verbs.c 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270
  1. /*
  2. * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
  3. * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
  4. * Copyright (c) 2004 Intel Corporation. All rights reserved.
  5. * Copyright (c) 2004 Topspin Corporation. All rights reserved.
  6. * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
  7. * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
  8. * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
  9. *
  10. * This software is available to you under a choice of one of two
  11. * licenses. You may choose to be licensed under the terms of the GNU
  12. * General Public License (GPL) Version 2, available from the file
  13. * COPYING in the main directory of this source tree, or the
  14. * OpenIB.org BSD license below:
  15. *
  16. * Redistribution and use in source and binary forms, with or
  17. * without modification, are permitted provided that the following
  18. * conditions are met:
  19. *
  20. * - Redistributions of source code must retain the above
  21. * copyright notice, this list of conditions and the following
  22. * disclaimer.
  23. *
  24. * - Redistributions in binary form must reproduce the above
  25. * copyright notice, this list of conditions and the following
  26. * disclaimer in the documentation and/or other materials
  27. * provided with the distribution.
  28. *
  29. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  30. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  31. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  32. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  33. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  34. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  35. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  36. * SOFTWARE.
  37. */
  38. #include <linux/errno.h>
  39. #include <linux/err.h>
  40. #include <linux/export.h>
  41. #include <linux/string.h>
  42. #include <linux/slab.h>
  43. #include <linux/in.h>
  44. #include <linux/in6.h>
  45. #include <net/addrconf.h>
  46. #include <linux/security.h>
  47. #include <rdma/ib_verbs.h>
  48. #include <rdma/ib_cache.h>
  49. #include <rdma/ib_addr.h>
  50. #include <rdma/rw.h>
  51. #include "core_priv.h"
  52. static const char * const ib_events[] = {
  53. [IB_EVENT_CQ_ERR] = "CQ error",
  54. [IB_EVENT_QP_FATAL] = "QP fatal error",
  55. [IB_EVENT_QP_REQ_ERR] = "QP request error",
  56. [IB_EVENT_QP_ACCESS_ERR] = "QP access error",
  57. [IB_EVENT_COMM_EST] = "communication established",
  58. [IB_EVENT_SQ_DRAINED] = "send queue drained",
  59. [IB_EVENT_PATH_MIG] = "path migration successful",
  60. [IB_EVENT_PATH_MIG_ERR] = "path migration error",
  61. [IB_EVENT_DEVICE_FATAL] = "device fatal error",
  62. [IB_EVENT_PORT_ACTIVE] = "port active",
  63. [IB_EVENT_PORT_ERR] = "port error",
  64. [IB_EVENT_LID_CHANGE] = "LID change",
  65. [IB_EVENT_PKEY_CHANGE] = "P_key change",
  66. [IB_EVENT_SM_CHANGE] = "SM change",
  67. [IB_EVENT_SRQ_ERR] = "SRQ error",
  68. [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached",
  69. [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached",
  70. [IB_EVENT_CLIENT_REREGISTER] = "client reregister",
  71. [IB_EVENT_GID_CHANGE] = "GID changed",
  72. };
  73. const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
  74. {
  75. size_t index = event;
  76. return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
  77. ib_events[index] : "unrecognized event";
  78. }
  79. EXPORT_SYMBOL(ib_event_msg);
  80. static const char * const wc_statuses[] = {
  81. [IB_WC_SUCCESS] = "success",
  82. [IB_WC_LOC_LEN_ERR] = "local length error",
  83. [IB_WC_LOC_QP_OP_ERR] = "local QP operation error",
  84. [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error",
  85. [IB_WC_LOC_PROT_ERR] = "local protection error",
  86. [IB_WC_WR_FLUSH_ERR] = "WR flushed",
  87. [IB_WC_MW_BIND_ERR] = "memory management operation error",
  88. [IB_WC_BAD_RESP_ERR] = "bad response error",
  89. [IB_WC_LOC_ACCESS_ERR] = "local access error",
  90. [IB_WC_REM_INV_REQ_ERR] = "invalid request error",
  91. [IB_WC_REM_ACCESS_ERR] = "remote access error",
  92. [IB_WC_REM_OP_ERR] = "remote operation error",
  93. [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded",
  94. [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded",
  95. [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error",
  96. [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request",
  97. [IB_WC_REM_ABORT_ERR] = "operation aborted",
  98. [IB_WC_INV_EECN_ERR] = "invalid EE context number",
  99. [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state",
  100. [IB_WC_FATAL_ERR] = "fatal error",
  101. [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error",
  102. [IB_WC_GENERAL_ERR] = "general error",
  103. };
  104. const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
  105. {
  106. size_t index = status;
  107. return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
  108. wc_statuses[index] : "unrecognized status";
  109. }
  110. EXPORT_SYMBOL(ib_wc_status_msg);
  111. __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
  112. {
  113. switch (rate) {
  114. case IB_RATE_2_5_GBPS: return 1;
  115. case IB_RATE_5_GBPS: return 2;
  116. case IB_RATE_10_GBPS: return 4;
  117. case IB_RATE_20_GBPS: return 8;
  118. case IB_RATE_30_GBPS: return 12;
  119. case IB_RATE_40_GBPS: return 16;
  120. case IB_RATE_60_GBPS: return 24;
  121. case IB_RATE_80_GBPS: return 32;
  122. case IB_RATE_120_GBPS: return 48;
  123. default: return -1;
  124. }
  125. }
  126. EXPORT_SYMBOL(ib_rate_to_mult);
  127. __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
  128. {
  129. switch (mult) {
  130. case 1: return IB_RATE_2_5_GBPS;
  131. case 2: return IB_RATE_5_GBPS;
  132. case 4: return IB_RATE_10_GBPS;
  133. case 8: return IB_RATE_20_GBPS;
  134. case 12: return IB_RATE_30_GBPS;
  135. case 16: return IB_RATE_40_GBPS;
  136. case 24: return IB_RATE_60_GBPS;
  137. case 32: return IB_RATE_80_GBPS;
  138. case 48: return IB_RATE_120_GBPS;
  139. default: return IB_RATE_PORT_CURRENT;
  140. }
  141. }
  142. EXPORT_SYMBOL(mult_to_ib_rate);
  143. __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
  144. {
  145. switch (rate) {
  146. case IB_RATE_2_5_GBPS: return 2500;
  147. case IB_RATE_5_GBPS: return 5000;
  148. case IB_RATE_10_GBPS: return 10000;
  149. case IB_RATE_20_GBPS: return 20000;
  150. case IB_RATE_30_GBPS: return 30000;
  151. case IB_RATE_40_GBPS: return 40000;
  152. case IB_RATE_60_GBPS: return 60000;
  153. case IB_RATE_80_GBPS: return 80000;
  154. case IB_RATE_120_GBPS: return 120000;
  155. case IB_RATE_14_GBPS: return 14062;
  156. case IB_RATE_56_GBPS: return 56250;
  157. case IB_RATE_112_GBPS: return 112500;
  158. case IB_RATE_168_GBPS: return 168750;
  159. case IB_RATE_25_GBPS: return 25781;
  160. case IB_RATE_100_GBPS: return 103125;
  161. case IB_RATE_200_GBPS: return 206250;
  162. case IB_RATE_300_GBPS: return 309375;
  163. default: return -1;
  164. }
  165. }
  166. EXPORT_SYMBOL(ib_rate_to_mbps);
  167. __attribute_const__ enum rdma_transport_type
  168. rdma_node_get_transport(enum rdma_node_type node_type)
  169. {
  170. if (node_type == RDMA_NODE_USNIC)
  171. return RDMA_TRANSPORT_USNIC;
  172. if (node_type == RDMA_NODE_USNIC_UDP)
  173. return RDMA_TRANSPORT_USNIC_UDP;
  174. if (node_type == RDMA_NODE_RNIC)
  175. return RDMA_TRANSPORT_IWARP;
  176. return RDMA_TRANSPORT_IB;
  177. }
  178. EXPORT_SYMBOL(rdma_node_get_transport);
  179. enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
  180. {
  181. enum rdma_transport_type lt;
  182. if (device->get_link_layer)
  183. return device->get_link_layer(device, port_num);
  184. lt = rdma_node_get_transport(device->node_type);
  185. if (lt == RDMA_TRANSPORT_IB)
  186. return IB_LINK_LAYER_INFINIBAND;
  187. return IB_LINK_LAYER_ETHERNET;
  188. }
  189. EXPORT_SYMBOL(rdma_port_get_link_layer);
  190. /* Protection domains */
  191. /**
  192. * ib_alloc_pd - Allocates an unused protection domain.
  193. * @device: The device on which to allocate the protection domain.
  194. *
  195. * A protection domain object provides an association between QPs, shared
  196. * receive queues, address handles, memory regions, and memory windows.
  197. *
  198. * Every PD has a local_dma_lkey which can be used as the lkey value for local
  199. * memory operations.
  200. */
  201. struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
  202. const char *caller)
  203. {
  204. struct ib_pd *pd;
  205. int mr_access_flags = 0;
  206. pd = device->alloc_pd(device, NULL, NULL);
  207. if (IS_ERR(pd))
  208. return pd;
  209. pd->device = device;
  210. pd->uobject = NULL;
  211. pd->__internal_mr = NULL;
  212. atomic_set(&pd->usecnt, 0);
  213. pd->flags = flags;
  214. if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
  215. pd->local_dma_lkey = device->local_dma_lkey;
  216. else
  217. mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
  218. if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
  219. pr_warn("%s: enabling unsafe global rkey\n", caller);
  220. mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
  221. }
  222. if (mr_access_flags) {
  223. struct ib_mr *mr;
  224. mr = pd->device->get_dma_mr(pd, mr_access_flags);
  225. if (IS_ERR(mr)) {
  226. ib_dealloc_pd(pd);
  227. return ERR_CAST(mr);
  228. }
  229. mr->device = pd->device;
  230. mr->pd = pd;
  231. mr->uobject = NULL;
  232. mr->need_inval = false;
  233. pd->__internal_mr = mr;
  234. if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
  235. pd->local_dma_lkey = pd->__internal_mr->lkey;
  236. if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
  237. pd->unsafe_global_rkey = pd->__internal_mr->rkey;
  238. }
  239. return pd;
  240. }
  241. EXPORT_SYMBOL(__ib_alloc_pd);
  242. /**
  243. * ib_dealloc_pd - Deallocates a protection domain.
  244. * @pd: The protection domain to deallocate.
  245. *
  246. * It is an error to call this function while any resources in the pd still
  247. * exist. The caller is responsible to synchronously destroy them and
  248. * guarantee no new allocations will happen.
  249. */
  250. void ib_dealloc_pd(struct ib_pd *pd)
  251. {
  252. int ret;
  253. if (pd->__internal_mr) {
  254. ret = pd->device->dereg_mr(pd->__internal_mr);
  255. WARN_ON(ret);
  256. pd->__internal_mr = NULL;
  257. }
  258. /* uverbs manipulates usecnt with proper locking, while the kabi
  259. requires the caller to guarantee we can't race here. */
  260. WARN_ON(atomic_read(&pd->usecnt));
  261. /* Making delalloc_pd a void return is a WIP, no driver should return
  262. an error here. */
  263. ret = pd->device->dealloc_pd(pd);
  264. WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
  265. }
  266. EXPORT_SYMBOL(ib_dealloc_pd);
  267. /* Address handles */
  268. struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr)
  269. {
  270. struct ib_ah *ah;
  271. ah = pd->device->create_ah(pd, ah_attr, NULL);
  272. if (!IS_ERR(ah)) {
  273. ah->device = pd->device;
  274. ah->pd = pd;
  275. ah->uobject = NULL;
  276. ah->type = ah_attr->type;
  277. atomic_inc(&pd->usecnt);
  278. }
  279. return ah;
  280. }
  281. EXPORT_SYMBOL(rdma_create_ah);
  282. int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
  283. {
  284. const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
  285. struct iphdr ip4h_checked;
  286. const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
  287. /* If it's IPv6, the version must be 6, otherwise, the first
  288. * 20 bytes (before the IPv4 header) are garbled.
  289. */
  290. if (ip6h->version != 6)
  291. return (ip4h->version == 4) ? 4 : 0;
  292. /* version may be 6 or 4 because the first 20 bytes could be garbled */
  293. /* RoCE v2 requires no options, thus header length
  294. * must be 5 words
  295. */
  296. if (ip4h->ihl != 5)
  297. return 6;
  298. /* Verify checksum.
  299. * We can't write on scattered buffers so we need to copy to
  300. * temp buffer.
  301. */
  302. memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
  303. ip4h_checked.check = 0;
  304. ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
  305. /* if IPv4 header checksum is OK, believe it */
  306. if (ip4h->check == ip4h_checked.check)
  307. return 4;
  308. return 6;
  309. }
  310. EXPORT_SYMBOL(ib_get_rdma_header_version);
  311. static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
  312. u8 port_num,
  313. const struct ib_grh *grh)
  314. {
  315. int grh_version;
  316. if (rdma_protocol_ib(device, port_num))
  317. return RDMA_NETWORK_IB;
  318. grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
  319. if (grh_version == 4)
  320. return RDMA_NETWORK_IPV4;
  321. if (grh->next_hdr == IPPROTO_UDP)
  322. return RDMA_NETWORK_IPV6;
  323. return RDMA_NETWORK_ROCE_V1;
  324. }
  325. struct find_gid_index_context {
  326. u16 vlan_id;
  327. enum ib_gid_type gid_type;
  328. };
  329. static bool find_gid_index(const union ib_gid *gid,
  330. const struct ib_gid_attr *gid_attr,
  331. void *context)
  332. {
  333. struct find_gid_index_context *ctx =
  334. (struct find_gid_index_context *)context;
  335. if (ctx->gid_type != gid_attr->gid_type)
  336. return false;
  337. if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
  338. (is_vlan_dev(gid_attr->ndev) &&
  339. vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
  340. return false;
  341. return true;
  342. }
  343. static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
  344. u16 vlan_id, const union ib_gid *sgid,
  345. enum ib_gid_type gid_type,
  346. u16 *gid_index)
  347. {
  348. struct find_gid_index_context context = {.vlan_id = vlan_id,
  349. .gid_type = gid_type};
  350. return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
  351. &context, gid_index);
  352. }
  353. int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
  354. enum rdma_network_type net_type,
  355. union ib_gid *sgid, union ib_gid *dgid)
  356. {
  357. struct sockaddr_in src_in;
  358. struct sockaddr_in dst_in;
  359. __be32 src_saddr, dst_saddr;
  360. if (!sgid || !dgid)
  361. return -EINVAL;
  362. if (net_type == RDMA_NETWORK_IPV4) {
  363. memcpy(&src_in.sin_addr.s_addr,
  364. &hdr->roce4grh.saddr, 4);
  365. memcpy(&dst_in.sin_addr.s_addr,
  366. &hdr->roce4grh.daddr, 4);
  367. src_saddr = src_in.sin_addr.s_addr;
  368. dst_saddr = dst_in.sin_addr.s_addr;
  369. ipv6_addr_set_v4mapped(src_saddr,
  370. (struct in6_addr *)sgid);
  371. ipv6_addr_set_v4mapped(dst_saddr,
  372. (struct in6_addr *)dgid);
  373. return 0;
  374. } else if (net_type == RDMA_NETWORK_IPV6 ||
  375. net_type == RDMA_NETWORK_IB) {
  376. *dgid = hdr->ibgrh.dgid;
  377. *sgid = hdr->ibgrh.sgid;
  378. return 0;
  379. } else {
  380. return -EINVAL;
  381. }
  382. }
  383. EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
  384. /*
  385. * This function creates ah from the incoming packet.
  386. * Incoming packet has dgid of the receiver node on which this code is
  387. * getting executed and, sgid contains the GID of the sender.
  388. *
  389. * When resolving mac address of destination, the arrived dgid is used
  390. * as sgid and, sgid is used as dgid because sgid contains destinations
  391. * GID whom to respond to.
  392. *
  393. * This is why when calling rdma_addr_find_l2_eth_by_grh() function, the
  394. * position of arguments dgid and sgid do not match the order of the
  395. * parameters.
  396. */
  397. int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
  398. const struct ib_wc *wc, const struct ib_grh *grh,
  399. struct rdma_ah_attr *ah_attr)
  400. {
  401. u32 flow_class;
  402. u16 gid_index;
  403. int ret;
  404. enum rdma_network_type net_type = RDMA_NETWORK_IB;
  405. enum ib_gid_type gid_type = IB_GID_TYPE_IB;
  406. int hoplimit = 0xff;
  407. union ib_gid dgid;
  408. union ib_gid sgid;
  409. might_sleep();
  410. memset(ah_attr, 0, sizeof *ah_attr);
  411. ah_attr->type = rdma_ah_find_type(device, port_num);
  412. if (rdma_cap_eth_ah(device, port_num)) {
  413. if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
  414. net_type = wc->network_hdr_type;
  415. else
  416. net_type = ib_get_net_type_by_grh(device, port_num, grh);
  417. gid_type = ib_network_to_gid_type(net_type);
  418. }
  419. ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
  420. &sgid, &dgid);
  421. if (ret)
  422. return ret;
  423. if (rdma_protocol_roce(device, port_num)) {
  424. int if_index = 0;
  425. u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
  426. wc->vlan_id : 0xffff;
  427. struct net_device *idev;
  428. struct net_device *resolved_dev;
  429. if (!(wc->wc_flags & IB_WC_GRH))
  430. return -EPROTOTYPE;
  431. if (!device->get_netdev)
  432. return -EOPNOTSUPP;
  433. idev = device->get_netdev(device, port_num);
  434. if (!idev)
  435. return -ENODEV;
  436. ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
  437. ah_attr->roce.dmac,
  438. wc->wc_flags & IB_WC_WITH_VLAN ?
  439. NULL : &vlan_id,
  440. &if_index, &hoplimit);
  441. if (ret) {
  442. dev_put(idev);
  443. return ret;
  444. }
  445. resolved_dev = dev_get_by_index(&init_net, if_index);
  446. rcu_read_lock();
  447. if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
  448. resolved_dev))
  449. ret = -EHOSTUNREACH;
  450. rcu_read_unlock();
  451. dev_put(idev);
  452. dev_put(resolved_dev);
  453. if (ret)
  454. return ret;
  455. ret = get_sgid_index_from_eth(device, port_num, vlan_id,
  456. &dgid, gid_type, &gid_index);
  457. if (ret)
  458. return ret;
  459. }
  460. rdma_ah_set_dlid(ah_attr, wc->slid);
  461. rdma_ah_set_sl(ah_attr, wc->sl);
  462. rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
  463. rdma_ah_set_port_num(ah_attr, port_num);
  464. if (wc->wc_flags & IB_WC_GRH) {
  465. if (!rdma_cap_eth_ah(device, port_num)) {
  466. if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
  467. ret = ib_find_cached_gid_by_port(device, &dgid,
  468. IB_GID_TYPE_IB,
  469. port_num, NULL,
  470. &gid_index);
  471. if (ret)
  472. return ret;
  473. } else {
  474. gid_index = 0;
  475. }
  476. }
  477. flow_class = be32_to_cpu(grh->version_tclass_flow);
  478. rdma_ah_set_grh(ah_attr, &sgid,
  479. flow_class & 0xFFFFF,
  480. (u8)gid_index, hoplimit,
  481. (flow_class >> 20) & 0xFF);
  482. }
  483. return 0;
  484. }
  485. EXPORT_SYMBOL(ib_init_ah_from_wc);
  486. struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
  487. const struct ib_grh *grh, u8 port_num)
  488. {
  489. struct rdma_ah_attr ah_attr;
  490. int ret;
  491. ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
  492. if (ret)
  493. return ERR_PTR(ret);
  494. return rdma_create_ah(pd, &ah_attr);
  495. }
  496. EXPORT_SYMBOL(ib_create_ah_from_wc);
  497. int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
  498. {
  499. if (ah->type != ah_attr->type)
  500. return -EINVAL;
  501. return ah->device->modify_ah ?
  502. ah->device->modify_ah(ah, ah_attr) :
  503. -ENOSYS;
  504. }
  505. EXPORT_SYMBOL(rdma_modify_ah);
  506. int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
  507. {
  508. return ah->device->query_ah ?
  509. ah->device->query_ah(ah, ah_attr) :
  510. -ENOSYS;
  511. }
  512. EXPORT_SYMBOL(rdma_query_ah);
  513. int rdma_destroy_ah(struct ib_ah *ah)
  514. {
  515. struct ib_pd *pd;
  516. int ret;
  517. pd = ah->pd;
  518. ret = ah->device->destroy_ah(ah);
  519. if (!ret)
  520. atomic_dec(&pd->usecnt);
  521. return ret;
  522. }
  523. EXPORT_SYMBOL(rdma_destroy_ah);
  524. /* Shared receive queues */
  525. struct ib_srq *ib_create_srq(struct ib_pd *pd,
  526. struct ib_srq_init_attr *srq_init_attr)
  527. {
  528. struct ib_srq *srq;
  529. if (!pd->device->create_srq)
  530. return ERR_PTR(-ENOSYS);
  531. srq = pd->device->create_srq(pd, srq_init_attr, NULL);
  532. if (!IS_ERR(srq)) {
  533. srq->device = pd->device;
  534. srq->pd = pd;
  535. srq->uobject = NULL;
  536. srq->event_handler = srq_init_attr->event_handler;
  537. srq->srq_context = srq_init_attr->srq_context;
  538. srq->srq_type = srq_init_attr->srq_type;
  539. if (ib_srq_has_cq(srq->srq_type)) {
  540. srq->ext.cq = srq_init_attr->ext.cq;
  541. atomic_inc(&srq->ext.cq->usecnt);
  542. }
  543. if (srq->srq_type == IB_SRQT_XRC) {
  544. srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
  545. atomic_inc(&srq->ext.xrc.xrcd->usecnt);
  546. }
  547. atomic_inc(&pd->usecnt);
  548. atomic_set(&srq->usecnt, 0);
  549. }
  550. return srq;
  551. }
  552. EXPORT_SYMBOL(ib_create_srq);
  553. int ib_modify_srq(struct ib_srq *srq,
  554. struct ib_srq_attr *srq_attr,
  555. enum ib_srq_attr_mask srq_attr_mask)
  556. {
  557. return srq->device->modify_srq ?
  558. srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
  559. -ENOSYS;
  560. }
  561. EXPORT_SYMBOL(ib_modify_srq);
  562. int ib_query_srq(struct ib_srq *srq,
  563. struct ib_srq_attr *srq_attr)
  564. {
  565. return srq->device->query_srq ?
  566. srq->device->query_srq(srq, srq_attr) : -ENOSYS;
  567. }
  568. EXPORT_SYMBOL(ib_query_srq);
  569. int ib_destroy_srq(struct ib_srq *srq)
  570. {
  571. struct ib_pd *pd;
  572. enum ib_srq_type srq_type;
  573. struct ib_xrcd *uninitialized_var(xrcd);
  574. struct ib_cq *uninitialized_var(cq);
  575. int ret;
  576. if (atomic_read(&srq->usecnt))
  577. return -EBUSY;
  578. pd = srq->pd;
  579. srq_type = srq->srq_type;
  580. if (ib_srq_has_cq(srq_type))
  581. cq = srq->ext.cq;
  582. if (srq_type == IB_SRQT_XRC)
  583. xrcd = srq->ext.xrc.xrcd;
  584. ret = srq->device->destroy_srq(srq);
  585. if (!ret) {
  586. atomic_dec(&pd->usecnt);
  587. if (srq_type == IB_SRQT_XRC)
  588. atomic_dec(&xrcd->usecnt);
  589. if (ib_srq_has_cq(srq_type))
  590. atomic_dec(&cq->usecnt);
  591. }
  592. return ret;
  593. }
  594. EXPORT_SYMBOL(ib_destroy_srq);
  595. /* Queue pairs */
  596. static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
  597. {
  598. struct ib_qp *qp = context;
  599. unsigned long flags;
  600. spin_lock_irqsave(&qp->device->event_handler_lock, flags);
  601. list_for_each_entry(event->element.qp, &qp->open_list, open_list)
  602. if (event->element.qp->event_handler)
  603. event->element.qp->event_handler(event, event->element.qp->qp_context);
  604. spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
  605. }
  606. static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
  607. {
  608. mutex_lock(&xrcd->tgt_qp_mutex);
  609. list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
  610. mutex_unlock(&xrcd->tgt_qp_mutex);
  611. }
  612. static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
  613. void (*event_handler)(struct ib_event *, void *),
  614. void *qp_context)
  615. {
  616. struct ib_qp *qp;
  617. unsigned long flags;
  618. int err;
  619. qp = kzalloc(sizeof *qp, GFP_KERNEL);
  620. if (!qp)
  621. return ERR_PTR(-ENOMEM);
  622. qp->real_qp = real_qp;
  623. err = ib_open_shared_qp_security(qp, real_qp->device);
  624. if (err) {
  625. kfree(qp);
  626. return ERR_PTR(err);
  627. }
  628. qp->real_qp = real_qp;
  629. atomic_inc(&real_qp->usecnt);
  630. qp->device = real_qp->device;
  631. qp->event_handler = event_handler;
  632. qp->qp_context = qp_context;
  633. qp->qp_num = real_qp->qp_num;
  634. qp->qp_type = real_qp->qp_type;
  635. spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
  636. list_add(&qp->open_list, &real_qp->open_list);
  637. spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
  638. return qp;
  639. }
  640. struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
  641. struct ib_qp_open_attr *qp_open_attr)
  642. {
  643. struct ib_qp *qp, *real_qp;
  644. if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
  645. return ERR_PTR(-EINVAL);
  646. qp = ERR_PTR(-EINVAL);
  647. mutex_lock(&xrcd->tgt_qp_mutex);
  648. list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
  649. if (real_qp->qp_num == qp_open_attr->qp_num) {
  650. qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
  651. qp_open_attr->qp_context);
  652. break;
  653. }
  654. }
  655. mutex_unlock(&xrcd->tgt_qp_mutex);
  656. return qp;
  657. }
  658. EXPORT_SYMBOL(ib_open_qp);
  659. static struct ib_qp *create_xrc_qp(struct ib_qp *qp,
  660. struct ib_qp_init_attr *qp_init_attr)
  661. {
  662. struct ib_qp *real_qp = qp;
  663. qp->event_handler = __ib_shared_qp_event_handler;
  664. qp->qp_context = qp;
  665. qp->pd = NULL;
  666. qp->send_cq = qp->recv_cq = NULL;
  667. qp->srq = NULL;
  668. qp->xrcd = qp_init_attr->xrcd;
  669. atomic_inc(&qp_init_attr->xrcd->usecnt);
  670. INIT_LIST_HEAD(&qp->open_list);
  671. qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
  672. qp_init_attr->qp_context);
  673. if (IS_ERR(qp))
  674. return qp;
  675. __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
  676. return qp;
  677. }
  678. struct ib_qp *ib_create_qp(struct ib_pd *pd,
  679. struct ib_qp_init_attr *qp_init_attr)
  680. {
  681. struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
  682. struct ib_qp *qp;
  683. int ret;
  684. if (qp_init_attr->rwq_ind_tbl &&
  685. (qp_init_attr->recv_cq ||
  686. qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
  687. qp_init_attr->cap.max_recv_sge))
  688. return ERR_PTR(-EINVAL);
  689. /*
  690. * If the callers is using the RDMA API calculate the resources
  691. * needed for the RDMA READ/WRITE operations.
  692. *
  693. * Note that these callers need to pass in a port number.
  694. */
  695. if (qp_init_attr->cap.max_rdma_ctxs)
  696. rdma_rw_init_qp(device, qp_init_attr);
  697. qp = device->create_qp(pd, qp_init_attr, NULL);
  698. if (IS_ERR(qp))
  699. return qp;
  700. ret = ib_create_qp_security(qp, device);
  701. if (ret)
  702. goto err;
  703. qp->device = device;
  704. qp->real_qp = qp;
  705. qp->uobject = NULL;
  706. qp->qp_type = qp_init_attr->qp_type;
  707. qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
  708. atomic_set(&qp->usecnt, 0);
  709. qp->mrs_used = 0;
  710. spin_lock_init(&qp->mr_lock);
  711. INIT_LIST_HEAD(&qp->rdma_mrs);
  712. INIT_LIST_HEAD(&qp->sig_mrs);
  713. qp->port = 0;
  714. if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
  715. struct ib_qp *xrc_qp = create_xrc_qp(qp, qp_init_attr);
  716. if (IS_ERR(xrc_qp)) {
  717. ret = PTR_ERR(xrc_qp);
  718. goto err;
  719. }
  720. return xrc_qp;
  721. }
  722. qp->event_handler = qp_init_attr->event_handler;
  723. qp->qp_context = qp_init_attr->qp_context;
  724. if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
  725. qp->recv_cq = NULL;
  726. qp->srq = NULL;
  727. } else {
  728. qp->recv_cq = qp_init_attr->recv_cq;
  729. if (qp_init_attr->recv_cq)
  730. atomic_inc(&qp_init_attr->recv_cq->usecnt);
  731. qp->srq = qp_init_attr->srq;
  732. if (qp->srq)
  733. atomic_inc(&qp_init_attr->srq->usecnt);
  734. }
  735. qp->pd = pd;
  736. qp->send_cq = qp_init_attr->send_cq;
  737. qp->xrcd = NULL;
  738. atomic_inc(&pd->usecnt);
  739. if (qp_init_attr->send_cq)
  740. atomic_inc(&qp_init_attr->send_cq->usecnt);
  741. if (qp_init_attr->rwq_ind_tbl)
  742. atomic_inc(&qp->rwq_ind_tbl->usecnt);
  743. if (qp_init_attr->cap.max_rdma_ctxs) {
  744. ret = rdma_rw_init_mrs(qp, qp_init_attr);
  745. if (ret)
  746. goto err;
  747. }
  748. /*
  749. * Note: all hw drivers guarantee that max_send_sge is lower than
  750. * the device RDMA WRITE SGE limit but not all hw drivers ensure that
  751. * max_send_sge <= max_sge_rd.
  752. */
  753. qp->max_write_sge = qp_init_attr->cap.max_send_sge;
  754. qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
  755. device->attrs.max_sge_rd);
  756. return qp;
  757. err:
  758. ib_destroy_qp(qp);
  759. return ERR_PTR(ret);
  760. }
  761. EXPORT_SYMBOL(ib_create_qp);
  762. static const struct {
  763. int valid;
  764. enum ib_qp_attr_mask req_param[IB_QPT_MAX];
  765. enum ib_qp_attr_mask opt_param[IB_QPT_MAX];
  766. } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
  767. [IB_QPS_RESET] = {
  768. [IB_QPS_RESET] = { .valid = 1 },
  769. [IB_QPS_INIT] = {
  770. .valid = 1,
  771. .req_param = {
  772. [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
  773. IB_QP_PORT |
  774. IB_QP_QKEY),
  775. [IB_QPT_RAW_PACKET] = IB_QP_PORT,
  776. [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
  777. IB_QP_PORT |
  778. IB_QP_ACCESS_FLAGS),
  779. [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
  780. IB_QP_PORT |
  781. IB_QP_ACCESS_FLAGS),
  782. [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
  783. IB_QP_PORT |
  784. IB_QP_ACCESS_FLAGS),
  785. [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
  786. IB_QP_PORT |
  787. IB_QP_ACCESS_FLAGS),
  788. [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
  789. IB_QP_QKEY),
  790. [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
  791. IB_QP_QKEY),
  792. }
  793. },
  794. },
  795. [IB_QPS_INIT] = {
  796. [IB_QPS_RESET] = { .valid = 1 },
  797. [IB_QPS_ERR] = { .valid = 1 },
  798. [IB_QPS_INIT] = {
  799. .valid = 1,
  800. .opt_param = {
  801. [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
  802. IB_QP_PORT |
  803. IB_QP_QKEY),
  804. [IB_QPT_UC] = (IB_QP_PKEY_INDEX |
  805. IB_QP_PORT |
  806. IB_QP_ACCESS_FLAGS),
  807. [IB_QPT_RC] = (IB_QP_PKEY_INDEX |
  808. IB_QP_PORT |
  809. IB_QP_ACCESS_FLAGS),
  810. [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX |
  811. IB_QP_PORT |
  812. IB_QP_ACCESS_FLAGS),
  813. [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX |
  814. IB_QP_PORT |
  815. IB_QP_ACCESS_FLAGS),
  816. [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
  817. IB_QP_QKEY),
  818. [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
  819. IB_QP_QKEY),
  820. }
  821. },
  822. [IB_QPS_RTR] = {
  823. .valid = 1,
  824. .req_param = {
  825. [IB_QPT_UC] = (IB_QP_AV |
  826. IB_QP_PATH_MTU |
  827. IB_QP_DEST_QPN |
  828. IB_QP_RQ_PSN),
  829. [IB_QPT_RC] = (IB_QP_AV |
  830. IB_QP_PATH_MTU |
  831. IB_QP_DEST_QPN |
  832. IB_QP_RQ_PSN |
  833. IB_QP_MAX_DEST_RD_ATOMIC |
  834. IB_QP_MIN_RNR_TIMER),
  835. [IB_QPT_XRC_INI] = (IB_QP_AV |
  836. IB_QP_PATH_MTU |
  837. IB_QP_DEST_QPN |
  838. IB_QP_RQ_PSN),
  839. [IB_QPT_XRC_TGT] = (IB_QP_AV |
  840. IB_QP_PATH_MTU |
  841. IB_QP_DEST_QPN |
  842. IB_QP_RQ_PSN |
  843. IB_QP_MAX_DEST_RD_ATOMIC |
  844. IB_QP_MIN_RNR_TIMER),
  845. },
  846. .opt_param = {
  847. [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
  848. IB_QP_QKEY),
  849. [IB_QPT_UC] = (IB_QP_ALT_PATH |
  850. IB_QP_ACCESS_FLAGS |
  851. IB_QP_PKEY_INDEX),
  852. [IB_QPT_RC] = (IB_QP_ALT_PATH |
  853. IB_QP_ACCESS_FLAGS |
  854. IB_QP_PKEY_INDEX),
  855. [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH |
  856. IB_QP_ACCESS_FLAGS |
  857. IB_QP_PKEY_INDEX),
  858. [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH |
  859. IB_QP_ACCESS_FLAGS |
  860. IB_QP_PKEY_INDEX),
  861. [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
  862. IB_QP_QKEY),
  863. [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
  864. IB_QP_QKEY),
  865. },
  866. },
  867. },
  868. [IB_QPS_RTR] = {
  869. [IB_QPS_RESET] = { .valid = 1 },
  870. [IB_QPS_ERR] = { .valid = 1 },
  871. [IB_QPS_RTS] = {
  872. .valid = 1,
  873. .req_param = {
  874. [IB_QPT_UD] = IB_QP_SQ_PSN,
  875. [IB_QPT_UC] = IB_QP_SQ_PSN,
  876. [IB_QPT_RC] = (IB_QP_TIMEOUT |
  877. IB_QP_RETRY_CNT |
  878. IB_QP_RNR_RETRY |
  879. IB_QP_SQ_PSN |
  880. IB_QP_MAX_QP_RD_ATOMIC),
  881. [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT |
  882. IB_QP_RETRY_CNT |
  883. IB_QP_RNR_RETRY |
  884. IB_QP_SQ_PSN |
  885. IB_QP_MAX_QP_RD_ATOMIC),
  886. [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT |
  887. IB_QP_SQ_PSN),
  888. [IB_QPT_SMI] = IB_QP_SQ_PSN,
  889. [IB_QPT_GSI] = IB_QP_SQ_PSN,
  890. },
  891. .opt_param = {
  892. [IB_QPT_UD] = (IB_QP_CUR_STATE |
  893. IB_QP_QKEY),
  894. [IB_QPT_UC] = (IB_QP_CUR_STATE |
  895. IB_QP_ALT_PATH |
  896. IB_QP_ACCESS_FLAGS |
  897. IB_QP_PATH_MIG_STATE),
  898. [IB_QPT_RC] = (IB_QP_CUR_STATE |
  899. IB_QP_ALT_PATH |
  900. IB_QP_ACCESS_FLAGS |
  901. IB_QP_MIN_RNR_TIMER |
  902. IB_QP_PATH_MIG_STATE),
  903. [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
  904. IB_QP_ALT_PATH |
  905. IB_QP_ACCESS_FLAGS |
  906. IB_QP_PATH_MIG_STATE),
  907. [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
  908. IB_QP_ALT_PATH |
  909. IB_QP_ACCESS_FLAGS |
  910. IB_QP_MIN_RNR_TIMER |
  911. IB_QP_PATH_MIG_STATE),
  912. [IB_QPT_SMI] = (IB_QP_CUR_STATE |
  913. IB_QP_QKEY),
  914. [IB_QPT_GSI] = (IB_QP_CUR_STATE |
  915. IB_QP_QKEY),
  916. [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
  917. }
  918. }
  919. },
  920. [IB_QPS_RTS] = {
  921. [IB_QPS_RESET] = { .valid = 1 },
  922. [IB_QPS_ERR] = { .valid = 1 },
  923. [IB_QPS_RTS] = {
  924. .valid = 1,
  925. .opt_param = {
  926. [IB_QPT_UD] = (IB_QP_CUR_STATE |
  927. IB_QP_QKEY),
  928. [IB_QPT_UC] = (IB_QP_CUR_STATE |
  929. IB_QP_ACCESS_FLAGS |
  930. IB_QP_ALT_PATH |
  931. IB_QP_PATH_MIG_STATE),
  932. [IB_QPT_RC] = (IB_QP_CUR_STATE |
  933. IB_QP_ACCESS_FLAGS |
  934. IB_QP_ALT_PATH |
  935. IB_QP_PATH_MIG_STATE |
  936. IB_QP_MIN_RNR_TIMER),
  937. [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
  938. IB_QP_ACCESS_FLAGS |
  939. IB_QP_ALT_PATH |
  940. IB_QP_PATH_MIG_STATE),
  941. [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
  942. IB_QP_ACCESS_FLAGS |
  943. IB_QP_ALT_PATH |
  944. IB_QP_PATH_MIG_STATE |
  945. IB_QP_MIN_RNR_TIMER),
  946. [IB_QPT_SMI] = (IB_QP_CUR_STATE |
  947. IB_QP_QKEY),
  948. [IB_QPT_GSI] = (IB_QP_CUR_STATE |
  949. IB_QP_QKEY),
  950. [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
  951. }
  952. },
  953. [IB_QPS_SQD] = {
  954. .valid = 1,
  955. .opt_param = {
  956. [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  957. [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  958. [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  959. [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  960. [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
  961. [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
  962. [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
  963. }
  964. },
  965. },
  966. [IB_QPS_SQD] = {
  967. [IB_QPS_RESET] = { .valid = 1 },
  968. [IB_QPS_ERR] = { .valid = 1 },
  969. [IB_QPS_RTS] = {
  970. .valid = 1,
  971. .opt_param = {
  972. [IB_QPT_UD] = (IB_QP_CUR_STATE |
  973. IB_QP_QKEY),
  974. [IB_QPT_UC] = (IB_QP_CUR_STATE |
  975. IB_QP_ALT_PATH |
  976. IB_QP_ACCESS_FLAGS |
  977. IB_QP_PATH_MIG_STATE),
  978. [IB_QPT_RC] = (IB_QP_CUR_STATE |
  979. IB_QP_ALT_PATH |
  980. IB_QP_ACCESS_FLAGS |
  981. IB_QP_MIN_RNR_TIMER |
  982. IB_QP_PATH_MIG_STATE),
  983. [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE |
  984. IB_QP_ALT_PATH |
  985. IB_QP_ACCESS_FLAGS |
  986. IB_QP_PATH_MIG_STATE),
  987. [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE |
  988. IB_QP_ALT_PATH |
  989. IB_QP_ACCESS_FLAGS |
  990. IB_QP_MIN_RNR_TIMER |
  991. IB_QP_PATH_MIG_STATE),
  992. [IB_QPT_SMI] = (IB_QP_CUR_STATE |
  993. IB_QP_QKEY),
  994. [IB_QPT_GSI] = (IB_QP_CUR_STATE |
  995. IB_QP_QKEY),
  996. }
  997. },
  998. [IB_QPS_SQD] = {
  999. .valid = 1,
  1000. .opt_param = {
  1001. [IB_QPT_UD] = (IB_QP_PKEY_INDEX |
  1002. IB_QP_QKEY),
  1003. [IB_QPT_UC] = (IB_QP_AV |
  1004. IB_QP_ALT_PATH |
  1005. IB_QP_ACCESS_FLAGS |
  1006. IB_QP_PKEY_INDEX |
  1007. IB_QP_PATH_MIG_STATE),
  1008. [IB_QPT_RC] = (IB_QP_PORT |
  1009. IB_QP_AV |
  1010. IB_QP_TIMEOUT |
  1011. IB_QP_RETRY_CNT |
  1012. IB_QP_RNR_RETRY |
  1013. IB_QP_MAX_QP_RD_ATOMIC |
  1014. IB_QP_MAX_DEST_RD_ATOMIC |
  1015. IB_QP_ALT_PATH |
  1016. IB_QP_ACCESS_FLAGS |
  1017. IB_QP_PKEY_INDEX |
  1018. IB_QP_MIN_RNR_TIMER |
  1019. IB_QP_PATH_MIG_STATE),
  1020. [IB_QPT_XRC_INI] = (IB_QP_PORT |
  1021. IB_QP_AV |
  1022. IB_QP_TIMEOUT |
  1023. IB_QP_RETRY_CNT |
  1024. IB_QP_RNR_RETRY |
  1025. IB_QP_MAX_QP_RD_ATOMIC |
  1026. IB_QP_ALT_PATH |
  1027. IB_QP_ACCESS_FLAGS |
  1028. IB_QP_PKEY_INDEX |
  1029. IB_QP_PATH_MIG_STATE),
  1030. [IB_QPT_XRC_TGT] = (IB_QP_PORT |
  1031. IB_QP_AV |
  1032. IB_QP_TIMEOUT |
  1033. IB_QP_MAX_DEST_RD_ATOMIC |
  1034. IB_QP_ALT_PATH |
  1035. IB_QP_ACCESS_FLAGS |
  1036. IB_QP_PKEY_INDEX |
  1037. IB_QP_MIN_RNR_TIMER |
  1038. IB_QP_PATH_MIG_STATE),
  1039. [IB_QPT_SMI] = (IB_QP_PKEY_INDEX |
  1040. IB_QP_QKEY),
  1041. [IB_QPT_GSI] = (IB_QP_PKEY_INDEX |
  1042. IB_QP_QKEY),
  1043. }
  1044. }
  1045. },
  1046. [IB_QPS_SQE] = {
  1047. [IB_QPS_RESET] = { .valid = 1 },
  1048. [IB_QPS_ERR] = { .valid = 1 },
  1049. [IB_QPS_RTS] = {
  1050. .valid = 1,
  1051. .opt_param = {
  1052. [IB_QPT_UD] = (IB_QP_CUR_STATE |
  1053. IB_QP_QKEY),
  1054. [IB_QPT_UC] = (IB_QP_CUR_STATE |
  1055. IB_QP_ACCESS_FLAGS),
  1056. [IB_QPT_SMI] = (IB_QP_CUR_STATE |
  1057. IB_QP_QKEY),
  1058. [IB_QPT_GSI] = (IB_QP_CUR_STATE |
  1059. IB_QP_QKEY),
  1060. }
  1061. }
  1062. },
  1063. [IB_QPS_ERR] = {
  1064. [IB_QPS_RESET] = { .valid = 1 },
  1065. [IB_QPS_ERR] = { .valid = 1 }
  1066. }
  1067. };
  1068. int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
  1069. enum ib_qp_type type, enum ib_qp_attr_mask mask,
  1070. enum rdma_link_layer ll)
  1071. {
  1072. enum ib_qp_attr_mask req_param, opt_param;
  1073. if (cur_state < 0 || cur_state > IB_QPS_ERR ||
  1074. next_state < 0 || next_state > IB_QPS_ERR)
  1075. return 0;
  1076. if (mask & IB_QP_CUR_STATE &&
  1077. cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
  1078. cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
  1079. return 0;
  1080. if (!qp_state_table[cur_state][next_state].valid)
  1081. return 0;
  1082. req_param = qp_state_table[cur_state][next_state].req_param[type];
  1083. opt_param = qp_state_table[cur_state][next_state].opt_param[type];
  1084. if ((mask & req_param) != req_param)
  1085. return 0;
  1086. if (mask & ~(req_param | opt_param | IB_QP_STATE))
  1087. return 0;
  1088. return 1;
  1089. }
  1090. EXPORT_SYMBOL(ib_modify_qp_is_ok);
  1091. int ib_resolve_eth_dmac(struct ib_device *device,
  1092. struct rdma_ah_attr *ah_attr)
  1093. {
  1094. int ret = 0;
  1095. struct ib_global_route *grh;
  1096. if (!rdma_is_port_valid(device, rdma_ah_get_port_num(ah_attr)))
  1097. return -EINVAL;
  1098. if (ah_attr->type != RDMA_AH_ATTR_TYPE_ROCE)
  1099. return 0;
  1100. grh = rdma_ah_retrieve_grh(ah_attr);
  1101. if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw)) {
  1102. rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
  1103. ah_attr->roce.dmac);
  1104. return 0;
  1105. }
  1106. if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
  1107. if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
  1108. __be32 addr = 0;
  1109. memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
  1110. ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
  1111. } else {
  1112. ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
  1113. (char *)ah_attr->roce.dmac);
  1114. }
  1115. } else {
  1116. union ib_gid sgid;
  1117. struct ib_gid_attr sgid_attr;
  1118. int ifindex;
  1119. int hop_limit;
  1120. ret = ib_query_gid(device,
  1121. rdma_ah_get_port_num(ah_attr),
  1122. grh->sgid_index,
  1123. &sgid, &sgid_attr);
  1124. if (ret || !sgid_attr.ndev) {
  1125. if (!ret)
  1126. ret = -ENXIO;
  1127. goto out;
  1128. }
  1129. ifindex = sgid_attr.ndev->ifindex;
  1130. ret =
  1131. rdma_addr_find_l2_eth_by_grh(&sgid, &grh->dgid,
  1132. ah_attr->roce.dmac,
  1133. NULL, &ifindex, &hop_limit);
  1134. dev_put(sgid_attr.ndev);
  1135. grh->hop_limit = hop_limit;
  1136. }
  1137. out:
  1138. return ret;
  1139. }
  1140. EXPORT_SYMBOL(ib_resolve_eth_dmac);
  1141. /**
  1142. * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
  1143. * @ib_qp: The QP to modify.
  1144. * @attr: On input, specifies the QP attributes to modify. On output,
  1145. * the current values of selected QP attributes are returned.
  1146. * @attr_mask: A bit-mask used to specify which attributes of the QP
  1147. * are being modified.
  1148. * @udata: pointer to user's input output buffer information
  1149. * are being modified.
  1150. * It returns 0 on success and returns appropriate error code on error.
  1151. */
  1152. int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
  1153. int attr_mask, struct ib_udata *udata)
  1154. {
  1155. struct ib_qp *qp = ib_qp->real_qp;
  1156. int ret;
  1157. if (attr_mask & IB_QP_AV) {
  1158. ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
  1159. if (ret)
  1160. return ret;
  1161. }
  1162. ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
  1163. if (!ret && (attr_mask & IB_QP_PORT))
  1164. qp->port = attr->port_num;
  1165. return ret;
  1166. }
  1167. EXPORT_SYMBOL(ib_modify_qp_with_udata);
  1168. int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width)
  1169. {
  1170. int rc;
  1171. u32 netdev_speed;
  1172. struct net_device *netdev;
  1173. struct ethtool_link_ksettings lksettings;
  1174. if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
  1175. return -EINVAL;
  1176. if (!dev->get_netdev)
  1177. return -EOPNOTSUPP;
  1178. netdev = dev->get_netdev(dev, port_num);
  1179. if (!netdev)
  1180. return -ENODEV;
  1181. rtnl_lock();
  1182. rc = __ethtool_get_link_ksettings(netdev, &lksettings);
  1183. rtnl_unlock();
  1184. dev_put(netdev);
  1185. if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
  1186. netdev_speed = lksettings.base.speed;
  1187. } else {
  1188. netdev_speed = SPEED_1000;
  1189. pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
  1190. netdev_speed);
  1191. }
  1192. if (netdev_speed <= SPEED_1000) {
  1193. *width = IB_WIDTH_1X;
  1194. *speed = IB_SPEED_SDR;
  1195. } else if (netdev_speed <= SPEED_10000) {
  1196. *width = IB_WIDTH_1X;
  1197. *speed = IB_SPEED_FDR10;
  1198. } else if (netdev_speed <= SPEED_20000) {
  1199. *width = IB_WIDTH_4X;
  1200. *speed = IB_SPEED_DDR;
  1201. } else if (netdev_speed <= SPEED_25000) {
  1202. *width = IB_WIDTH_1X;
  1203. *speed = IB_SPEED_EDR;
  1204. } else if (netdev_speed <= SPEED_40000) {
  1205. *width = IB_WIDTH_4X;
  1206. *speed = IB_SPEED_FDR10;
  1207. } else {
  1208. *width = IB_WIDTH_4X;
  1209. *speed = IB_SPEED_EDR;
  1210. }
  1211. return 0;
  1212. }
  1213. EXPORT_SYMBOL(ib_get_eth_speed);
  1214. int ib_modify_qp(struct ib_qp *qp,
  1215. struct ib_qp_attr *qp_attr,
  1216. int qp_attr_mask)
  1217. {
  1218. return ib_modify_qp_with_udata(qp, qp_attr, qp_attr_mask, NULL);
  1219. }
  1220. EXPORT_SYMBOL(ib_modify_qp);
  1221. int ib_query_qp(struct ib_qp *qp,
  1222. struct ib_qp_attr *qp_attr,
  1223. int qp_attr_mask,
  1224. struct ib_qp_init_attr *qp_init_attr)
  1225. {
  1226. return qp->device->query_qp ?
  1227. qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
  1228. -ENOSYS;
  1229. }
  1230. EXPORT_SYMBOL(ib_query_qp);
  1231. int ib_close_qp(struct ib_qp *qp)
  1232. {
  1233. struct ib_qp *real_qp;
  1234. unsigned long flags;
  1235. real_qp = qp->real_qp;
  1236. if (real_qp == qp)
  1237. return -EINVAL;
  1238. spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
  1239. list_del(&qp->open_list);
  1240. spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
  1241. atomic_dec(&real_qp->usecnt);
  1242. if (qp->qp_sec)
  1243. ib_close_shared_qp_security(qp->qp_sec);
  1244. kfree(qp);
  1245. return 0;
  1246. }
  1247. EXPORT_SYMBOL(ib_close_qp);
  1248. static int __ib_destroy_shared_qp(struct ib_qp *qp)
  1249. {
  1250. struct ib_xrcd *xrcd;
  1251. struct ib_qp *real_qp;
  1252. int ret;
  1253. real_qp = qp->real_qp;
  1254. xrcd = real_qp->xrcd;
  1255. mutex_lock(&xrcd->tgt_qp_mutex);
  1256. ib_close_qp(qp);
  1257. if (atomic_read(&real_qp->usecnt) == 0)
  1258. list_del(&real_qp->xrcd_list);
  1259. else
  1260. real_qp = NULL;
  1261. mutex_unlock(&xrcd->tgt_qp_mutex);
  1262. if (real_qp) {
  1263. ret = ib_destroy_qp(real_qp);
  1264. if (!ret)
  1265. atomic_dec(&xrcd->usecnt);
  1266. else
  1267. __ib_insert_xrcd_qp(xrcd, real_qp);
  1268. }
  1269. return 0;
  1270. }
  1271. int ib_destroy_qp(struct ib_qp *qp)
  1272. {
  1273. struct ib_pd *pd;
  1274. struct ib_cq *scq, *rcq;
  1275. struct ib_srq *srq;
  1276. struct ib_rwq_ind_table *ind_tbl;
  1277. struct ib_qp_security *sec;
  1278. int ret;
  1279. WARN_ON_ONCE(qp->mrs_used > 0);
  1280. if (atomic_read(&qp->usecnt))
  1281. return -EBUSY;
  1282. if (qp->real_qp != qp)
  1283. return __ib_destroy_shared_qp(qp);
  1284. pd = qp->pd;
  1285. scq = qp->send_cq;
  1286. rcq = qp->recv_cq;
  1287. srq = qp->srq;
  1288. ind_tbl = qp->rwq_ind_tbl;
  1289. sec = qp->qp_sec;
  1290. if (sec)
  1291. ib_destroy_qp_security_begin(sec);
  1292. if (!qp->uobject)
  1293. rdma_rw_cleanup_mrs(qp);
  1294. ret = qp->device->destroy_qp(qp);
  1295. if (!ret) {
  1296. if (pd)
  1297. atomic_dec(&pd->usecnt);
  1298. if (scq)
  1299. atomic_dec(&scq->usecnt);
  1300. if (rcq)
  1301. atomic_dec(&rcq->usecnt);
  1302. if (srq)
  1303. atomic_dec(&srq->usecnt);
  1304. if (ind_tbl)
  1305. atomic_dec(&ind_tbl->usecnt);
  1306. if (sec)
  1307. ib_destroy_qp_security_end(sec);
  1308. } else {
  1309. if (sec)
  1310. ib_destroy_qp_security_abort(sec);
  1311. }
  1312. return ret;
  1313. }
  1314. EXPORT_SYMBOL(ib_destroy_qp);
  1315. /* Completion queues */
  1316. struct ib_cq *ib_create_cq(struct ib_device *device,
  1317. ib_comp_handler comp_handler,
  1318. void (*event_handler)(struct ib_event *, void *),
  1319. void *cq_context,
  1320. const struct ib_cq_init_attr *cq_attr)
  1321. {
  1322. struct ib_cq *cq;
  1323. cq = device->create_cq(device, cq_attr, NULL, NULL);
  1324. if (!IS_ERR(cq)) {
  1325. cq->device = device;
  1326. cq->uobject = NULL;
  1327. cq->comp_handler = comp_handler;
  1328. cq->event_handler = event_handler;
  1329. cq->cq_context = cq_context;
  1330. atomic_set(&cq->usecnt, 0);
  1331. }
  1332. return cq;
  1333. }
  1334. EXPORT_SYMBOL(ib_create_cq);
  1335. int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
  1336. {
  1337. return cq->device->modify_cq ?
  1338. cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
  1339. }
  1340. EXPORT_SYMBOL(ib_modify_cq);
  1341. int ib_destroy_cq(struct ib_cq *cq)
  1342. {
  1343. if (atomic_read(&cq->usecnt))
  1344. return -EBUSY;
  1345. return cq->device->destroy_cq(cq);
  1346. }
  1347. EXPORT_SYMBOL(ib_destroy_cq);
  1348. int ib_resize_cq(struct ib_cq *cq, int cqe)
  1349. {
  1350. return cq->device->resize_cq ?
  1351. cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
  1352. }
  1353. EXPORT_SYMBOL(ib_resize_cq);
  1354. /* Memory regions */
  1355. int ib_dereg_mr(struct ib_mr *mr)
  1356. {
  1357. struct ib_pd *pd = mr->pd;
  1358. int ret;
  1359. ret = mr->device->dereg_mr(mr);
  1360. if (!ret)
  1361. atomic_dec(&pd->usecnt);
  1362. return ret;
  1363. }
  1364. EXPORT_SYMBOL(ib_dereg_mr);
  1365. /**
  1366. * ib_alloc_mr() - Allocates a memory region
  1367. * @pd: protection domain associated with the region
  1368. * @mr_type: memory region type
  1369. * @max_num_sg: maximum sg entries available for registration.
  1370. *
  1371. * Notes:
  1372. * Memory registeration page/sg lists must not exceed max_num_sg.
  1373. * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
  1374. * max_num_sg * used_page_size.
  1375. *
  1376. */
  1377. struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
  1378. enum ib_mr_type mr_type,
  1379. u32 max_num_sg)
  1380. {
  1381. struct ib_mr *mr;
  1382. if (!pd->device->alloc_mr)
  1383. return ERR_PTR(-ENOSYS);
  1384. mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
  1385. if (!IS_ERR(mr)) {
  1386. mr->device = pd->device;
  1387. mr->pd = pd;
  1388. mr->uobject = NULL;
  1389. atomic_inc(&pd->usecnt);
  1390. mr->need_inval = false;
  1391. }
  1392. return mr;
  1393. }
  1394. EXPORT_SYMBOL(ib_alloc_mr);
  1395. /* "Fast" memory regions */
  1396. struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
  1397. int mr_access_flags,
  1398. struct ib_fmr_attr *fmr_attr)
  1399. {
  1400. struct ib_fmr *fmr;
  1401. if (!pd->device->alloc_fmr)
  1402. return ERR_PTR(-ENOSYS);
  1403. fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
  1404. if (!IS_ERR(fmr)) {
  1405. fmr->device = pd->device;
  1406. fmr->pd = pd;
  1407. atomic_inc(&pd->usecnt);
  1408. }
  1409. return fmr;
  1410. }
  1411. EXPORT_SYMBOL(ib_alloc_fmr);
  1412. int ib_unmap_fmr(struct list_head *fmr_list)
  1413. {
  1414. struct ib_fmr *fmr;
  1415. if (list_empty(fmr_list))
  1416. return 0;
  1417. fmr = list_entry(fmr_list->next, struct ib_fmr, list);
  1418. return fmr->device->unmap_fmr(fmr_list);
  1419. }
  1420. EXPORT_SYMBOL(ib_unmap_fmr);
  1421. int ib_dealloc_fmr(struct ib_fmr *fmr)
  1422. {
  1423. struct ib_pd *pd;
  1424. int ret;
  1425. pd = fmr->pd;
  1426. ret = fmr->device->dealloc_fmr(fmr);
  1427. if (!ret)
  1428. atomic_dec(&pd->usecnt);
  1429. return ret;
  1430. }
  1431. EXPORT_SYMBOL(ib_dealloc_fmr);
  1432. /* Multicast groups */
  1433. static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
  1434. {
  1435. struct ib_qp_init_attr init_attr = {};
  1436. struct ib_qp_attr attr = {};
  1437. int num_eth_ports = 0;
  1438. int port;
  1439. /* If QP state >= init, it is assigned to a port and we can check this
  1440. * port only.
  1441. */
  1442. if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
  1443. if (attr.qp_state >= IB_QPS_INIT) {
  1444. if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
  1445. IB_LINK_LAYER_INFINIBAND)
  1446. return true;
  1447. goto lid_check;
  1448. }
  1449. }
  1450. /* Can't get a quick answer, iterate over all ports */
  1451. for (port = 0; port < qp->device->phys_port_cnt; port++)
  1452. if (rdma_port_get_link_layer(qp->device, port) !=
  1453. IB_LINK_LAYER_INFINIBAND)
  1454. num_eth_ports++;
  1455. /* If we have at lease one Ethernet port, RoCE annex declares that
  1456. * multicast LID should be ignored. We can't tell at this step if the
  1457. * QP belongs to an IB or Ethernet port.
  1458. */
  1459. if (num_eth_ports)
  1460. return true;
  1461. /* If all the ports are IB, we can check according to IB spec. */
  1462. lid_check:
  1463. return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
  1464. lid == be16_to_cpu(IB_LID_PERMISSIVE));
  1465. }
  1466. int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
  1467. {
  1468. int ret;
  1469. if (!qp->device->attach_mcast)
  1470. return -ENOSYS;
  1471. if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
  1472. qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
  1473. return -EINVAL;
  1474. ret = qp->device->attach_mcast(qp, gid, lid);
  1475. if (!ret)
  1476. atomic_inc(&qp->usecnt);
  1477. return ret;
  1478. }
  1479. EXPORT_SYMBOL(ib_attach_mcast);
  1480. int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
  1481. {
  1482. int ret;
  1483. if (!qp->device->detach_mcast)
  1484. return -ENOSYS;
  1485. if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
  1486. qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
  1487. return -EINVAL;
  1488. ret = qp->device->detach_mcast(qp, gid, lid);
  1489. if (!ret)
  1490. atomic_dec(&qp->usecnt);
  1491. return ret;
  1492. }
  1493. EXPORT_SYMBOL(ib_detach_mcast);
  1494. struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
  1495. {
  1496. struct ib_xrcd *xrcd;
  1497. if (!device->alloc_xrcd)
  1498. return ERR_PTR(-ENOSYS);
  1499. xrcd = device->alloc_xrcd(device, NULL, NULL);
  1500. if (!IS_ERR(xrcd)) {
  1501. xrcd->device = device;
  1502. xrcd->inode = NULL;
  1503. atomic_set(&xrcd->usecnt, 0);
  1504. mutex_init(&xrcd->tgt_qp_mutex);
  1505. INIT_LIST_HEAD(&xrcd->tgt_qp_list);
  1506. }
  1507. return xrcd;
  1508. }
  1509. EXPORT_SYMBOL(ib_alloc_xrcd);
  1510. int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
  1511. {
  1512. struct ib_qp *qp;
  1513. int ret;
  1514. if (atomic_read(&xrcd->usecnt))
  1515. return -EBUSY;
  1516. while (!list_empty(&xrcd->tgt_qp_list)) {
  1517. qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
  1518. ret = ib_destroy_qp(qp);
  1519. if (ret)
  1520. return ret;
  1521. }
  1522. return xrcd->device->dealloc_xrcd(xrcd);
  1523. }
  1524. EXPORT_SYMBOL(ib_dealloc_xrcd);
  1525. /**
  1526. * ib_create_wq - Creates a WQ associated with the specified protection
  1527. * domain.
  1528. * @pd: The protection domain associated with the WQ.
  1529. * @wq_init_attr: A list of initial attributes required to create the
  1530. * WQ. If WQ creation succeeds, then the attributes are updated to
  1531. * the actual capabilities of the created WQ.
  1532. *
  1533. * wq_init_attr->max_wr and wq_init_attr->max_sge determine
  1534. * the requested size of the WQ, and set to the actual values allocated
  1535. * on return.
  1536. * If ib_create_wq() succeeds, then max_wr and max_sge will always be
  1537. * at least as large as the requested values.
  1538. */
  1539. struct ib_wq *ib_create_wq(struct ib_pd *pd,
  1540. struct ib_wq_init_attr *wq_attr)
  1541. {
  1542. struct ib_wq *wq;
  1543. if (!pd->device->create_wq)
  1544. return ERR_PTR(-ENOSYS);
  1545. wq = pd->device->create_wq(pd, wq_attr, NULL);
  1546. if (!IS_ERR(wq)) {
  1547. wq->event_handler = wq_attr->event_handler;
  1548. wq->wq_context = wq_attr->wq_context;
  1549. wq->wq_type = wq_attr->wq_type;
  1550. wq->cq = wq_attr->cq;
  1551. wq->device = pd->device;
  1552. wq->pd = pd;
  1553. wq->uobject = NULL;
  1554. atomic_inc(&pd->usecnt);
  1555. atomic_inc(&wq_attr->cq->usecnt);
  1556. atomic_set(&wq->usecnt, 0);
  1557. }
  1558. return wq;
  1559. }
  1560. EXPORT_SYMBOL(ib_create_wq);
  1561. /**
  1562. * ib_destroy_wq - Destroys the specified WQ.
  1563. * @wq: The WQ to destroy.
  1564. */
  1565. int ib_destroy_wq(struct ib_wq *wq)
  1566. {
  1567. int err;
  1568. struct ib_cq *cq = wq->cq;
  1569. struct ib_pd *pd = wq->pd;
  1570. if (atomic_read(&wq->usecnt))
  1571. return -EBUSY;
  1572. err = wq->device->destroy_wq(wq);
  1573. if (!err) {
  1574. atomic_dec(&pd->usecnt);
  1575. atomic_dec(&cq->usecnt);
  1576. }
  1577. return err;
  1578. }
  1579. EXPORT_SYMBOL(ib_destroy_wq);
  1580. /**
  1581. * ib_modify_wq - Modifies the specified WQ.
  1582. * @wq: The WQ to modify.
  1583. * @wq_attr: On input, specifies the WQ attributes to modify.
  1584. * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
  1585. * are being modified.
  1586. * On output, the current values of selected WQ attributes are returned.
  1587. */
  1588. int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
  1589. u32 wq_attr_mask)
  1590. {
  1591. int err;
  1592. if (!wq->device->modify_wq)
  1593. return -ENOSYS;
  1594. err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
  1595. return err;
  1596. }
  1597. EXPORT_SYMBOL(ib_modify_wq);
  1598. /*
  1599. * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
  1600. * @device: The device on which to create the rwq indirection table.
  1601. * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
  1602. * create the Indirection Table.
  1603. *
  1604. * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
  1605. * than the created ib_rwq_ind_table object and the caller is responsible
  1606. * for its memory allocation/free.
  1607. */
  1608. struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
  1609. struct ib_rwq_ind_table_init_attr *init_attr)
  1610. {
  1611. struct ib_rwq_ind_table *rwq_ind_table;
  1612. int i;
  1613. u32 table_size;
  1614. if (!device->create_rwq_ind_table)
  1615. return ERR_PTR(-ENOSYS);
  1616. table_size = (1 << init_attr->log_ind_tbl_size);
  1617. rwq_ind_table = device->create_rwq_ind_table(device,
  1618. init_attr, NULL);
  1619. if (IS_ERR(rwq_ind_table))
  1620. return rwq_ind_table;
  1621. rwq_ind_table->ind_tbl = init_attr->ind_tbl;
  1622. rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
  1623. rwq_ind_table->device = device;
  1624. rwq_ind_table->uobject = NULL;
  1625. atomic_set(&rwq_ind_table->usecnt, 0);
  1626. for (i = 0; i < table_size; i++)
  1627. atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
  1628. return rwq_ind_table;
  1629. }
  1630. EXPORT_SYMBOL(ib_create_rwq_ind_table);
  1631. /*
  1632. * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
  1633. * @wq_ind_table: The Indirection Table to destroy.
  1634. */
  1635. int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
  1636. {
  1637. int err, i;
  1638. u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
  1639. struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
  1640. if (atomic_read(&rwq_ind_table->usecnt))
  1641. return -EBUSY;
  1642. err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
  1643. if (!err) {
  1644. for (i = 0; i < table_size; i++)
  1645. atomic_dec(&ind_tbl[i]->usecnt);
  1646. }
  1647. return err;
  1648. }
  1649. EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
  1650. struct ib_flow *ib_create_flow(struct ib_qp *qp,
  1651. struct ib_flow_attr *flow_attr,
  1652. int domain)
  1653. {
  1654. struct ib_flow *flow_id;
  1655. if (!qp->device->create_flow)
  1656. return ERR_PTR(-ENOSYS);
  1657. flow_id = qp->device->create_flow(qp, flow_attr, domain);
  1658. if (!IS_ERR(flow_id)) {
  1659. atomic_inc(&qp->usecnt);
  1660. flow_id->qp = qp;
  1661. }
  1662. return flow_id;
  1663. }
  1664. EXPORT_SYMBOL(ib_create_flow);
  1665. int ib_destroy_flow(struct ib_flow *flow_id)
  1666. {
  1667. int err;
  1668. struct ib_qp *qp = flow_id->qp;
  1669. err = qp->device->destroy_flow(flow_id);
  1670. if (!err)
  1671. atomic_dec(&qp->usecnt);
  1672. return err;
  1673. }
  1674. EXPORT_SYMBOL(ib_destroy_flow);
  1675. int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
  1676. struct ib_mr_status *mr_status)
  1677. {
  1678. return mr->device->check_mr_status ?
  1679. mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
  1680. }
  1681. EXPORT_SYMBOL(ib_check_mr_status);
  1682. int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
  1683. int state)
  1684. {
  1685. if (!device->set_vf_link_state)
  1686. return -ENOSYS;
  1687. return device->set_vf_link_state(device, vf, port, state);
  1688. }
  1689. EXPORT_SYMBOL(ib_set_vf_link_state);
  1690. int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
  1691. struct ifla_vf_info *info)
  1692. {
  1693. if (!device->get_vf_config)
  1694. return -ENOSYS;
  1695. return device->get_vf_config(device, vf, port, info);
  1696. }
  1697. EXPORT_SYMBOL(ib_get_vf_config);
  1698. int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
  1699. struct ifla_vf_stats *stats)
  1700. {
  1701. if (!device->get_vf_stats)
  1702. return -ENOSYS;
  1703. return device->get_vf_stats(device, vf, port, stats);
  1704. }
  1705. EXPORT_SYMBOL(ib_get_vf_stats);
  1706. int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
  1707. int type)
  1708. {
  1709. if (!device->set_vf_guid)
  1710. return -ENOSYS;
  1711. return device->set_vf_guid(device, vf, port, guid, type);
  1712. }
  1713. EXPORT_SYMBOL(ib_set_vf_guid);
  1714. /**
  1715. * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
  1716. * and set it the memory region.
  1717. * @mr: memory region
  1718. * @sg: dma mapped scatterlist
  1719. * @sg_nents: number of entries in sg
  1720. * @sg_offset: offset in bytes into sg
  1721. * @page_size: page vector desired page size
  1722. *
  1723. * Constraints:
  1724. * - The first sg element is allowed to have an offset.
  1725. * - Each sg element must either be aligned to page_size or virtually
  1726. * contiguous to the previous element. In case an sg element has a
  1727. * non-contiguous offset, the mapping prefix will not include it.
  1728. * - The last sg element is allowed to have length less than page_size.
  1729. * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
  1730. * then only max_num_sg entries will be mapped.
  1731. * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
  1732. * constraints holds and the page_size argument is ignored.
  1733. *
  1734. * Returns the number of sg elements that were mapped to the memory region.
  1735. *
  1736. * After this completes successfully, the memory region
  1737. * is ready for registration.
  1738. */
  1739. int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
  1740. unsigned int *sg_offset, unsigned int page_size)
  1741. {
  1742. if (unlikely(!mr->device->map_mr_sg))
  1743. return -ENOSYS;
  1744. mr->page_size = page_size;
  1745. return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
  1746. }
  1747. EXPORT_SYMBOL(ib_map_mr_sg);
  1748. /**
  1749. * ib_sg_to_pages() - Convert the largest prefix of a sg list
  1750. * to a page vector
  1751. * @mr: memory region
  1752. * @sgl: dma mapped scatterlist
  1753. * @sg_nents: number of entries in sg
  1754. * @sg_offset_p: IN: start offset in bytes into sg
  1755. * OUT: offset in bytes for element n of the sg of the first
  1756. * byte that has not been processed where n is the return
  1757. * value of this function.
  1758. * @set_page: driver page assignment function pointer
  1759. *
  1760. * Core service helper for drivers to convert the largest
  1761. * prefix of given sg list to a page vector. The sg list
  1762. * prefix converted is the prefix that meet the requirements
  1763. * of ib_map_mr_sg.
  1764. *
  1765. * Returns the number of sg elements that were assigned to
  1766. * a page vector.
  1767. */
  1768. int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
  1769. unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
  1770. {
  1771. struct scatterlist *sg;
  1772. u64 last_end_dma_addr = 0;
  1773. unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
  1774. unsigned int last_page_off = 0;
  1775. u64 page_mask = ~((u64)mr->page_size - 1);
  1776. int i, ret;
  1777. if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
  1778. return -EINVAL;
  1779. mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
  1780. mr->length = 0;
  1781. for_each_sg(sgl, sg, sg_nents, i) {
  1782. u64 dma_addr = sg_dma_address(sg) + sg_offset;
  1783. u64 prev_addr = dma_addr;
  1784. unsigned int dma_len = sg_dma_len(sg) - sg_offset;
  1785. u64 end_dma_addr = dma_addr + dma_len;
  1786. u64 page_addr = dma_addr & page_mask;
  1787. /*
  1788. * For the second and later elements, check whether either the
  1789. * end of element i-1 or the start of element i is not aligned
  1790. * on a page boundary.
  1791. */
  1792. if (i && (last_page_off != 0 || page_addr != dma_addr)) {
  1793. /* Stop mapping if there is a gap. */
  1794. if (last_end_dma_addr != dma_addr)
  1795. break;
  1796. /*
  1797. * Coalesce this element with the last. If it is small
  1798. * enough just update mr->length. Otherwise start
  1799. * mapping from the next page.
  1800. */
  1801. goto next_page;
  1802. }
  1803. do {
  1804. ret = set_page(mr, page_addr);
  1805. if (unlikely(ret < 0)) {
  1806. sg_offset = prev_addr - sg_dma_address(sg);
  1807. mr->length += prev_addr - dma_addr;
  1808. if (sg_offset_p)
  1809. *sg_offset_p = sg_offset;
  1810. return i || sg_offset ? i : ret;
  1811. }
  1812. prev_addr = page_addr;
  1813. next_page:
  1814. page_addr += mr->page_size;
  1815. } while (page_addr < end_dma_addr);
  1816. mr->length += dma_len;
  1817. last_end_dma_addr = end_dma_addr;
  1818. last_page_off = end_dma_addr & ~page_mask;
  1819. sg_offset = 0;
  1820. }
  1821. if (sg_offset_p)
  1822. *sg_offset_p = 0;
  1823. return i;
  1824. }
  1825. EXPORT_SYMBOL(ib_sg_to_pages);
  1826. struct ib_drain_cqe {
  1827. struct ib_cqe cqe;
  1828. struct completion done;
  1829. };
  1830. static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
  1831. {
  1832. struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
  1833. cqe);
  1834. complete(&cqe->done);
  1835. }
  1836. /*
  1837. * Post a WR and block until its completion is reaped for the SQ.
  1838. */
  1839. static void __ib_drain_sq(struct ib_qp *qp)
  1840. {
  1841. struct ib_cq *cq = qp->send_cq;
  1842. struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
  1843. struct ib_drain_cqe sdrain;
  1844. struct ib_send_wr *bad_swr;
  1845. struct ib_rdma_wr swr = {
  1846. .wr = {
  1847. .next = NULL,
  1848. { .wr_cqe = &sdrain.cqe, },
  1849. .opcode = IB_WR_RDMA_WRITE,
  1850. },
  1851. };
  1852. int ret;
  1853. sdrain.cqe.done = ib_drain_qp_done;
  1854. init_completion(&sdrain.done);
  1855. ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
  1856. if (ret) {
  1857. WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
  1858. return;
  1859. }
  1860. ret = ib_post_send(qp, &swr.wr, &bad_swr);
  1861. if (ret) {
  1862. WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
  1863. return;
  1864. }
  1865. if (cq->poll_ctx == IB_POLL_DIRECT)
  1866. while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
  1867. ib_process_cq_direct(cq, -1);
  1868. else
  1869. wait_for_completion(&sdrain.done);
  1870. }
  1871. /*
  1872. * Post a WR and block until its completion is reaped for the RQ.
  1873. */
  1874. static void __ib_drain_rq(struct ib_qp *qp)
  1875. {
  1876. struct ib_cq *cq = qp->recv_cq;
  1877. struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
  1878. struct ib_drain_cqe rdrain;
  1879. struct ib_recv_wr rwr = {}, *bad_rwr;
  1880. int ret;
  1881. rwr.wr_cqe = &rdrain.cqe;
  1882. rdrain.cqe.done = ib_drain_qp_done;
  1883. init_completion(&rdrain.done);
  1884. ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
  1885. if (ret) {
  1886. WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
  1887. return;
  1888. }
  1889. ret = ib_post_recv(qp, &rwr, &bad_rwr);
  1890. if (ret) {
  1891. WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
  1892. return;
  1893. }
  1894. if (cq->poll_ctx == IB_POLL_DIRECT)
  1895. while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
  1896. ib_process_cq_direct(cq, -1);
  1897. else
  1898. wait_for_completion(&rdrain.done);
  1899. }
  1900. /**
  1901. * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
  1902. * application.
  1903. * @qp: queue pair to drain
  1904. *
  1905. * If the device has a provider-specific drain function, then
  1906. * call that. Otherwise call the generic drain function
  1907. * __ib_drain_sq().
  1908. *
  1909. * The caller must:
  1910. *
  1911. * ensure there is room in the CQ and SQ for the drain work request and
  1912. * completion.
  1913. *
  1914. * allocate the CQ using ib_alloc_cq().
  1915. *
  1916. * ensure that there are no other contexts that are posting WRs concurrently.
  1917. * Otherwise the drain is not guaranteed.
  1918. */
  1919. void ib_drain_sq(struct ib_qp *qp)
  1920. {
  1921. if (qp->device->drain_sq)
  1922. qp->device->drain_sq(qp);
  1923. else
  1924. __ib_drain_sq(qp);
  1925. }
  1926. EXPORT_SYMBOL(ib_drain_sq);
  1927. /**
  1928. * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
  1929. * application.
  1930. * @qp: queue pair to drain
  1931. *
  1932. * If the device has a provider-specific drain function, then
  1933. * call that. Otherwise call the generic drain function
  1934. * __ib_drain_rq().
  1935. *
  1936. * The caller must:
  1937. *
  1938. * ensure there is room in the CQ and RQ for the drain work request and
  1939. * completion.
  1940. *
  1941. * allocate the CQ using ib_alloc_cq().
  1942. *
  1943. * ensure that there are no other contexts that are posting WRs concurrently.
  1944. * Otherwise the drain is not guaranteed.
  1945. */
  1946. void ib_drain_rq(struct ib_qp *qp)
  1947. {
  1948. if (qp->device->drain_rq)
  1949. qp->device->drain_rq(qp);
  1950. else
  1951. __ib_drain_rq(qp);
  1952. }
  1953. EXPORT_SYMBOL(ib_drain_rq);
  1954. /**
  1955. * ib_drain_qp() - Block until all CQEs have been consumed by the
  1956. * application on both the RQ and SQ.
  1957. * @qp: queue pair to drain
  1958. *
  1959. * The caller must:
  1960. *
  1961. * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
  1962. * and completions.
  1963. *
  1964. * allocate the CQs using ib_alloc_cq().
  1965. *
  1966. * ensure that there are no other contexts that are posting WRs concurrently.
  1967. * Otherwise the drain is not guaranteed.
  1968. */
  1969. void ib_drain_qp(struct ib_qp *qp)
  1970. {
  1971. ib_drain_sq(qp);
  1972. if (!qp->srq)
  1973. ib_drain_rq(qp);
  1974. }
  1975. EXPORT_SYMBOL(ib_drain_qp);