
  96. }
  97. static int _c4iw_write_mem_inline(struct c4iw_rdev *rdev, u32 addr, u32 len,
  98. void *data, struct sk_buff *skb)
  99. {
  100. struct ulp_mem_io *req;
  101. struct ulptx_idata *sc;
  102. u8 wr_len, *to_dp, *from_dp;
  103. int copy_len, num_wqe, i, ret = 0;
  104. struct c4iw_wr_wait wr_wait;
  105. __be32 cmd = cpu_to_be32(ULPTX_CMD_V(ULP_TX_MEM_WRITE));
  106. if (is_t4(rdev->lldi.adapter_type))
  107. cmd |= cpu_to_be32(ULP_MEMIO_ORDER_F);
  108. else
  109. cmd |= cpu_to_be32(T5_ULP_MEMIO_IMM_F);
  110. addr &= 0x7FFFFFF;
  111. pr_debug("%s addr 0x%x len %u\n", __func__, addr, len);
  112. num_wqe = DIV_ROUND_UP(len, C4IW_MAX_INLINE_SIZE);
  113. c4iw_init_wr_wait(&wr_wait);
  114. for (i = 0; i < num_wqe; i++) {
  115. copy_len = len > C4IW_MAX_INLINE_SIZE ? C4IW_MAX_INLINE_SIZE :
  116. len;
  117. wr_len = roundup(sizeof *req + sizeof *sc +
  118. roundup(copy_len, T4_ULPTX_MIN_IO), 16);
  119. if (!skb) {
  120. skb = alloc_skb(wr_len, GFP_KERNEL | __GFP_NOFAIL);
  121. if (!skb)
  122. return -ENOMEM;
  123. }
  124. set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
  125. req = __skb_put_zero(skb, wr_len);
  126. INIT_ULPTX_WR(req, wr_len, 0, 0);
  127. if (i == (num_wqe-1)) {
  128. req->wr.wr_hi = cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR) |
  129. FW_WR_COMPL_F);
  130. req->wr.wr_lo = (__force __be64)(unsigned long)&wr_wait;
  131. } else
  132. req->wr.wr_hi = cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR));
  133. req->wr.wr_mid = cpu_to_be32(
  134. FW_WR_LEN16_V(DIV_ROUND_UP(wr_len, 16)));
  135. req->cmd = cmd;
  136. req->dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN_V(
  137. DIV_ROUND_UP(copy_len, T4_ULPTX_MIN_IO)));
  138. req->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(req->wr),
  139. 16));
  140. req->lock_addr = cpu_to_be32(ULP_MEMIO_ADDR_V(addr + i * 3));
  141. sc = (struct ulptx_idata *)(req + 1);
  142. sc->cmd_more = cpu_to_be32(ULPTX_CMD_V(ULP_TX_SC_IMM));
  143. sc->len = cpu_to_be32(roundup(copy_len, T4_ULPTX_MIN_IO));
  144. to_dp = (u8 *)(sc + 1);
  145. from_dp = (u8 *)data + i * C4IW_MAX_INLINE_SIZE;
  146. if (data)
  147. memcpy(to_dp, from_dp, copy_len);
  148. else
  149. memset(to_dp, 0, copy_len);
  150. if (copy_len % T4_ULPTX_MIN_IO)
  151. memset(to_dp + copy_len, 0, T4_ULPTX_MIN_IO -
  152. (copy_len % T4_ULPTX_MIN_IO));
  153. ret = c4iw_ofld_send(rdev, skb);
  154. skb = NULL;
  155. if (ret)
  156. return ret;
  157. len -= C4IW_MAX_INLINE_SIZE;
  158. }
  159. ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__);
  160. return ret;
  161. }
  162. static int _c4iw_write_mem_dma(struct c4iw_rdev *rdev, u32 addr, u32 len,
  163. void *data, struct sk_buff *skb)
  164. {
  165. u32 remain = len;
  166. u32 dmalen;
  167. int ret = 0;
  168. dma_addr_t daddr;
  169. dma_addr_t save;
  170. daddr = dma_map_single(&rdev->lldi.pdev->dev, data, len, DMA_TO_DEVICE);
  171. if (dma_mapping_error(&rdev->lldi.pdev->dev, daddr))
  172. return -1;
  173. save = daddr;
  174. while (remain > inline_threshold) {
  175. if (remain < T4_ULPTX_MAX_DMA) {
  176. if (remain & ~T4_ULPTX_MIN_IO)
  177. dmalen = remain & ~(T4_ULPTX_MIN_IO-1);
  178. else
  179. dmalen = remain;
  180. } else
  181. dmalen = T4_ULPTX_MAX_DMA;
  182. remain -= dmalen;
  183. ret = _c4iw_write_mem_dma_aligned(rdev, addr, dmalen, daddr,
  184. !remain, skb);
  185. if (ret)
  186. goto out;
  187. addr += dmalen >> 5;
  188. data += dmalen;
  189. daddr += dmalen;
  190. }
  191. if (remain)
  192. ret = _c4iw_write_mem_inline(rdev, addr, remain, data, skb);
  193. out:
  194. dma_unmap_single(&rdev->lldi.pdev->dev, save, len, DMA_TO_DEVICE);
  195. return ret;
  196. }
  197. /*
  198. * write len bytes of data into addr (32B aligned address)
  199. * If data is NULL, clear len byte of memory to zero.
  200. */
  201. static int write_adapter_mem(struct c4iw_rdev *rdev, u32 addr, u32 len,
  202. void *data, struct sk_buff *skb)
  203. {
  204. if (rdev->lldi.ulptx_memwrite_dsgl && use_dsgl) {
  205. if (len > inline_threshold) {
  206. if (_c4iw_write_mem_dma(rdev, addr, len, data, skb)) {
  207. pr_warn_ratelimited("%s: dma map failure (non fatal)\n",
  208. pci_name(rdev->lldi.pdev));
  209. return _c4iw_write_mem_inline(rdev, addr, len,
  210. data, skb);
  211. } else {
  212. return 0;
  213. }
  214. } else
  215. return _c4iw_write_mem_inline(rdev, addr,
  216. len, data, skb);
  217. } else
  218. return _c4iw_write_mem_inline(rdev, addr, len, data, skb);
  219. }
  220. /*
  221. * Build and write a TPT entry.
  222. * IN: stag key, pdid, perm, bind_enabled, zbva, to, len, page_size,
  223. * pbl_size and pbl_addr
  224. * OUT: stag index
  225. */
  226. static int write_tpt_entry(struct c4iw_rdev *rdev, u32 reset_tpt_entry,
  227. u32 *stag, u8 stag_state, u32 pdid,
  228. enum fw_ri_stag_type type, enum fw_ri_mem_perms perm,
  229. int bind_enabled, u32 zbva, u64 to,
  230. u64 len, u8 page_size, u32 pbl_size, u32 pbl_addr,
  231. struct sk_buff *skb)
  232. {
  233. int err;
  234. struct fw_ri_tpte *tpt;
  235. u32 stag_idx;
  236. static atomic_t key;
  237. if (c4iw_fatal_error(rdev))
  238. return -EIO;
  239. tpt = kmalloc(sizeof(*tpt), GFP_KERNEL);
  240. if (!tpt)
  241. return -ENOMEM;
  242. stag_state = stag_state > 0;
  243. stag_idx = (*stag) >> 8;
  244. if ((!reset_tpt_entry) && (*stag == T4_STAG_UNSET)) {
  245. stag_idx = c4iw_get_resource(&rdev->resource.tpt_table);
  246. if (!stag_idx) {
  247. mutex_lock(&rdev->stats.lock);
  248. rdev->stats.stag.fail++;
  249. mutex_unlock(&rdev->stats.lock);
  250. kfree(tpt);
  251. return -ENOMEM;
  252. }
  253. mutex_lock(&rdev->stats.lock);
  254. rdev->stats.stag.cur += 32;
  255. if (rdev->stats.stag.cur > rdev->stats.stag.max)
  256. rdev->stats.stag.max = rdev->stats.stag.cur;
  257. mutex_unlock(&rdev->stats.lock);
  258. *stag = (stag_idx << 8) | (atomic_inc_return(&key) & 0xff);
  259. }
  260. pr_debug("%s stag_state 0x%0x type 0x%0x pdid 0x%0x, stag_idx 0x%x\n",
  261. __func__, stag_state, type, pdid, stag_idx);
  262. /* write TPT entry */
  263. if (reset_tpt_entry)
  264. memset(tpt, 0, sizeof(*tpt));
  265. else {
  266. tpt->valid_to_pdid = cpu_to_be32(FW_RI_TPTE_VALID_F |
  267. FW_RI_TPTE_STAGKEY_V((*stag & FW_RI_TPTE_STAGKEY_M)) |
  268. FW_RI_TPTE_STAGSTATE_V(stag_state) |
  269. FW_RI_TPTE_STAGTYPE_V(type) | FW_RI_TPTE_PDID_V(pdid));
  270. tpt->locread_to_qpid = cpu_to_be32(FW_RI_TPTE_PERM_V(perm) |
  271. (bind_enabled ? FW_RI_TPTE_MWBINDEN_F : 0) |
  272. FW_RI_TPTE_ADDRTYPE_V((zbva ? FW_RI_ZERO_BASED_TO :
  273. FW_RI_VA_BASED_TO))|
  274. FW_RI_TPTE_PS_V(page_size));
  275. tpt->nosnoop_pbladdr = !pbl_size ? 0 : cpu_to_be32(
  276. FW_RI_TPTE_PBLADDR_V(PBL_OFF(rdev, pbl_addr)>>3));
  277. tpt->len_lo = cpu_to_be32((u32)(len & 0xffffffffUL));
  278. tpt->va_hi = cpu_to_be32((u32)(to >> 32));
  279. tpt->va_lo_fbo = cpu_to_be32((u32)(to & 0xffffffffUL));
  280. tpt->dca_mwbcnt_pstag = cpu_to_be32(0);
  281. tpt->len_hi = cpu_to_be32((u32)(len >> 32));
  282. }
  283. err = write_adapter_mem(rdev, stag_idx +
  284. (rdev->lldi.vr->stag.start >> 5),
  285. sizeof(*tpt), tpt, skb);
  286. if (reset_tpt_entry) {
  287. c4iw_put_resource(&rdev->resource.tpt_table, stag_idx);
  288. mutex_lock(&rdev->stats.lock);
  289. rdev->stats.stag.cur -= 32;
  290. mutex_unlock(&rdev->stats.lock);
  291. }
  292. kfree(tpt);
  293. return err;
  294. }
  295. static int write_pbl(struct c4iw_rdev *rdev, __be64 *pbl,
  296. u32 pbl_addr, u32 pbl_size)
  297. {
  298. int err;
  299. pr_debug("%s *pdb_addr 0x%x, pbl_base 0x%x, pbl_size %d\n",
  300. __func__, pbl_addr, rdev->lldi.vr->pbl.start,
  301. pbl_size);
  302. err = write_adapter_mem(rdev, pbl_addr >> 5, pbl_size << 3, pbl, NULL);
  303. return err;
  304. }
  305. static int dereg_mem(struct c4iw_rdev *rdev, u32 stag, u32 pbl_size,
  306. u32 pbl_addr, struct sk_buff *skb)
  307. {
  308. return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0,
  309. pbl_size, pbl_addr, skb);
  310. }
  311. static int allocate_window(struct c4iw_rdev *rdev, u32 * stag, u32 pdid)
  312. {
  313. *stag = T4_STAG_UNSET;
  314. return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_MW, 0, 0, 0,
  315. 0UL, 0, 0, 0, 0, NULL);
  316. }
  317. static int deallocate_window(struct c4iw_rdev *rdev, u32 stag,
  318. struct sk_buff *skb)
  319. {
  320. return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0, 0,
  321. 0, skb);
  322. }
  323. static int allocate_stag(struct c4iw_rdev *rdev, u32 *stag, u32 pdid,
  324. u32 pbl_size, u32 pbl_addr)
  325. {
  326. *stag = T4_STAG_UNSET;
  327. return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_NSMR, 0, 0, 0,
  328. 0UL, 0, 0, pbl_size, pbl_addr, NULL);
  329. }
  330. static int finish_mem_reg(struct c4iw_mr *mhp, u32 stag)
  331. {
  332. u32 mmid;
  333. mhp->attr.state = 1;
  334. mhp->attr.stag = stag;
  335. mmid = stag >> 8;
  336. mhp->ibmr.rkey = mhp->ibmr.lkey = stag;
  337. pr_debug("%s mmid 0x%x mhp %p\n", __func__, mmid, mhp);
  338. return insert_handle(mhp->rhp, &mhp->rhp->mmidr, mhp, mmid);
  339. }
  340. static int register_mem(struct c4iw_dev *rhp, struct c4iw_pd *php,
  341. struct c4iw_mr *mhp, int shift)
  342. {
  343. u32 stag = T4_STAG_UNSET;
  344. int ret;
  345. ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, mhp->attr.pdid,
  346. FW_RI_STAG_NSMR, mhp->attr.len ?
  347. mhp->attr.perms : 0,
  348. mhp->attr.mw_bind_enable, mhp->attr.zbva,
  349. mhp->attr.va_fbo, mhp->attr.len ?
  350. mhp->attr.len : -1, shift - 12,
  351. mhp->attr.pbl_size, mhp->attr.pbl_addr, NULL);
  352. if (ret)
  353. return ret;
  354. ret = finish_mem_reg(mhp, stag);
  355. if (ret) {
  356. dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
  357. mhp->attr.pbl_addr, mhp->dereg_skb);
  358. mhp->dereg_skb = NULL;
  359. }
  360. return ret;
  361. }
  362. static int alloc_pbl(struct c4iw_mr *mhp, int npages)
  363. {
  364. mhp->attr.pbl_addr = c4iw_pblpool_alloc(&mhp->rhp->rdev,
  365. npages << 3);
  366. if (!mhp->attr.pbl_addr)
  367. return -ENOMEM;
  368. mhp->attr.pbl_size = npages;
  369. return 0;
  370. }
  371. struct ib_mr *c4iw_get_dma_mr(struct ib_pd *pd, int acc)
  372. {
  373. struct c4iw_dev *rhp;
  374. struct c4iw_pd *php;
  375. struct c4iw_mr *mhp;
  376. int ret;
  377. u32 stag = T4_STAG_UNSET;
  378. pr_debug("%s ib_pd %p\n", __func__, pd);
  379. php = to_c4iw_pd(pd);
  380. rhp = php->rhp;
  381. mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
  382. if (!mhp)
  383. return ERR_PTR(-ENOMEM);
  384. mhp->dereg_skb = alloc_skb(SGE_MAX_WR_LEN, GFP_KERNEL);
  385. if (!mhp->dereg_skb) {
  386. ret = -ENOMEM;
  387. goto err0;
  388. }
  389. mhp->rhp = rhp;
  390. mhp->attr.pdid = php->pdid;
  391. mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
  392. mhp->attr.mw_bind_enable = (acc&IB_ACCESS_MW_BIND) == IB_ACCESS_MW_BIND;
  393. mhp->attr.zbva = 0;
  394. mhp->attr.va_fbo = 0;
  395. mhp->attr.page_size = 0;
  396. mhp->attr.len = ~0ULL;
  397. mhp->attr.pbl_size = 0;
  398. ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, php->pdid,
  399. FW_RI_STAG_NSMR, mhp->attr.perms,
  400. mhp->attr.mw_bind_enable, 0, 0, ~0ULL, 0, 0, 0,
  401. NULL);
  402. if (ret)
  403. goto err1;
  404. ret = finish_mem_reg(mhp, stag);
  405. if (ret)
  406. goto err2;
  407. return &mhp->ibmr;
  408. err2:
  409. dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
  410. mhp->attr.pbl_addr, mhp->dereg_skb);
  411. err1:
  412. kfree_skb(mhp->dereg_skb);
  413. err0:
  414. kfree(mhp);
  415. return ERR_PTR(ret);
  416. }
  417. struct ib_mr *c4iw_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
  418. u64 virt, int acc, struct ib_udata *udata)
  419. {
  420. __be64 *pages;
  421. int shift, n, len;
  422. int i, k, entry;
  423. int err = 0;
  424. struct scatterlist *sg;
  425. struct c4iw_dev *rhp;
  426. struct c4iw_pd *php;
  427. struct c4iw_mr *mhp;
  428. pr_debug("%s ib_pd %p\n", __func__, pd);
  429. if (length == ~0ULL)
  430. return ERR_PTR(-EINVAL);
  431. if ((length + start) < start)
  432. return ERR_PTR(-EINVAL);
  433. php = to_c4iw_pd(pd);
  434. rhp = php->rhp;
  435. if (mr_exceeds_hw_limits(rhp, length))
  436. return ERR_PTR(-EINVAL);
  437. mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
  438. if (!mhp)
  439. return ERR_PTR(-ENOMEM);
  440. mhp->dereg_skb = alloc_skb(SGE_MAX_WR_LEN, GFP_KERNEL);
  441. if (!mhp->dereg_skb) {
  442. kfree(mhp);
  443. return ERR_PTR(-ENOMEM);
  444. }
  445. mhp->rhp = rhp;
  446. mhp->umem = ib_umem_get(pd->uobject->context, start, length, acc, 0);
  447. if (IS_ERR(mhp->umem)) {
  448. err = PTR_ERR(mhp->umem);
  449. kfree_skb(mhp->dereg_skb);
  450. kfree(mhp);
  451. return ERR_PTR(err);
  452. }
  453. shift = mhp->umem->page_shift;
  454. n = mhp->umem->nmap;
  455. err = alloc_pbl(mhp, n);
  456. if (err)
  457. goto err;
  458. pages = (__be64 *) __get_free_page(GFP_KERNEL);
  459. if (!pages) {
  460. err = -ENOMEM;
  461. goto err_pbl;
  462. }
  463. i = n = 0;
  464. for_each_sg(mhp->umem->sg_head.sgl, sg, mhp->umem->nmap, entry) {
  465. len = sg_dma_len(sg) >> shift;
  466. for (k = 0; k < len; ++k) {
  467. pages[i++] = cpu_to_be64(sg_dma_address(sg) +
  468. (k << shift));
  469. if (i == PAGE_SIZE / sizeof *pages) {
  470. err = write_pbl(&mhp->rhp->rdev,
  471. pages,
  472. mhp->attr.pbl_addr + (n << 3), i);
  473. if (err)
  474. goto pbl_done;
  475. n += i;
  476. i = 0;
  477. }
  478. }
  479. }
  480. if (i)
  481. err = write_pbl(&mhp->rhp->rdev, pages,
  482. mhp->attr.pbl_addr + (n << 3), i);
  483. pbl_done:
  484. free_page((unsigned long) pages);
  485. if (err)
  486. goto err_pbl;
  487. mhp->attr.pdid = php->pdid;
  488. mhp->attr.zbva = 0;
  489. mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
  490. mhp->attr.va_fbo = virt;
  491. mhp->attr.page_size = shift - 12;
  492. mhp->attr.len = length;
  493. err = register_mem(rhp, php, mhp, shift);
  494. if (err)
  495. goto err_pbl;
  496. return &mhp->ibmr;
  497. err_pbl:
  498. c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
  499. mhp->attr.pbl_size << 3);
  500. err:
  501. ib_umem_release(mhp->umem);
  502. kfree_skb(mhp->dereg_skb);
  503. kfree(mhp);
  504. return ERR_PTR(err);
  505. }
  506. struct ib_mw *c4iw_alloc_mw(struct ib_pd *pd, enum ib_mw_type type,
  507. struct ib_udata *udata)
  508. {
  509. struct c4iw_dev *rhp;
  510. struct c4iw_pd *php;
  511. struct c4iw_mw *mhp;
  512. u32 mmid;
  513. u32 stag = 0;
  514. int ret;
  515. if (type != IB_MW_TYPE_1)
  516. return ERR_PTR(-EINVAL);
  517. php = to_c4iw_pd(pd);
  518. rhp = php->rhp;
  519. mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
  520. if (!mhp)
  521. return ERR_PTR(-ENOMEM);
  522. mhp->dereg_skb = alloc_skb(SGE_MAX_WR_LEN, GFP_KERNEL);
  523. if (!mhp->dereg_skb) {
  524. ret = -ENOMEM;
  525. goto free_mhp;
  526. }
  527. ret = allocate_window(&rhp->rdev, &stag, php->pdid);
  528. if (ret)
  529. goto free_skb;
  530. mhp->rhp = rhp;
  531. mhp->attr.pdid = php->pdid;
  532. mhp->attr.type = FW_RI_STAG_MW;
  533. mhp->attr.stag = stag;
  534. mmid = (stag) >> 8;
  535. mhp->ibmw.rkey = stag;
  536. if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) {
  537. ret = -ENOMEM;
  538. goto dealloc_win;
  539. }
  540. pr_debug("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag);
  541. return &(mhp->ibmw);
  542. dealloc_win:
  543. deallocate_window(&rhp->rdev, mhp->attr.stag, mhp->dereg_skb);
  544. free_skb:
  545. kfree_skb(mhp->dereg_skb);
  546. free_mhp:
  547. kfree(mhp);
  548. return ERR_PTR(ret);
  549. }
  550. int c4iw_dealloc_mw(struct ib_mw *mw)
  551. {
  552. struct c4iw_dev *rhp;
  553. struct c4iw_mw *mhp;
  554. u32 mmid;
  555. mhp = to_c4iw_mw(mw);
  556. rhp = mhp->rhp;
  557. mmid = (mw->rkey) >> 8;
  558. remove_handle(rhp, &rhp->mmidr, mmid);
  559. deallocate_window(&rhp->rdev, mhp->attr.stag, mhp->dereg_skb);
  560. kfree_skb(mhp->dereg_skb);
  561. kfree(mhp);
  562. pr_debug("%s ib_mw %p mmid 0x%x ptr %p\n", __func__, mw, mmid, mhp);
  563. return 0;
  564. }
  565. struct ib_mr *c4iw_alloc_mr(struct ib_pd *pd,
  566. enum ib_mr_type mr_type,
  567. u32 max_num_sg)
  568. {
  569. struct c4iw_dev *rhp;
  570. struct c4iw_pd *php;
  571. struct c4iw_mr *mhp;
  572. u32 mmid;
  573. u32 stag = 0;
  574. int ret = 0;
  575. int length = roundup(max_num_sg * sizeof(u64), 32);
  576. php = to_c4iw_pd(pd);
  577. rhp = php->rhp;
  578. if (mr_type != IB_MR_TYPE_MEM_REG ||
  579. max_num_sg > t4_max_fr_depth(rhp->rdev.lldi.ulptx_memwrite_dsgl &&
  580. use_dsgl))
  581. return ERR_PTR(-EINVAL);
  582. mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
  583. if (!mhp) {
  584. ret = -ENOMEM;
  585. goto err;
  586. }
  587. mhp->mpl = dma_alloc_coherent(&rhp->rdev.lldi.pdev->dev,
  588. length, &mhp->mpl_addr, GFP_KERNEL);
  589. if (!mhp->mpl) {
  590. ret = -ENOMEM;
  591. goto err_mpl;
  592. }
  593. mhp->max_mpl_len = length;
  594. mhp->rhp = rhp;
  595. ret = alloc_pbl(mhp, max_num_sg);
  596. if (ret)
  597. goto err1;
  598. mhp->attr.pbl_size = max_num_sg;
  599. ret = allocate_stag(&rhp->rdev, &stag, php->pdid,
  600. mhp->attr.pbl_size, mhp->attr.pbl_addr);
  601. if (ret)
  602. goto err2;
  603. mhp->attr.pdid = php->pdid;
  604. mhp->attr.type = FW_RI_STAG_NSMR;
  605. mhp->attr.stag = stag;
  606. mhp->attr.state = 0;
  607. mmid = (stag) >> 8;
  608. mhp->ibmr.rkey = mhp->ibmr.lkey = stag;
  609. if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) {
  610. ret = -ENOMEM;
  611. goto err3;
  612. }
  613. pr_debug("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag);
  614. return &(mhp->ibmr);
  615. err3:
  616. dereg_mem(&rhp->rdev, stag, mhp->attr.pbl_size,
  617. mhp->attr.pbl_addr, mhp->dereg_skb);
  618. err2:
  619. c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
  620. mhp->attr.pbl_size << 3);
  621. err1:
  622. dma_free_coherent(&mhp->rhp->rdev.lldi.pdev->dev,
  623. mhp->max_mpl_len, mhp->mpl, mhp->mpl_addr);
  624. err_mpl:
  625. kfree(mhp);
  626. err:
  627. return ERR_PTR(ret);
  628. }
  629. static int c4iw_set_page(struct ib_mr *ibmr, u64 addr)
  630. {
  631. struct c4iw_mr *mhp = to_c4iw_mr(ibmr);
  632. if (unlikely(mhp->mpl_len == mhp->attr.pbl_size))
  633. return -ENOMEM;
  634. mhp->mpl[mhp->mpl_len++] = addr;
  635. return 0;
  636. }
  637. int c4iw_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
  638. unsigned int *sg_offset)
  639. {
  640. struct c4iw_mr *mhp = to_c4iw_mr(ibmr);
  641. mhp->mpl_len = 0;
  642. return ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, c4iw_set_page);
  643. }
  644. int c4iw_dereg_mr(struct ib_mr *ib_mr)
  645. {
  646. struct c4iw_dev *rhp;
  647. struct c4iw_mr *mhp;
  648. u32 mmid;
  649. pr_debug("%s ib_mr %p\n", __func__, ib_mr);
  650. mhp = to_c4iw_mr(ib_mr);
  651. rhp = mhp->rhp;
  652. mmid = mhp->attr.stag >> 8;
  653. remove_handle(rhp, &rhp->mmidr, mmid);
  654. if (mhp->mpl)
  655. dma_free_coherent(&mhp->rhp->rdev.lldi.pdev->dev,
  656. mhp->max_mpl_len, mhp->mpl, mhp->mpl_addr);
  657. dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
  658. mhp->attr.pbl_addr, mhp->dereg_skb);
  659. if (mhp->attr.pbl_size)
  660. c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
  661. mhp->attr.pbl_size << 3);
  662. if (mhp->kva)
  663. kfree((void *) (unsigned long) mhp->kva);
  664. if (mhp->umem)
  665. ib_umem_release(mhp->umem);
  666. pr_debug("%s mmid 0x%x ptr %p\n", __func__, mmid, mhp);
  667. kfree(mhp);
  668. return 0;
  669. }
  670. void c4iw_invalidate_mr(struct c4iw_dev *rhp, u32 rkey)
  671. {
  672. struct c4iw_mr *mhp;
  673. unsigned long flags;
  674. spin_lock_irqsave(&rhp->lock, flags);
  675. mhp = get_mhp(rhp, rkey >> 8);
  676. if (mhp)
  677. mhp->attr.state = 0;
  678. spin_unlock_irqrestore(&rhp->lock, flags);
  679. }