bmc150-accel-core.c 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775
  1. /*
  2. * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
  3. * - BMC150
  4. * - BMI055
  5. * - BMA255
  6. * - BMA250E
  7. * - BMA222E
  8. * - BMA280
  9. *
  10. * Copyright (c) 2014, Intel Corporation.
  11. *
  12. * This program is free software; you can redistribute it and/or modify it
  13. * under the terms and conditions of the GNU General Public License,
  14. * version 2, as published by the Free Software Foundation.
  15. *
  16. * This program is distributed in the hope it will be useful, but WITHOUT
  17. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  18. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  19. * more details.
  20. */
  21. #include <linux/module.h>
  22. #include <linux/i2c.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/delay.h>
  25. #include <linux/slab.h>
  26. #include <linux/acpi.h>
  27. #include <linux/pm.h>
  28. #include <linux/pm_runtime.h>
  29. #include <linux/iio/iio.h>
  30. #include <linux/iio/sysfs.h>
  31. #include <linux/iio/buffer.h>
  32. #include <linux/iio/events.h>
  33. #include <linux/iio/trigger.h>
  34. #include <linux/iio/trigger_consumer.h>
  35. #include <linux/iio/triggered_buffer.h>
  36. #include <linux/regmap.h>
  37. #include "bmc150-accel.h"
  38. #define BMC150_ACCEL_DRV_NAME "bmc150_accel"
  39. #define BMC150_ACCEL_IRQ_NAME "bmc150_accel_event"
  40. #define BMC150_ACCEL_REG_CHIP_ID 0x00
  41. #define BMC150_ACCEL_REG_INT_STATUS_2 0x0B
  42. #define BMC150_ACCEL_ANY_MOTION_MASK 0x07
  43. #define BMC150_ACCEL_ANY_MOTION_BIT_X BIT(0)
  44. #define BMC150_ACCEL_ANY_MOTION_BIT_Y BIT(1)
  45. #define BMC150_ACCEL_ANY_MOTION_BIT_Z BIT(2)
  46. #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN BIT(3)
  47. #define BMC150_ACCEL_REG_PMU_LPW 0x11
  48. #define BMC150_ACCEL_PMU_MODE_MASK 0xE0
  49. #define BMC150_ACCEL_PMU_MODE_SHIFT 5
  50. #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK 0x17
  51. #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT 1
  52. #define BMC150_ACCEL_REG_PMU_RANGE 0x0F
  53. #define BMC150_ACCEL_DEF_RANGE_2G 0x03
  54. #define BMC150_ACCEL_DEF_RANGE_4G 0x05
  55. #define BMC150_ACCEL_DEF_RANGE_8G 0x08
  56. #define BMC150_ACCEL_DEF_RANGE_16G 0x0C
  57. /* Default BW: 125Hz */
  58. #define BMC150_ACCEL_REG_PMU_BW 0x10
  59. #define BMC150_ACCEL_DEF_BW 125
  60. #define BMC150_ACCEL_REG_RESET 0x14
  61. #define BMC150_ACCEL_RESET_VAL 0xB6
  62. #define BMC150_ACCEL_REG_INT_MAP_0 0x19
  63. #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE BIT(2)
  64. #define BMC150_ACCEL_REG_INT_MAP_1 0x1A
  65. #define BMC150_ACCEL_INT_MAP_1_BIT_DATA BIT(0)
  66. #define BMC150_ACCEL_INT_MAP_1_BIT_FWM BIT(1)
  67. #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL BIT(2)
  68. #define BMC150_ACCEL_REG_INT_RST_LATCH 0x21
  69. #define BMC150_ACCEL_INT_MODE_LATCH_RESET 0x80
  70. #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
  71. #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT 0x00
  72. #define BMC150_ACCEL_REG_INT_EN_0 0x16
  73. #define BMC150_ACCEL_INT_EN_BIT_SLP_X BIT(0)
  74. #define BMC150_ACCEL_INT_EN_BIT_SLP_Y BIT(1)
  75. #define BMC150_ACCEL_INT_EN_BIT_SLP_Z BIT(2)
  76. #define BMC150_ACCEL_REG_INT_EN_1 0x17
  77. #define BMC150_ACCEL_INT_EN_BIT_DATA_EN BIT(4)
  78. #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN BIT(5)
  79. #define BMC150_ACCEL_INT_EN_BIT_FWM_EN BIT(6)
  80. #define BMC150_ACCEL_REG_INT_OUT_CTRL 0x20
  81. #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL BIT(0)
  82. #define BMC150_ACCEL_REG_INT_5 0x27
  83. #define BMC150_ACCEL_SLOPE_DUR_MASK 0x03
  84. #define BMC150_ACCEL_REG_INT_6 0x28
  85. #define BMC150_ACCEL_SLOPE_THRES_MASK 0xFF
  86. /* Slope duration in terms of number of samples */
  87. #define BMC150_ACCEL_DEF_SLOPE_DURATION 1
  88. /* in terms of multiples of g's/LSB, based on range */
  89. #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD 1
  90. #define BMC150_ACCEL_REG_XOUT_L 0x02
  91. #define BMC150_ACCEL_MAX_STARTUP_TIME_MS 100
  92. /* Sleep Duration values */
  93. #define BMC150_ACCEL_SLEEP_500_MICRO 0x05
  94. #define BMC150_ACCEL_SLEEP_1_MS 0x06
  95. #define BMC150_ACCEL_SLEEP_2_MS 0x07
  96. #define BMC150_ACCEL_SLEEP_4_MS 0x08
  97. #define BMC150_ACCEL_SLEEP_6_MS 0x09
  98. #define BMC150_ACCEL_SLEEP_10_MS 0x0A
  99. #define BMC150_ACCEL_SLEEP_25_MS 0x0B
  100. #define BMC150_ACCEL_SLEEP_50_MS 0x0C
  101. #define BMC150_ACCEL_SLEEP_100_MS 0x0D
  102. #define BMC150_ACCEL_SLEEP_500_MS 0x0E
  103. #define BMC150_ACCEL_SLEEP_1_SEC 0x0F
  104. #define BMC150_ACCEL_REG_TEMP 0x08
  105. #define BMC150_ACCEL_TEMP_CENTER_VAL 23
  106. #define BMC150_ACCEL_AXIS_TO_REG(axis) (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
  107. #define BMC150_AUTO_SUSPEND_DELAY_MS 2000
  108. #define BMC150_ACCEL_REG_FIFO_STATUS 0x0E
  109. #define BMC150_ACCEL_REG_FIFO_CONFIG0 0x30
  110. #define BMC150_ACCEL_REG_FIFO_CONFIG1 0x3E
  111. #define BMC150_ACCEL_REG_FIFO_DATA 0x3F
  112. #define BMC150_ACCEL_FIFO_LENGTH 32
  113. enum bmc150_accel_axis {
  114. AXIS_X,
  115. AXIS_Y,
  116. AXIS_Z,
  117. AXIS_MAX,
  118. };
  119. enum bmc150_power_modes {
  120. BMC150_ACCEL_SLEEP_MODE_NORMAL,
  121. BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
  122. BMC150_ACCEL_SLEEP_MODE_LPM,
  123. BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
  124. };
  125. struct bmc150_scale_info {
  126. int scale;
  127. u8 reg_range;
  128. };
  129. struct bmc150_accel_chip_info {
  130. const char *name;
  131. u8 chip_id;
  132. const struct iio_chan_spec *channels;
  133. int num_channels;
  134. const struct bmc150_scale_info scale_table[4];
  135. };
  136. struct bmc150_accel_interrupt {
  137. const struct bmc150_accel_interrupt_info *info;
  138. atomic_t users;
  139. };
  140. struct bmc150_accel_trigger {
  141. struct bmc150_accel_data *data;
  142. struct iio_trigger *indio_trig;
  143. int (*setup)(struct bmc150_accel_trigger *t, bool state);
  144. int intr;
  145. bool enabled;
  146. };
  147. enum bmc150_accel_interrupt_id {
  148. BMC150_ACCEL_INT_DATA_READY,
  149. BMC150_ACCEL_INT_ANY_MOTION,
  150. BMC150_ACCEL_INT_WATERMARK,
  151. BMC150_ACCEL_INTERRUPTS,
  152. };
  153. enum bmc150_accel_trigger_id {
  154. BMC150_ACCEL_TRIGGER_DATA_READY,
  155. BMC150_ACCEL_TRIGGER_ANY_MOTION,
  156. BMC150_ACCEL_TRIGGERS,
  157. };
  158. struct bmc150_accel_data {
  159. struct regmap *regmap;
  160. int irq;
  161. struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
  162. struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
  163. struct mutex mutex;
  164. u8 fifo_mode, watermark;
  165. s16 buffer[8];
  166. /*
  167. * Ensure there is sufficient space and correct alignment for
  168. * the timestamp if enabled
  169. */
  170. struct {
  171. __le16 channels[3];
  172. s64 ts __aligned(8);
  173. } scan;
  174. u8 bw_bits;
  175. u32 slope_dur;
  176. u32 slope_thres;
  177. u32 range;
  178. int ev_enable_state;
  179. int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
  180. const struct bmc150_accel_chip_info *chip_info;
  181. };
  182. static const struct {
  183. int val;
  184. int val2;
  185. u8 bw_bits;
  186. } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
  187. {31, 260000, 0x09},
  188. {62, 500000, 0x0A},
  189. {125, 0, 0x0B},
  190. {250, 0, 0x0C},
  191. {500, 0, 0x0D},
  192. {1000, 0, 0x0E},
  193. {2000, 0, 0x0F} };
  194. static const struct {
  195. int bw_bits;
  196. int msec;
  197. } bmc150_accel_sample_upd_time[] = { {0x08, 64},
  198. {0x09, 32},
  199. {0x0A, 16},
  200. {0x0B, 8},
  201. {0x0C, 4},
  202. {0x0D, 2},
  203. {0x0E, 1},
  204. {0x0F, 1} };
  205. static const struct {
  206. int sleep_dur;
  207. u8 reg_value;
  208. } bmc150_accel_sleep_value_table[] = { {0, 0},
  209. {500, BMC150_ACCEL_SLEEP_500_MICRO},
  210. {1000, BMC150_ACCEL_SLEEP_1_MS},
  211. {2000, BMC150_ACCEL_SLEEP_2_MS},
  212. {4000, BMC150_ACCEL_SLEEP_4_MS},
  213. {6000, BMC150_ACCEL_SLEEP_6_MS},
  214. {10000, BMC150_ACCEL_SLEEP_10_MS},
  215. {25000, BMC150_ACCEL_SLEEP_25_MS},
  216. {50000, BMC150_ACCEL_SLEEP_50_MS},
  217. {100000, BMC150_ACCEL_SLEEP_100_MS},
  218. {500000, BMC150_ACCEL_SLEEP_500_MS},
  219. {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
  220. const struct regmap_config bmc150_regmap_conf = {
  221. .reg_bits = 8,
  222. .val_bits = 8,
  223. .max_register = 0x3f,
  224. };
  225. EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
  226. static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
  227. enum bmc150_power_modes mode,
  228. int dur_us)
  229. {
  230. struct device *dev = regmap_get_device(data->regmap);
  231. int i;
  232. int ret;
  233. u8 lpw_bits;
  234. int dur_val = -1;
  235. if (dur_us > 0) {
  236. for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
  237. ++i) {
  238. if (bmc150_accel_sleep_value_table[i].sleep_dur ==
  239. dur_us)
  240. dur_val =
  241. bmc150_accel_sleep_value_table[i].reg_value;
  242. }
  243. } else {
  244. dur_val = 0;
  245. }
  246. if (dur_val < 0)
  247. return -EINVAL;
  248. lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
  249. lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
  250. dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
  251. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
  252. if (ret < 0) {
  253. dev_err(dev, "Error writing reg_pmu_lpw\n");
  254. return ret;
  255. }
  256. return 0;
  257. }
  258. static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
  259. int val2)
  260. {
  261. int i;
  262. int ret;
  263. for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
  264. if (bmc150_accel_samp_freq_table[i].val == val &&
  265. bmc150_accel_samp_freq_table[i].val2 == val2) {
  266. ret = regmap_write(data->regmap,
  267. BMC150_ACCEL_REG_PMU_BW,
  268. bmc150_accel_samp_freq_table[i].bw_bits);
  269. if (ret < 0)
  270. return ret;
  271. data->bw_bits =
  272. bmc150_accel_samp_freq_table[i].bw_bits;
  273. return 0;
  274. }
  275. }
  276. return -EINVAL;
  277. }
  278. static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
  279. {
  280. struct device *dev = regmap_get_device(data->regmap);
  281. int ret;
  282. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
  283. data->slope_thres);
  284. if (ret < 0) {
  285. dev_err(dev, "Error writing reg_int_6\n");
  286. return ret;
  287. }
  288. ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
  289. BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
  290. if (ret < 0) {
  291. dev_err(dev, "Error updating reg_int_5\n");
  292. return ret;
  293. }
  294. dev_dbg(dev, "%s: %x %x\n", __func__, data->slope_thres,
  295. data->slope_dur);
  296. return ret;
  297. }
  298. static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
  299. bool state)
  300. {
  301. if (state)
  302. return bmc150_accel_update_slope(t->data);
  303. return 0;
  304. }
  305. static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
  306. int *val2)
  307. {
  308. int i;
  309. for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
  310. if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
  311. *val = bmc150_accel_samp_freq_table[i].val;
  312. *val2 = bmc150_accel_samp_freq_table[i].val2;
  313. return IIO_VAL_INT_PLUS_MICRO;
  314. }
  315. }
  316. return -EINVAL;
  317. }
  318. #ifdef CONFIG_PM
  319. static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
  320. {
  321. int i;
  322. for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
  323. if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
  324. return bmc150_accel_sample_upd_time[i].msec;
  325. }
  326. return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
  327. }
  328. static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
  329. {
  330. struct device *dev = regmap_get_device(data->regmap);
  331. int ret;
  332. if (on) {
  333. ret = pm_runtime_get_sync(dev);
  334. } else {
  335. pm_runtime_mark_last_busy(dev);
  336. ret = pm_runtime_put_autosuspend(dev);
  337. }
  338. if (ret < 0) {
  339. dev_err(dev,
  340. "Failed: bmc150_accel_set_power_state for %d\n", on);
  341. if (on)
  342. pm_runtime_put_noidle(dev);
  343. return ret;
  344. }
  345. return 0;
  346. }
  347. #else
  348. static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
  349. {
  350. return 0;
  351. }
  352. #endif
  353. static const struct bmc150_accel_interrupt_info {
  354. u8 map_reg;
  355. u8 map_bitmask;
  356. u8 en_reg;
  357. u8 en_bitmask;
  358. } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
  359. { /* data ready interrupt */
  360. .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
  361. .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
  362. .en_reg = BMC150_ACCEL_REG_INT_EN_1,
  363. .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
  364. },
  365. { /* motion interrupt */
  366. .map_reg = BMC150_ACCEL_REG_INT_MAP_0,
  367. .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
  368. .en_reg = BMC150_ACCEL_REG_INT_EN_0,
  369. .en_bitmask = BMC150_ACCEL_INT_EN_BIT_SLP_X |
  370. BMC150_ACCEL_INT_EN_BIT_SLP_Y |
  371. BMC150_ACCEL_INT_EN_BIT_SLP_Z
  372. },
  373. { /* fifo watermark interrupt */
  374. .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
  375. .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
  376. .en_reg = BMC150_ACCEL_REG_INT_EN_1,
  377. .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
  378. },
  379. };
  380. static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
  381. struct bmc150_accel_data *data)
  382. {
  383. int i;
  384. for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
  385. data->interrupts[i].info = &bmc150_accel_interrupts[i];
  386. }
  387. static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
  388. bool state)
  389. {
  390. struct device *dev = regmap_get_device(data->regmap);
  391. struct bmc150_accel_interrupt *intr = &data->interrupts[i];
  392. const struct bmc150_accel_interrupt_info *info = intr->info;
  393. int ret;
  394. if (state) {
  395. if (atomic_inc_return(&intr->users) > 1)
  396. return 0;
  397. } else {
  398. if (atomic_dec_return(&intr->users) > 0)
  399. return 0;
  400. }
  401. /*
  402. * We will expect the enable and disable to do operation in reverse
  403. * order. This will happen here anyway, as our resume operation uses
  404. * sync mode runtime pm calls. The suspend operation will be delayed
  405. * by autosuspend delay.
  406. * So the disable operation will still happen in reverse order of
  407. * enable operation. When runtime pm is disabled the mode is always on,
  408. * so sequence doesn't matter.
  409. */
  410. ret = bmc150_accel_set_power_state(data, state);
  411. if (ret < 0)
  412. return ret;
  413. /* map the interrupt to the appropriate pins */
  414. ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
  415. (state ? info->map_bitmask : 0));
  416. if (ret < 0) {
  417. dev_err(dev, "Error updating reg_int_map\n");
  418. goto out_fix_power_state;
  419. }
  420. /* enable/disable the interrupt */
  421. ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
  422. (state ? info->en_bitmask : 0));
  423. if (ret < 0) {
  424. dev_err(dev, "Error updating reg_int_en\n");
  425. goto out_fix_power_state;
  426. }
  427. return 0;
  428. out_fix_power_state:
  429. bmc150_accel_set_power_state(data, false);
  430. return ret;
  431. }
  432. static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
  433. {
  434. struct device *dev = regmap_get_device(data->regmap);
  435. int ret, i;
  436. for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
  437. if (data->chip_info->scale_table[i].scale == val) {
  438. ret = regmap_write(data->regmap,
  439. BMC150_ACCEL_REG_PMU_RANGE,
  440. data->chip_info->scale_table[i].reg_range);
  441. if (ret < 0) {
  442. dev_err(dev, "Error writing pmu_range\n");
  443. return ret;
  444. }
  445. data->range = data->chip_info->scale_table[i].reg_range;
  446. return 0;
  447. }
  448. }
  449. return -EINVAL;
  450. }
  451. static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
  452. {
  453. struct device *dev = regmap_get_device(data->regmap);
  454. int ret;
  455. unsigned int value;
  456. mutex_lock(&data->mutex);
  457. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
  458. if (ret < 0) {
  459. dev_err(dev, "Error reading reg_temp\n");
  460. mutex_unlock(&data->mutex);
  461. return ret;
  462. }
  463. *val = sign_extend32(value, 7);
  464. mutex_unlock(&data->mutex);
  465. return IIO_VAL_INT;
  466. }
  467. static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
  468. struct iio_chan_spec const *chan,
  469. int *val)
  470. {
  471. struct device *dev = regmap_get_device(data->regmap);
  472. int ret;
  473. int axis = chan->scan_index;
  474. __le16 raw_val;
  475. mutex_lock(&data->mutex);
  476. ret = bmc150_accel_set_power_state(data, true);
  477. if (ret < 0) {
  478. mutex_unlock(&data->mutex);
  479. return ret;
  480. }
  481. ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
  482. &raw_val, sizeof(raw_val));
  483. if (ret < 0) {
  484. dev_err(dev, "Error reading axis %d\n", axis);
  485. bmc150_accel_set_power_state(data, false);
  486. mutex_unlock(&data->mutex);
  487. return ret;
  488. }
  489. *val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
  490. chan->scan_type.realbits - 1);
  491. ret = bmc150_accel_set_power_state(data, false);
  492. mutex_unlock(&data->mutex);
  493. if (ret < 0)
  494. return ret;
  495. return IIO_VAL_INT;
  496. }
  497. static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
  498. struct iio_chan_spec const *chan,
  499. int *val, int *val2, long mask)
  500. {
  501. struct bmc150_accel_data *data = iio_priv(indio_dev);
  502. int ret;
  503. switch (mask) {
  504. case IIO_CHAN_INFO_RAW:
  505. switch (chan->type) {
  506. case IIO_TEMP:
  507. return bmc150_accel_get_temp(data, val);
  508. case IIO_ACCEL:
  509. if (iio_buffer_enabled(indio_dev))
  510. return -EBUSY;
  511. else
  512. return bmc150_accel_get_axis(data, chan, val);
  513. default:
  514. return -EINVAL;
  515. }
  516. case IIO_CHAN_INFO_OFFSET:
  517. if (chan->type == IIO_TEMP) {
  518. *val = BMC150_ACCEL_TEMP_CENTER_VAL;
  519. return IIO_VAL_INT;
  520. } else {
  521. return -EINVAL;
  522. }
  523. case IIO_CHAN_INFO_SCALE:
  524. *val = 0;
  525. switch (chan->type) {
  526. case IIO_TEMP:
  527. *val2 = 500000;
  528. return IIO_VAL_INT_PLUS_MICRO;
  529. case IIO_ACCEL:
  530. {
  531. int i;
  532. const struct bmc150_scale_info *si;
  533. int st_size = ARRAY_SIZE(data->chip_info->scale_table);
  534. for (i = 0; i < st_size; ++i) {
  535. si = &data->chip_info->scale_table[i];
  536. if (si->reg_range == data->range) {
  537. *val2 = si->scale;
  538. return IIO_VAL_INT_PLUS_MICRO;
  539. }
  540. }
  541. return -EINVAL;
  542. }
  543. default:
  544. return -EINVAL;
  545. }
  546. case IIO_CHAN_INFO_SAMP_FREQ:
  547. mutex_lock(&data->mutex);
  548. ret = bmc150_accel_get_bw(data, val, val2);
  549. mutex_unlock(&data->mutex);
  550. return ret;
  551. default:
  552. return -EINVAL;
  553. }
  554. }
  555. static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
  556. struct iio_chan_spec const *chan,
  557. int val, int val2, long mask)
  558. {
  559. struct bmc150_accel_data *data = iio_priv(indio_dev);
  560. int ret;
  561. switch (mask) {
  562. case IIO_CHAN_INFO_SAMP_FREQ:
  563. mutex_lock(&data->mutex);
  564. ret = bmc150_accel_set_bw(data, val, val2);
  565. mutex_unlock(&data->mutex);
  566. break;
  567. case IIO_CHAN_INFO_SCALE:
  568. if (val)
  569. return -EINVAL;
  570. mutex_lock(&data->mutex);
  571. ret = bmc150_accel_set_scale(data, val2);
  572. mutex_unlock(&data->mutex);
  573. return ret;
  574. default:
  575. ret = -EINVAL;
  576. }
  577. return ret;
  578. }
  579. static int bmc150_accel_read_event(struct iio_dev *indio_dev,
  580. const struct iio_chan_spec *chan,
  581. enum iio_event_type type,
  582. enum iio_event_direction dir,
  583. enum iio_event_info info,
  584. int *val, int *val2)
  585. {
  586. struct bmc150_accel_data *data = iio_priv(indio_dev);
  587. *val2 = 0;
  588. switch (info) {
  589. case IIO_EV_INFO_VALUE:
  590. *val = data->slope_thres;
  591. break;
  592. case IIO_EV_INFO_PERIOD:
  593. *val = data->slope_dur;
  594. break;
  595. default:
  596. return -EINVAL;
  597. }
  598. return IIO_VAL_INT;
  599. }
  600. static int bmc150_accel_write_event(struct iio_dev *indio_dev,
  601. const struct iio_chan_spec *chan,
  602. enum iio_event_type type,
  603. enum iio_event_direction dir,
  604. enum iio_event_info info,
  605. int val, int val2)
  606. {
  607. struct bmc150_accel_data *data = iio_priv(indio_dev);
  608. if (data->ev_enable_state)
  609. return -EBUSY;
  610. switch (info) {
  611. case IIO_EV_INFO_VALUE:
  612. data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
  613. break;
  614. case IIO_EV_INFO_PERIOD:
  615. data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
  616. break;
  617. default:
  618. return -EINVAL;
  619. }
  620. return 0;
  621. }
  622. static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
  623. const struct iio_chan_spec *chan,
  624. enum iio_event_type type,
  625. enum iio_event_direction dir)
  626. {
  627. struct bmc150_accel_data *data = iio_priv(indio_dev);
  628. return data->ev_enable_state;
  629. }
  630. static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
  631. const struct iio_chan_spec *chan,
  632. enum iio_event_type type,
  633. enum iio_event_direction dir,
  634. int state)
  635. {
  636. struct bmc150_accel_data *data = iio_priv(indio_dev);
  637. int ret;
  638. if (state == data->ev_enable_state)
  639. return 0;
  640. mutex_lock(&data->mutex);
  641. ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
  642. state);
  643. if (ret < 0) {
  644. mutex_unlock(&data->mutex);
  645. return ret;
  646. }
  647. data->ev_enable_state = state;
  648. mutex_unlock(&data->mutex);
  649. return 0;
  650. }
  651. static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
  652. struct iio_trigger *trig)
  653. {
  654. struct bmc150_accel_data *data = iio_priv(indio_dev);
  655. int i;
  656. for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
  657. if (data->triggers[i].indio_trig == trig)
  658. return 0;
  659. }
  660. return -EINVAL;
  661. }
  662. static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
  663. struct device_attribute *attr,
  664. char *buf)
  665. {
  666. struct iio_dev *indio_dev = dev_to_iio_dev(dev);
  667. struct bmc150_accel_data *data = iio_priv(indio_dev);
  668. int wm;
  669. mutex_lock(&data->mutex);
  670. wm = data->watermark;
  671. mutex_unlock(&data->mutex);
  672. return sprintf(buf, "%d\n", wm);
  673. }
  674. static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
  675. struct device_attribute *attr,
  676. char *buf)
  677. {
  678. struct iio_dev *indio_dev = dev_to_iio_dev(dev);
  679. struct bmc150_accel_data *data = iio_priv(indio_dev);
  680. bool state;
  681. mutex_lock(&data->mutex);
  682. state = data->fifo_mode;
  683. mutex_unlock(&data->mutex);
  684. return sprintf(buf, "%d\n", state);
  685. }
  686. static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
  687. static IIO_CONST_ATTR(hwfifo_watermark_max,
  688. __stringify(BMC150_ACCEL_FIFO_LENGTH));
  689. static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
  690. bmc150_accel_get_fifo_state, NULL, 0);
  691. static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
  692. bmc150_accel_get_fifo_watermark, NULL, 0);
  693. static const struct attribute *bmc150_accel_fifo_attributes[] = {
  694. &iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
  695. &iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
  696. &iio_dev_attr_hwfifo_watermark.dev_attr.attr,
  697. &iio_dev_attr_hwfifo_enabled.dev_attr.attr,
  698. NULL,
  699. };
  700. static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
  701. {
  702. struct bmc150_accel_data *data = iio_priv(indio_dev);
  703. if (val > BMC150_ACCEL_FIFO_LENGTH)
  704. val = BMC150_ACCEL_FIFO_LENGTH;
  705. mutex_lock(&data->mutex);
  706. data->watermark = val;
  707. mutex_unlock(&data->mutex);
  708. return 0;
  709. }
  710. /*
  711. * We must read at least one full frame in one burst, otherwise the rest of the
  712. * frame data is discarded.
  713. */
  714. static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
  715. char *buffer, int samples)
  716. {
  717. struct device *dev = regmap_get_device(data->regmap);
  718. int sample_length = 3 * 2;
  719. int ret;
  720. int total_length = samples * sample_length;
  721. int i;
  722. size_t step = regmap_get_raw_read_max(data->regmap);
  723. if (!step || step > total_length)
  724. step = total_length;
  725. else if (step < total_length)
  726. step = sample_length;
  727. /*
  728. * Seems we have a bus with size limitation so we have to execute
  729. * multiple reads
  730. */
  731. for (i = 0; i < total_length; i += step) {
  732. ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
  733. &buffer[i], step);
  734. if (ret)
  735. break;
  736. }
  737. if (ret)
  738. dev_err(dev,
  739. "Error transferring data from fifo in single steps of %zu\n",
  740. step);
  741. return ret;
  742. }
  743. static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
  744. unsigned samples, bool irq)
  745. {
  746. struct bmc150_accel_data *data = iio_priv(indio_dev);
  747. struct device *dev = regmap_get_device(data->regmap);
  748. int ret, i;
  749. u8 count;
  750. u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
  751. int64_t tstamp;
  752. uint64_t sample_period;
  753. unsigned int val;
  754. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
  755. if (ret < 0) {
  756. dev_err(dev, "Error reading reg_fifo_status\n");
  757. return ret;
  758. }
  759. count = val & 0x7F;
  760. if (!count)
  761. return 0;
  762. /*
  763. * If we getting called from IRQ handler we know the stored timestamp is
  764. * fairly accurate for the last stored sample. Otherwise, if we are
  765. * called as a result of a read operation from userspace and hence
  766. * before the watermark interrupt was triggered, take a timestamp
  767. * now. We can fall anywhere in between two samples so the error in this
  768. * case is at most one sample period.
  769. */
  770. if (!irq) {
  771. data->old_timestamp = data->timestamp;
  772. data->timestamp = iio_get_time_ns(indio_dev);
  773. }
  774. /*
  775. * Approximate timestamps for each of the sample based on the sampling
  776. * frequency, timestamp for last sample and number of samples.
  777. *
  778. * Note that we can't use the current bandwidth settings to compute the
  779. * sample period because the sample rate varies with the device
  780. * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
  781. * small variation adds when we store a large number of samples and
  782. * creates significant jitter between the last and first samples in
  783. * different batches (e.g. 32ms vs 21ms).
  784. *
  785. * To avoid this issue we compute the actual sample period ourselves
  786. * based on the timestamp delta between the last two flush operations.
  787. */
  788. sample_period = (data->timestamp - data->old_timestamp);
  789. do_div(sample_period, count);
  790. tstamp = data->timestamp - (count - 1) * sample_period;
  791. if (samples && count > samples)
  792. count = samples;
  793. ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
  794. if (ret)
  795. return ret;
  796. /*
  797. * Ideally we want the IIO core to handle the demux when running in fifo
  798. * mode but not when running in triggered buffer mode. Unfortunately
  799. * this does not seem to be possible, so stick with driver demux for
  800. * now.
  801. */
  802. for (i = 0; i < count; i++) {
  803. int j, bit;
  804. j = 0;
  805. for_each_set_bit(bit, indio_dev->active_scan_mask,
  806. indio_dev->masklength)
  807. memcpy(&data->scan.channels[j++], &buffer[i * 3 + bit],
  808. sizeof(data->scan.channels[0]));
  809. iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
  810. tstamp);
  811. tstamp += sample_period;
  812. }
  813. return count;
  814. }
  815. static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
  816. {
  817. struct bmc150_accel_data *data = iio_priv(indio_dev);
  818. int ret;
  819. mutex_lock(&data->mutex);
  820. ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
  821. mutex_unlock(&data->mutex);
  822. return ret;
  823. }
  824. static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
  825. "15.620000 31.260000 62.50000 125 250 500 1000 2000");
  826. static struct attribute *bmc150_accel_attributes[] = {
  827. &iio_const_attr_sampling_frequency_available.dev_attr.attr,
  828. NULL,
  829. };
  830. static const struct attribute_group bmc150_accel_attrs_group = {
  831. .attrs = bmc150_accel_attributes,
  832. };
  833. static const struct iio_event_spec bmc150_accel_event = {
  834. .type = IIO_EV_TYPE_ROC,
  835. .dir = IIO_EV_DIR_EITHER,
  836. .mask_separate = BIT(IIO_EV_INFO_VALUE) |
  837. BIT(IIO_EV_INFO_ENABLE) |
  838. BIT(IIO_EV_INFO_PERIOD)
  839. };
  840. #define BMC150_ACCEL_CHANNEL(_axis, bits) { \
  841. .type = IIO_ACCEL, \
  842. .modified = 1, \
  843. .channel2 = IIO_MOD_##_axis, \
  844. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
  845. .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
  846. BIT(IIO_CHAN_INFO_SAMP_FREQ), \
  847. .scan_index = AXIS_##_axis, \
  848. .scan_type = { \
  849. .sign = 's', \
  850. .realbits = (bits), \
  851. .storagebits = 16, \
  852. .shift = 16 - (bits), \
  853. .endianness = IIO_LE, \
  854. }, \
  855. .event_spec = &bmc150_accel_event, \
  856. .num_event_specs = 1 \
  857. }
  858. #define BMC150_ACCEL_CHANNELS(bits) { \
  859. { \
  860. .type = IIO_TEMP, \
  861. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
  862. BIT(IIO_CHAN_INFO_SCALE) | \
  863. BIT(IIO_CHAN_INFO_OFFSET), \
  864. .scan_index = -1, \
  865. }, \
  866. BMC150_ACCEL_CHANNEL(X, bits), \
  867. BMC150_ACCEL_CHANNEL(Y, bits), \
  868. BMC150_ACCEL_CHANNEL(Z, bits), \
  869. IIO_CHAN_SOFT_TIMESTAMP(3), \
  870. }
  871. static const struct iio_chan_spec bma222e_accel_channels[] =
  872. BMC150_ACCEL_CHANNELS(8);
  873. static const struct iio_chan_spec bma250e_accel_channels[] =
  874. BMC150_ACCEL_CHANNELS(10);
  875. static const struct iio_chan_spec bmc150_accel_channels[] =
  876. BMC150_ACCEL_CHANNELS(12);
  877. static const struct iio_chan_spec bma280_accel_channels[] =
  878. BMC150_ACCEL_CHANNELS(14);
  879. static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
  880. [bmc150] = {
  881. .name = "BMC150A",
  882. .chip_id = 0xFA,
  883. .channels = bmc150_accel_channels,
  884. .num_channels = ARRAY_SIZE(bmc150_accel_channels),
  885. .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
  886. {19122, BMC150_ACCEL_DEF_RANGE_4G},
  887. {38344, BMC150_ACCEL_DEF_RANGE_8G},
  888. {76590, BMC150_ACCEL_DEF_RANGE_16G} },
  889. },
  890. [bmi055] = {
  891. .name = "BMI055A",
  892. .chip_id = 0xFA,
  893. .channels = bmc150_accel_channels,
  894. .num_channels = ARRAY_SIZE(bmc150_accel_channels),
  895. .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
  896. {19122, BMC150_ACCEL_DEF_RANGE_4G},
  897. {38344, BMC150_ACCEL_DEF_RANGE_8G},
  898. {76590, BMC150_ACCEL_DEF_RANGE_16G} },
  899. },
  900. [bma255] = {
  901. .name = "BMA0255",
  902. .chip_id = 0xFA,
  903. .channels = bmc150_accel_channels,
  904. .num_channels = ARRAY_SIZE(bmc150_accel_channels),
  905. .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
  906. {19122, BMC150_ACCEL_DEF_RANGE_4G},
  907. {38344, BMC150_ACCEL_DEF_RANGE_8G},
  908. {76590, BMC150_ACCEL_DEF_RANGE_16G} },
  909. },
  910. [bma250e] = {
  911. .name = "BMA250E",
  912. .chip_id = 0xF9,
  913. .channels = bma250e_accel_channels,
  914. .num_channels = ARRAY_SIZE(bma250e_accel_channels),
  915. .scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
  916. {76590, BMC150_ACCEL_DEF_RANGE_4G},
  917. {153277, BMC150_ACCEL_DEF_RANGE_8G},
  918. {306457, BMC150_ACCEL_DEF_RANGE_16G} },
  919. },
  920. [bma222e] = {
  921. .name = "BMA222E",
  922. .chip_id = 0xF8,
  923. .channels = bma222e_accel_channels,
  924. .num_channels = ARRAY_SIZE(bma222e_accel_channels),
  925. .scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
  926. {306457, BMC150_ACCEL_DEF_RANGE_4G},
  927. {612915, BMC150_ACCEL_DEF_RANGE_8G},
  928. {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
  929. },
  930. [bma280] = {
  931. .name = "BMA0280",
  932. .chip_id = 0xFB,
  933. .channels = bma280_accel_channels,
  934. .num_channels = ARRAY_SIZE(bma280_accel_channels),
  935. .scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
  936. {4785, BMC150_ACCEL_DEF_RANGE_4G},
  937. {9581, BMC150_ACCEL_DEF_RANGE_8G},
  938. {19152, BMC150_ACCEL_DEF_RANGE_16G} },
  939. },
  940. };
  941. static const struct iio_info bmc150_accel_info = {
  942. .attrs = &bmc150_accel_attrs_group,
  943. .read_raw = bmc150_accel_read_raw,
  944. .write_raw = bmc150_accel_write_raw,
  945. .read_event_value = bmc150_accel_read_event,
  946. .write_event_value = bmc150_accel_write_event,
  947. .write_event_config = bmc150_accel_write_event_config,
  948. .read_event_config = bmc150_accel_read_event_config,
  949. .driver_module = THIS_MODULE,
  950. };
  951. static const struct iio_info bmc150_accel_info_fifo = {
  952. .attrs = &bmc150_accel_attrs_group,
  953. .read_raw = bmc150_accel_read_raw,
  954. .write_raw = bmc150_accel_write_raw,
  955. .read_event_value = bmc150_accel_read_event,
  956. .write_event_value = bmc150_accel_write_event,
  957. .write_event_config = bmc150_accel_write_event_config,
  958. .read_event_config = bmc150_accel_read_event_config,
  959. .validate_trigger = bmc150_accel_validate_trigger,
  960. .hwfifo_set_watermark = bmc150_accel_set_watermark,
  961. .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush,
  962. .driver_module = THIS_MODULE,
  963. };
  964. static const unsigned long bmc150_accel_scan_masks[] = {
  965. BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
  966. 0};
  967. static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
  968. {
  969. struct iio_poll_func *pf = p;
  970. struct iio_dev *indio_dev = pf->indio_dev;
  971. struct bmc150_accel_data *data = iio_priv(indio_dev);
  972. int ret;
  973. mutex_lock(&data->mutex);
  974. ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
  975. data->buffer, AXIS_MAX * 2);
  976. mutex_unlock(&data->mutex);
  977. if (ret < 0)
  978. goto err_read;
  979. iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
  980. pf->timestamp);
  981. err_read:
  982. iio_trigger_notify_done(indio_dev->trig);
  983. return IRQ_HANDLED;
  984. }
  985. static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
  986. {
  987. struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
  988. struct bmc150_accel_data *data = t->data;
  989. struct device *dev = regmap_get_device(data->regmap);
  990. int ret;
  991. /* new data interrupts don't need ack */
  992. if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
  993. return 0;
  994. mutex_lock(&data->mutex);
  995. /* clear any latched interrupt */
  996. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  997. BMC150_ACCEL_INT_MODE_LATCH_INT |
  998. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  999. mutex_unlock(&data->mutex);
  1000. if (ret < 0) {
  1001. dev_err(dev, "Error writing reg_int_rst_latch\n");
  1002. return ret;
  1003. }
  1004. return 0;
  1005. }
  1006. static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
  1007. bool state)
  1008. {
  1009. struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
  1010. struct bmc150_accel_data *data = t->data;
  1011. int ret;
  1012. mutex_lock(&data->mutex);
  1013. if (t->enabled == state) {
  1014. mutex_unlock(&data->mutex);
  1015. return 0;
  1016. }
  1017. if (t->setup) {
  1018. ret = t->setup(t, state);
  1019. if (ret < 0) {
  1020. mutex_unlock(&data->mutex);
  1021. return ret;
  1022. }
  1023. }
  1024. ret = bmc150_accel_set_interrupt(data, t->intr, state);
  1025. if (ret < 0) {
  1026. mutex_unlock(&data->mutex);
  1027. return ret;
  1028. }
  1029. t->enabled = state;
  1030. mutex_unlock(&data->mutex);
  1031. return ret;
  1032. }
  1033. static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
  1034. .set_trigger_state = bmc150_accel_trigger_set_state,
  1035. .try_reenable = bmc150_accel_trig_try_reen,
  1036. .owner = THIS_MODULE,
  1037. };
  1038. static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
  1039. {
  1040. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1041. struct device *dev = regmap_get_device(data->regmap);
  1042. int dir;
  1043. int ret;
  1044. unsigned int val;
  1045. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
  1046. if (ret < 0) {
  1047. dev_err(dev, "Error reading reg_int_status_2\n");
  1048. return ret;
  1049. }
  1050. if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
  1051. dir = IIO_EV_DIR_FALLING;
  1052. else
  1053. dir = IIO_EV_DIR_RISING;
  1054. if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
  1055. iio_push_event(indio_dev,
  1056. IIO_MOD_EVENT_CODE(IIO_ACCEL,
  1057. 0,
  1058. IIO_MOD_X,
  1059. IIO_EV_TYPE_ROC,
  1060. dir),
  1061. data->timestamp);
  1062. if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
  1063. iio_push_event(indio_dev,
  1064. IIO_MOD_EVENT_CODE(IIO_ACCEL,
  1065. 0,
  1066. IIO_MOD_Y,
  1067. IIO_EV_TYPE_ROC,
  1068. dir),
  1069. data->timestamp);
  1070. if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
  1071. iio_push_event(indio_dev,
  1072. IIO_MOD_EVENT_CODE(IIO_ACCEL,
  1073. 0,
  1074. IIO_MOD_Z,
  1075. IIO_EV_TYPE_ROC,
  1076. dir),
  1077. data->timestamp);
  1078. return ret;
  1079. }
  1080. static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
  1081. {
  1082. struct iio_dev *indio_dev = private;
  1083. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1084. struct device *dev = regmap_get_device(data->regmap);
  1085. bool ack = false;
  1086. int ret;
  1087. mutex_lock(&data->mutex);
  1088. if (data->fifo_mode) {
  1089. ret = __bmc150_accel_fifo_flush(indio_dev,
  1090. BMC150_ACCEL_FIFO_LENGTH, true);
  1091. if (ret > 0)
  1092. ack = true;
  1093. }
  1094. if (data->ev_enable_state) {
  1095. ret = bmc150_accel_handle_roc_event(indio_dev);
  1096. if (ret > 0)
  1097. ack = true;
  1098. }
  1099. if (ack) {
  1100. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  1101. BMC150_ACCEL_INT_MODE_LATCH_INT |
  1102. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  1103. if (ret)
  1104. dev_err(dev, "Error writing reg_int_rst_latch\n");
  1105. ret = IRQ_HANDLED;
  1106. } else {
  1107. ret = IRQ_NONE;
  1108. }
  1109. mutex_unlock(&data->mutex);
  1110. return ret;
  1111. }
  1112. static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
  1113. {
  1114. struct iio_dev *indio_dev = private;
  1115. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1116. bool ack = false;
  1117. int i;
  1118. data->old_timestamp = data->timestamp;
  1119. data->timestamp = iio_get_time_ns(indio_dev);
  1120. for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
  1121. if (data->triggers[i].enabled) {
  1122. iio_trigger_poll(data->triggers[i].indio_trig);
  1123. ack = true;
  1124. break;
  1125. }
  1126. }
  1127. if (data->ev_enable_state || data->fifo_mode)
  1128. return IRQ_WAKE_THREAD;
  1129. if (ack)
  1130. return IRQ_HANDLED;
  1131. return IRQ_NONE;
  1132. }
  1133. static const struct {
  1134. int intr;
  1135. const char *name;
  1136. int (*setup)(struct bmc150_accel_trigger *t, bool state);
  1137. } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
  1138. {
  1139. .intr = 0,
  1140. .name = "%s-dev%d",
  1141. },
  1142. {
  1143. .intr = 1,
  1144. .name = "%s-any-motion-dev%d",
  1145. .setup = bmc150_accel_any_motion_setup,
  1146. },
  1147. };
  1148. static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
  1149. int from)
  1150. {
  1151. int i;
  1152. for (i = from; i >= 0; i--) {
  1153. if (data->triggers[i].indio_trig) {
  1154. iio_trigger_unregister(data->triggers[i].indio_trig);
  1155. data->triggers[i].indio_trig = NULL;
  1156. }
  1157. }
  1158. }
  1159. static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
  1160. struct bmc150_accel_data *data)
  1161. {
  1162. struct device *dev = regmap_get_device(data->regmap);
  1163. int i, ret;
  1164. for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
  1165. struct bmc150_accel_trigger *t = &data->triggers[i];
  1166. t->indio_trig = devm_iio_trigger_alloc(dev,
  1167. bmc150_accel_triggers[i].name,
  1168. indio_dev->name,
  1169. indio_dev->id);
  1170. if (!t->indio_trig) {
  1171. ret = -ENOMEM;
  1172. break;
  1173. }
  1174. t->indio_trig->dev.parent = dev;
  1175. t->indio_trig->ops = &bmc150_accel_trigger_ops;
  1176. t->intr = bmc150_accel_triggers[i].intr;
  1177. t->data = data;
  1178. t->setup = bmc150_accel_triggers[i].setup;
  1179. iio_trigger_set_drvdata(t->indio_trig, t);
  1180. ret = iio_trigger_register(t->indio_trig);
  1181. if (ret)
  1182. break;
  1183. }
  1184. if (ret)
  1185. bmc150_accel_unregister_triggers(data, i - 1);
  1186. return ret;
  1187. }
  1188. #define BMC150_ACCEL_FIFO_MODE_STREAM 0x80
  1189. #define BMC150_ACCEL_FIFO_MODE_FIFO 0x40
  1190. #define BMC150_ACCEL_FIFO_MODE_BYPASS 0x00
  1191. static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
  1192. {
  1193. struct device *dev = regmap_get_device(data->regmap);
  1194. u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
  1195. int ret;
  1196. ret = regmap_write(data->regmap, reg, data->fifo_mode);
  1197. if (ret < 0) {
  1198. dev_err(dev, "Error writing reg_fifo_config1\n");
  1199. return ret;
  1200. }
  1201. if (!data->fifo_mode)
  1202. return 0;
  1203. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
  1204. data->watermark);
  1205. if (ret < 0)
  1206. dev_err(dev, "Error writing reg_fifo_config0\n");
  1207. return ret;
  1208. }
  1209. static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
  1210. {
  1211. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1212. return bmc150_accel_set_power_state(data, true);
  1213. }
  1214. static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
  1215. {
  1216. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1217. int ret = 0;
  1218. if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
  1219. return iio_triggered_buffer_postenable(indio_dev);
  1220. mutex_lock(&data->mutex);
  1221. if (!data->watermark)
  1222. goto out;
  1223. ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
  1224. true);
  1225. if (ret)
  1226. goto out;
  1227. data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
  1228. ret = bmc150_accel_fifo_set_mode(data);
  1229. if (ret) {
  1230. data->fifo_mode = 0;
  1231. bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
  1232. false);
  1233. }
  1234. out:
  1235. mutex_unlock(&data->mutex);
  1236. return ret;
  1237. }
  1238. static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
  1239. {
  1240. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1241. if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
  1242. return iio_triggered_buffer_predisable(indio_dev);
  1243. mutex_lock(&data->mutex);
  1244. if (!data->fifo_mode)
  1245. goto out;
  1246. bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
  1247. __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
  1248. data->fifo_mode = 0;
  1249. bmc150_accel_fifo_set_mode(data);
  1250. out:
  1251. mutex_unlock(&data->mutex);
  1252. return 0;
  1253. }
  1254. static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
  1255. {
  1256. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1257. return bmc150_accel_set_power_state(data, false);
  1258. }
  1259. static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
  1260. .preenable = bmc150_accel_buffer_preenable,
  1261. .postenable = bmc150_accel_buffer_postenable,
  1262. .predisable = bmc150_accel_buffer_predisable,
  1263. .postdisable = bmc150_accel_buffer_postdisable,
  1264. };
  1265. static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
  1266. {
  1267. struct device *dev = regmap_get_device(data->regmap);
  1268. int ret, i;
  1269. unsigned int val;
  1270. /*
  1271. * Reset chip to get it in a known good state. A delay of 1.8ms after
  1272. * reset is required according to the data sheets of supported chips.
  1273. */
  1274. regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
  1275. BMC150_ACCEL_RESET_VAL);
  1276. usleep_range(1800, 2500);
  1277. ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
  1278. if (ret < 0) {
  1279. dev_err(dev, "Error: Reading chip id\n");
  1280. return ret;
  1281. }
  1282. dev_dbg(dev, "Chip Id %x\n", val);
  1283. for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
  1284. if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
  1285. data->chip_info = &bmc150_accel_chip_info_tbl[i];
  1286. break;
  1287. }
  1288. }
  1289. if (!data->chip_info) {
  1290. dev_err(dev, "Invalid chip %x\n", val);
  1291. return -ENODEV;
  1292. }
  1293. ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
  1294. if (ret < 0)
  1295. return ret;
  1296. /* Set Bandwidth */
  1297. ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
  1298. if (ret < 0)
  1299. return ret;
  1300. /* Set Default Range */
  1301. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
  1302. BMC150_ACCEL_DEF_RANGE_4G);
  1303. if (ret < 0) {
  1304. dev_err(dev, "Error writing reg_pmu_range\n");
  1305. return ret;
  1306. }
  1307. data->range = BMC150_ACCEL_DEF_RANGE_4G;
  1308. /* Set default slope duration and thresholds */
  1309. data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
  1310. data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
  1311. ret = bmc150_accel_update_slope(data);
  1312. if (ret < 0)
  1313. return ret;
  1314. /* Set default as latched interrupts */
  1315. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  1316. BMC150_ACCEL_INT_MODE_LATCH_INT |
  1317. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  1318. if (ret < 0) {
  1319. dev_err(dev, "Error writing reg_int_rst_latch\n");
  1320. return ret;
  1321. }
  1322. return 0;
  1323. }
  1324. int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
  1325. const char *name, bool block_supported)
  1326. {
  1327. struct bmc150_accel_data *data;
  1328. struct iio_dev *indio_dev;
  1329. int ret;
  1330. indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
  1331. if (!indio_dev)
  1332. return -ENOMEM;
  1333. data = iio_priv(indio_dev);
  1334. dev_set_drvdata(dev, indio_dev);
  1335. data->irq = irq;
  1336. data->regmap = regmap;
  1337. ret = bmc150_accel_chip_init(data);
  1338. if (ret < 0)
  1339. return ret;
  1340. mutex_init(&data->mutex);
  1341. indio_dev->dev.parent = dev;
  1342. indio_dev->channels = data->chip_info->channels;
  1343. indio_dev->num_channels = data->chip_info->num_channels;
  1344. indio_dev->name = name ? name : data->chip_info->name;
  1345. indio_dev->available_scan_masks = bmc150_accel_scan_masks;
  1346. indio_dev->modes = INDIO_DIRECT_MODE;
  1347. indio_dev->info = &bmc150_accel_info;
  1348. ret = iio_triggered_buffer_setup(indio_dev,
  1349. &iio_pollfunc_store_time,
  1350. bmc150_accel_trigger_handler,
  1351. &bmc150_accel_buffer_ops);
  1352. if (ret < 0) {
  1353. dev_err(dev, "Failed: iio triggered buffer setup\n");
  1354. return ret;
  1355. }
  1356. if (data->irq > 0) {
  1357. ret = devm_request_threaded_irq(
  1358. dev, data->irq,
  1359. bmc150_accel_irq_handler,
  1360. bmc150_accel_irq_thread_handler,
  1361. IRQF_TRIGGER_RISING,
  1362. BMC150_ACCEL_IRQ_NAME,
  1363. indio_dev);
  1364. if (ret)
  1365. goto err_buffer_cleanup;
  1366. /*
  1367. * Set latched mode interrupt. While certain interrupts are
  1368. * non-latched regardless of this settings (e.g. new data) we
  1369. * want to use latch mode when we can to prevent interrupt
  1370. * flooding.
  1371. */
  1372. ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
  1373. BMC150_ACCEL_INT_MODE_LATCH_RESET);
  1374. if (ret < 0) {
  1375. dev_err(dev, "Error writing reg_int_rst_latch\n");
  1376. goto err_buffer_cleanup;
  1377. }
  1378. bmc150_accel_interrupts_setup(indio_dev, data);
  1379. ret = bmc150_accel_triggers_setup(indio_dev, data);
  1380. if (ret)
  1381. goto err_buffer_cleanup;
  1382. if (block_supported) {
  1383. indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
  1384. indio_dev->info = &bmc150_accel_info_fifo;
  1385. iio_buffer_set_attrs(indio_dev->buffer,
  1386. bmc150_accel_fifo_attributes);
  1387. }
  1388. }
  1389. ret = pm_runtime_set_active(dev);
  1390. if (ret)
  1391. goto err_trigger_unregister;
  1392. pm_runtime_enable(dev);
  1393. pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
  1394. pm_runtime_use_autosuspend(dev);
  1395. ret = iio_device_register(indio_dev);
  1396. if (ret < 0) {
  1397. dev_err(dev, "Unable to register iio device\n");
  1398. goto err_trigger_unregister;
  1399. }
  1400. return 0;
  1401. err_trigger_unregister:
  1402. bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
  1403. err_buffer_cleanup:
  1404. iio_triggered_buffer_cleanup(indio_dev);
  1405. return ret;
  1406. }
  1407. EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
  1408. int bmc150_accel_core_remove(struct device *dev)
  1409. {
  1410. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1411. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1412. iio_device_unregister(indio_dev);
  1413. pm_runtime_disable(dev);
  1414. pm_runtime_set_suspended(dev);
  1415. pm_runtime_put_noidle(dev);
  1416. bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
  1417. iio_triggered_buffer_cleanup(indio_dev);
  1418. mutex_lock(&data->mutex);
  1419. bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
  1420. mutex_unlock(&data->mutex);
  1421. return 0;
  1422. }
  1423. EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
  1424. #ifdef CONFIG_PM_SLEEP
  1425. static int bmc150_accel_suspend(struct device *dev)
  1426. {
  1427. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1428. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1429. mutex_lock(&data->mutex);
  1430. bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
  1431. mutex_unlock(&data->mutex);
  1432. return 0;
  1433. }
  1434. static int bmc150_accel_resume(struct device *dev)
  1435. {
  1436. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1437. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1438. mutex_lock(&data->mutex);
  1439. bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
  1440. bmc150_accel_fifo_set_mode(data);
  1441. mutex_unlock(&data->mutex);
  1442. return 0;
  1443. }
  1444. #endif
  1445. #ifdef CONFIG_PM
  1446. static int bmc150_accel_runtime_suspend(struct device *dev)
  1447. {
  1448. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1449. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1450. int ret;
  1451. dev_dbg(dev, __func__);
  1452. ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
  1453. if (ret < 0)
  1454. return -EAGAIN;
  1455. return 0;
  1456. }
  1457. static int bmc150_accel_runtime_resume(struct device *dev)
  1458. {
  1459. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  1460. struct bmc150_accel_data *data = iio_priv(indio_dev);
  1461. int ret;
  1462. int sleep_val;
  1463. dev_dbg(dev, __func__);
  1464. ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
  1465. if (ret < 0)
  1466. return ret;
  1467. ret = bmc150_accel_fifo_set_mode(data);
  1468. if (ret < 0)
  1469. return ret;
  1470. sleep_val = bmc150_accel_get_startup_times(data);
  1471. if (sleep_val < 20)
  1472. usleep_range(sleep_val * 1000, 20000);
  1473. else
  1474. msleep_interruptible(sleep_val);
  1475. return 0;
  1476. }
  1477. #endif
  1478. const struct dev_pm_ops bmc150_accel_pm_ops = {
  1479. SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
  1480. SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
  1481. bmc150_accel_runtime_resume, NULL)
  1482. };
  1483. EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
  1484. MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
  1485. MODULE_LICENSE("GPL v2");
  1486. MODULE_DESCRIPTION("BMC150 accelerometer driver");