lm85.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698
  1. /*
  2. * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
  3. * monitoring
  4. * Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
  5. * Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
  6. * Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de>
  7. * Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com>
  8. * Copyright (C) 2007--2014 Jean Delvare <jdelvare@suse.de>
  9. *
  10. * Chip details at <http://www.national.com/ds/LM/LM85.pdf>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License, or
  15. * (at your option) any later version.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/of_device.h>
  28. #include <linux/init.h>
  29. #include <linux/slab.h>
  30. #include <linux/jiffies.h>
  31. #include <linux/i2c.h>
  32. #include <linux/hwmon.h>
  33. #include <linux/hwmon-vid.h>
  34. #include <linux/hwmon-sysfs.h>
  35. #include <linux/err.h>
  36. #include <linux/mutex.h>
  37. #include <linux/util_macros.h>
  38. /* Addresses to scan */
  39. static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  40. enum chips {
  41. lm85,
  42. adm1027, adt7463, adt7468,
  43. emc6d100, emc6d102, emc6d103, emc6d103s
  44. };
  45. /* The LM85 registers */
  46. #define LM85_REG_IN(nr) (0x20 + (nr))
  47. #define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2)
  48. #define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2)
  49. #define LM85_REG_TEMP(nr) (0x25 + (nr))
  50. #define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2)
  51. #define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2)
  52. /* Fan speeds are LSB, MSB (2 bytes) */
  53. #define LM85_REG_FAN(nr) (0x28 + (nr) * 2)
  54. #define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2)
  55. #define LM85_REG_PWM(nr) (0x30 + (nr))
  56. #define LM85_REG_COMPANY 0x3e
  57. #define LM85_REG_VERSTEP 0x3f
  58. #define ADT7468_REG_CFG5 0x7c
  59. #define ADT7468_OFF64 (1 << 0)
  60. #define ADT7468_HFPWM (1 << 1)
  61. #define IS_ADT7468_OFF64(data) \
  62. ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
  63. #define IS_ADT7468_HFPWM(data) \
  64. ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
  65. /* These are the recognized values for the above regs */
  66. #define LM85_COMPANY_NATIONAL 0x01
  67. #define LM85_COMPANY_ANALOG_DEV 0x41
  68. #define LM85_COMPANY_SMSC 0x5c
  69. #define LM85_VERSTEP_LM85C 0x60
  70. #define LM85_VERSTEP_LM85B 0x62
  71. #define LM85_VERSTEP_LM96000_1 0x68
  72. #define LM85_VERSTEP_LM96000_2 0x69
  73. #define LM85_VERSTEP_ADM1027 0x60
  74. #define LM85_VERSTEP_ADT7463 0x62
  75. #define LM85_VERSTEP_ADT7463C 0x6A
  76. #define LM85_VERSTEP_ADT7468_1 0x71
  77. #define LM85_VERSTEP_ADT7468_2 0x72
  78. #define LM85_VERSTEP_EMC6D100_A0 0x60
  79. #define LM85_VERSTEP_EMC6D100_A1 0x61
  80. #define LM85_VERSTEP_EMC6D102 0x65
  81. #define LM85_VERSTEP_EMC6D103_A0 0x68
  82. #define LM85_VERSTEP_EMC6D103_A1 0x69
  83. #define LM85_VERSTEP_EMC6D103S 0x6A /* Also known as EMC6D103:A2 */
  84. #define LM85_REG_CONFIG 0x40
  85. #define LM85_REG_ALARM1 0x41
  86. #define LM85_REG_ALARM2 0x42
  87. #define LM85_REG_VID 0x43
  88. /* Automated FAN control */
  89. #define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr))
  90. #define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr))
  91. #define LM85_REG_AFAN_SPIKE1 0x62
  92. #define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr))
  93. #define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr))
  94. #define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr))
  95. #define LM85_REG_AFAN_HYST1 0x6d
  96. #define LM85_REG_AFAN_HYST2 0x6e
  97. #define ADM1027_REG_EXTEND_ADC1 0x76
  98. #define ADM1027_REG_EXTEND_ADC2 0x77
  99. #define EMC6D100_REG_ALARM3 0x7d
  100. /* IN5, IN6 and IN7 */
  101. #define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5))
  102. #define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2)
  103. #define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2)
  104. #define EMC6D102_REG_EXTEND_ADC1 0x85
  105. #define EMC6D102_REG_EXTEND_ADC2 0x86
  106. #define EMC6D102_REG_EXTEND_ADC3 0x87
  107. #define EMC6D102_REG_EXTEND_ADC4 0x88
  108. /*
  109. * Conversions. Rounding and limit checking is only done on the TO_REG
  110. * variants. Note that you should be a bit careful with which arguments
  111. * these macros are called: arguments may be evaluated more than once.
  112. */
  113. /* IN are scaled according to built-in resistors */
  114. static const int lm85_scaling[] = { /* .001 Volts */
  115. 2500, 2250, 3300, 5000, 12000,
  116. 3300, 1500, 1800 /*EMC6D100*/
  117. };
  118. #define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from))
  119. #define INS_TO_REG(n, val) \
  120. SCALE(clamp_val(val, 0, 255 * lm85_scaling[n] / 192), \
  121. lm85_scaling[n], 192)
  122. #define INSEXT_FROM_REG(n, val, ext) \
  123. SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
  124. #define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n])
  125. /* FAN speed is measured using 90kHz clock */
  126. static inline u16 FAN_TO_REG(unsigned long val)
  127. {
  128. if (!val)
  129. return 0xffff;
  130. return clamp_val(5400000 / val, 1, 0xfffe);
  131. }
  132. #define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
  133. 5400000 / (val))
  134. /* Temperature is reported in .001 degC increments */
  135. #define TEMP_TO_REG(val) \
  136. DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
  137. #define TEMPEXT_FROM_REG(val, ext) \
  138. SCALE(((val) << 4) + (ext), 16, 1000)
  139. #define TEMP_FROM_REG(val) ((val) * 1000)
  140. #define PWM_TO_REG(val) clamp_val(val, 0, 255)
  141. #define PWM_FROM_REG(val) (val)
  142. /*
  143. * ZONEs have the following parameters:
  144. * Limit (low) temp, 1. degC
  145. * Hysteresis (below limit), 1. degC (0-15)
  146. * Range of speed control, .1 degC (2-80)
  147. * Critical (high) temp, 1. degC
  148. *
  149. * FAN PWMs have the following parameters:
  150. * Reference Zone, 1, 2, 3, etc.
  151. * Spinup time, .05 sec
  152. * PWM value at limit/low temp, 1 count
  153. * PWM Frequency, 1. Hz
  154. * PWM is Min or OFF below limit, flag
  155. * Invert PWM output, flag
  156. *
  157. * Some chips filter the temp, others the fan.
  158. * Filter constant (or disabled) .1 seconds
  159. */
  160. /* These are the zone temperature range encodings in .001 degree C */
  161. static const int lm85_range_map[] = {
  162. 2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
  163. 13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
  164. };
  165. static int RANGE_TO_REG(long range)
  166. {
  167. return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
  168. }
  169. #define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f]
  170. /* These are the PWM frequency encodings */
  171. static const int lm85_freq_map[8] = { /* 1 Hz */
  172. 10, 15, 23, 30, 38, 47, 61, 94
  173. };
  174. static const int adm1027_freq_map[8] = { /* 1 Hz */
  175. 11, 15, 22, 29, 35, 44, 59, 88
  176. };
  177. #define FREQ_MAP_LEN 8
  178. static int FREQ_TO_REG(const int *map,
  179. unsigned int map_size, unsigned long freq)
  180. {
  181. return find_closest(freq, map, map_size);
  182. }
  183. static int FREQ_FROM_REG(const int *map, u8 reg)
  184. {
  185. return map[reg & 0x07];
  186. }
  187. /*
  188. * Since we can't use strings, I'm abusing these numbers
  189. * to stand in for the following meanings:
  190. * 1 -- PWM responds to Zone 1
  191. * 2 -- PWM responds to Zone 2
  192. * 3 -- PWM responds to Zone 3
  193. * 23 -- PWM responds to the higher temp of Zone 2 or 3
  194. * 123 -- PWM responds to highest of Zone 1, 2, or 3
  195. * 0 -- PWM is always at 0% (ie, off)
  196. * -1 -- PWM is always at 100%
  197. * -2 -- PWM responds to manual control
  198. */
  199. static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
  200. #define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5]
  201. static int ZONE_TO_REG(int zone)
  202. {
  203. int i;
  204. for (i = 0; i <= 7; ++i)
  205. if (zone == lm85_zone_map[i])
  206. break;
  207. if (i > 7) /* Not found. */
  208. i = 3; /* Always 100% */
  209. return i << 5;
  210. }
  211. #define HYST_TO_REG(val) clamp_val(((val) + 500) / 1000, 0, 15)
  212. #define HYST_FROM_REG(val) ((val) * 1000)
  213. /*
  214. * Chip sampling rates
  215. *
  216. * Some sensors are not updated more frequently than once per second
  217. * so it doesn't make sense to read them more often than that.
  218. * We cache the results and return the saved data if the driver
  219. * is called again before a second has elapsed.
  220. *
  221. * Also, there is significant configuration data for this chip
  222. * given the automatic PWM fan control that is possible. There
  223. * are about 47 bytes of config data to only 22 bytes of actual
  224. * readings. So, we keep the config data up to date in the cache
  225. * when it is written and only sample it once every 1 *minute*
  226. */
  227. #define LM85_DATA_INTERVAL (HZ + HZ / 2)
  228. #define LM85_CONFIG_INTERVAL (1 * 60 * HZ)
  229. /*
  230. * LM85 can automatically adjust fan speeds based on temperature
  231. * This structure encapsulates an entire Zone config. There are
  232. * three zones (one for each temperature input) on the lm85
  233. */
  234. struct lm85_zone {
  235. s8 limit; /* Low temp limit */
  236. u8 hyst; /* Low limit hysteresis. (0-15) */
  237. u8 range; /* Temp range, encoded */
  238. s8 critical; /* "All fans ON" temp limit */
  239. u8 max_desired; /*
  240. * Actual "max" temperature specified. Preserved
  241. * to prevent "drift" as other autofan control
  242. * values change.
  243. */
  244. };
  245. struct lm85_autofan {
  246. u8 config; /* Register value */
  247. u8 min_pwm; /* Minimum PWM value, encoded */
  248. u8 min_off; /* Min PWM or OFF below "limit", flag */
  249. };
  250. /*
  251. * For each registered chip, we need to keep some data in memory.
  252. * The structure is dynamically allocated.
  253. */
  254. struct lm85_data {
  255. struct i2c_client *client;
  256. const struct attribute_group *groups[6];
  257. const int *freq_map;
  258. enum chips type;
  259. bool has_vid5; /* true if VID5 is configured for ADT7463 or ADT7468 */
  260. struct mutex update_lock;
  261. int valid; /* !=0 if following fields are valid */
  262. unsigned long last_reading; /* In jiffies */
  263. unsigned long last_config; /* In jiffies */
  264. u8 in[8]; /* Register value */
  265. u8 in_max[8]; /* Register value */
  266. u8 in_min[8]; /* Register value */
  267. s8 temp[3]; /* Register value */
  268. s8 temp_min[3]; /* Register value */
  269. s8 temp_max[3]; /* Register value */
  270. u16 fan[4]; /* Register value */
  271. u16 fan_min[4]; /* Register value */
  272. u8 pwm[3]; /* Register value */
  273. u8 pwm_freq[3]; /* Register encoding */
  274. u8 temp_ext[3]; /* Decoded values */
  275. u8 in_ext[8]; /* Decoded values */
  276. u8 vid; /* Register value */
  277. u8 vrm; /* VRM version */
  278. u32 alarms; /* Register encoding, combined */
  279. u8 cfg5; /* Config Register 5 on ADT7468 */
  280. struct lm85_autofan autofan[3];
  281. struct lm85_zone zone[3];
  282. };
  283. static int lm85_read_value(struct i2c_client *client, u8 reg)
  284. {
  285. int res;
  286. /* What size location is it? */
  287. switch (reg) {
  288. case LM85_REG_FAN(0): /* Read WORD data */
  289. case LM85_REG_FAN(1):
  290. case LM85_REG_FAN(2):
  291. case LM85_REG_FAN(3):
  292. case LM85_REG_FAN_MIN(0):
  293. case LM85_REG_FAN_MIN(1):
  294. case LM85_REG_FAN_MIN(2):
  295. case LM85_REG_FAN_MIN(3):
  296. case LM85_REG_ALARM1: /* Read both bytes at once */
  297. res = i2c_smbus_read_byte_data(client, reg) & 0xff;
  298. res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
  299. break;
  300. default: /* Read BYTE data */
  301. res = i2c_smbus_read_byte_data(client, reg);
  302. break;
  303. }
  304. return res;
  305. }
  306. static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
  307. {
  308. switch (reg) {
  309. case LM85_REG_FAN(0): /* Write WORD data */
  310. case LM85_REG_FAN(1):
  311. case LM85_REG_FAN(2):
  312. case LM85_REG_FAN(3):
  313. case LM85_REG_FAN_MIN(0):
  314. case LM85_REG_FAN_MIN(1):
  315. case LM85_REG_FAN_MIN(2):
  316. case LM85_REG_FAN_MIN(3):
  317. /* NOTE: ALARM is read only, so not included here */
  318. i2c_smbus_write_byte_data(client, reg, value & 0xff);
  319. i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
  320. break;
  321. default: /* Write BYTE data */
  322. i2c_smbus_write_byte_data(client, reg, value);
  323. break;
  324. }
  325. }
  326. static struct lm85_data *lm85_update_device(struct device *dev)
  327. {
  328. struct lm85_data *data = dev_get_drvdata(dev);
  329. struct i2c_client *client = data->client;
  330. int i;
  331. mutex_lock(&data->update_lock);
  332. if (!data->valid ||
  333. time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
  334. /* Things that change quickly */
  335. dev_dbg(&client->dev, "Reading sensor values\n");
  336. /*
  337. * Have to read extended bits first to "freeze" the
  338. * more significant bits that are read later.
  339. * There are 2 additional resolution bits per channel and we
  340. * have room for 4, so we shift them to the left.
  341. */
  342. if (data->type == adm1027 || data->type == adt7463 ||
  343. data->type == adt7468) {
  344. int ext1 = lm85_read_value(client,
  345. ADM1027_REG_EXTEND_ADC1);
  346. int ext2 = lm85_read_value(client,
  347. ADM1027_REG_EXTEND_ADC2);
  348. int val = (ext1 << 8) + ext2;
  349. for (i = 0; i <= 4; i++)
  350. data->in_ext[i] =
  351. ((val >> (i * 2)) & 0x03) << 2;
  352. for (i = 0; i <= 2; i++)
  353. data->temp_ext[i] =
  354. (val >> ((i + 4) * 2)) & 0x0c;
  355. }
  356. data->vid = lm85_read_value(client, LM85_REG_VID);
  357. for (i = 0; i <= 3; ++i) {
  358. data->in[i] =
  359. lm85_read_value(client, LM85_REG_IN(i));
  360. data->fan[i] =
  361. lm85_read_value(client, LM85_REG_FAN(i));
  362. }
  363. if (!data->has_vid5)
  364. data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
  365. if (data->type == adt7468)
  366. data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
  367. for (i = 0; i <= 2; ++i) {
  368. data->temp[i] =
  369. lm85_read_value(client, LM85_REG_TEMP(i));
  370. data->pwm[i] =
  371. lm85_read_value(client, LM85_REG_PWM(i));
  372. if (IS_ADT7468_OFF64(data))
  373. data->temp[i] -= 64;
  374. }
  375. data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
  376. if (data->type == emc6d100) {
  377. /* Three more voltage sensors */
  378. for (i = 5; i <= 7; ++i) {
  379. data->in[i] = lm85_read_value(client,
  380. EMC6D100_REG_IN(i));
  381. }
  382. /* More alarm bits */
  383. data->alarms |= lm85_read_value(client,
  384. EMC6D100_REG_ALARM3) << 16;
  385. } else if (data->type == emc6d102 || data->type == emc6d103 ||
  386. data->type == emc6d103s) {
  387. /*
  388. * Have to read LSB bits after the MSB ones because
  389. * the reading of the MSB bits has frozen the
  390. * LSBs (backward from the ADM1027).
  391. */
  392. int ext1 = lm85_read_value(client,
  393. EMC6D102_REG_EXTEND_ADC1);
  394. int ext2 = lm85_read_value(client,
  395. EMC6D102_REG_EXTEND_ADC2);
  396. int ext3 = lm85_read_value(client,
  397. EMC6D102_REG_EXTEND_ADC3);
  398. int ext4 = lm85_read_value(client,
  399. EMC6D102_REG_EXTEND_ADC4);
  400. data->in_ext[0] = ext3 & 0x0f;
  401. data->in_ext[1] = ext4 & 0x0f;
  402. data->in_ext[2] = ext4 >> 4;
  403. data->in_ext[3] = ext3 >> 4;
  404. data->in_ext[4] = ext2 >> 4;
  405. data->temp_ext[0] = ext1 & 0x0f;
  406. data->temp_ext[1] = ext2 & 0x0f;
  407. data->temp_ext[2] = ext1 >> 4;
  408. }
  409. data->last_reading = jiffies;
  410. } /* last_reading */
  411. if (!data->valid ||
  412. time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
  413. /* Things that don't change often */
  414. dev_dbg(&client->dev, "Reading config values\n");
  415. for (i = 0; i <= 3; ++i) {
  416. data->in_min[i] =
  417. lm85_read_value(client, LM85_REG_IN_MIN(i));
  418. data->in_max[i] =
  419. lm85_read_value(client, LM85_REG_IN_MAX(i));
  420. data->fan_min[i] =
  421. lm85_read_value(client, LM85_REG_FAN_MIN(i));
  422. }
  423. if (!data->has_vid5) {
  424. data->in_min[4] = lm85_read_value(client,
  425. LM85_REG_IN_MIN(4));
  426. data->in_max[4] = lm85_read_value(client,
  427. LM85_REG_IN_MAX(4));
  428. }
  429. if (data->type == emc6d100) {
  430. for (i = 5; i <= 7; ++i) {
  431. data->in_min[i] = lm85_read_value(client,
  432. EMC6D100_REG_IN_MIN(i));
  433. data->in_max[i] = lm85_read_value(client,
  434. EMC6D100_REG_IN_MAX(i));
  435. }
  436. }
  437. for (i = 0; i <= 2; ++i) {
  438. int val;
  439. data->temp_min[i] =
  440. lm85_read_value(client, LM85_REG_TEMP_MIN(i));
  441. data->temp_max[i] =
  442. lm85_read_value(client, LM85_REG_TEMP_MAX(i));
  443. data->autofan[i].config =
  444. lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
  445. val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
  446. data->pwm_freq[i] = val & 0x07;
  447. data->zone[i].range = val >> 4;
  448. data->autofan[i].min_pwm =
  449. lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
  450. data->zone[i].limit =
  451. lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
  452. data->zone[i].critical =
  453. lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
  454. if (IS_ADT7468_OFF64(data)) {
  455. data->temp_min[i] -= 64;
  456. data->temp_max[i] -= 64;
  457. data->zone[i].limit -= 64;
  458. data->zone[i].critical -= 64;
  459. }
  460. }
  461. if (data->type != emc6d103s) {
  462. i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
  463. data->autofan[0].min_off = (i & 0x20) != 0;
  464. data->autofan[1].min_off = (i & 0x40) != 0;
  465. data->autofan[2].min_off = (i & 0x80) != 0;
  466. i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
  467. data->zone[0].hyst = i >> 4;
  468. data->zone[1].hyst = i & 0x0f;
  469. i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
  470. data->zone[2].hyst = i >> 4;
  471. }
  472. data->last_config = jiffies;
  473. } /* last_config */
  474. data->valid = 1;
  475. mutex_unlock(&data->update_lock);
  476. return data;
  477. }
  478. /* 4 Fans */
  479. static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
  480. char *buf)
  481. {
  482. int nr = to_sensor_dev_attr(attr)->index;
  483. struct lm85_data *data = lm85_update_device(dev);
  484. return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
  485. }
  486. static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
  487. char *buf)
  488. {
  489. int nr = to_sensor_dev_attr(attr)->index;
  490. struct lm85_data *data = lm85_update_device(dev);
  491. return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
  492. }
  493. static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
  494. const char *buf, size_t count)
  495. {
  496. int nr = to_sensor_dev_attr(attr)->index;
  497. struct lm85_data *data = dev_get_drvdata(dev);
  498. struct i2c_client *client = data->client;
  499. unsigned long val;
  500. int err;
  501. err = kstrtoul(buf, 10, &val);
  502. if (err)
  503. return err;
  504. mutex_lock(&data->update_lock);
  505. data->fan_min[nr] = FAN_TO_REG(val);
  506. lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
  507. mutex_unlock(&data->update_lock);
  508. return count;
  509. }
  510. #define show_fan_offset(offset) \
  511. static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
  512. show_fan, NULL, offset - 1); \
  513. static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
  514. show_fan_min, set_fan_min, offset - 1)
  515. show_fan_offset(1);
  516. show_fan_offset(2);
  517. show_fan_offset(3);
  518. show_fan_offset(4);
  519. /* vid, vrm, alarms */
  520. static ssize_t cpu0_vid_show(struct device *dev,
  521. struct device_attribute *attr, char *buf)
  522. {
  523. struct lm85_data *data = lm85_update_device(dev);
  524. int vid;
  525. if (data->has_vid5) {
  526. /* 6-pin VID (VRM 10) */
  527. vid = vid_from_reg(data->vid & 0x3f, data->vrm);
  528. } else {
  529. /* 5-pin VID (VRM 9) */
  530. vid = vid_from_reg(data->vid & 0x1f, data->vrm);
  531. }
  532. return sprintf(buf, "%d\n", vid);
  533. }
  534. static DEVICE_ATTR_RO(cpu0_vid);
  535. static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
  536. char *buf)
  537. {
  538. struct lm85_data *data = dev_get_drvdata(dev);
  539. return sprintf(buf, "%ld\n", (long) data->vrm);
  540. }
  541. static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
  542. const char *buf, size_t count)
  543. {
  544. struct lm85_data *data = dev_get_drvdata(dev);
  545. unsigned long val;
  546. int err;
  547. err = kstrtoul(buf, 10, &val);
  548. if (err)
  549. return err;
  550. if (val > 255)
  551. return -EINVAL;
  552. data->vrm = val;
  553. return count;
  554. }
  555. static DEVICE_ATTR_RW(vrm);
  556. static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
  557. char *buf)
  558. {
  559. struct lm85_data *data = lm85_update_device(dev);
  560. return sprintf(buf, "%u\n", data->alarms);
  561. }
  562. static DEVICE_ATTR_RO(alarms);
  563. static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
  564. char *buf)
  565. {
  566. int nr = to_sensor_dev_attr(attr)->index;
  567. struct lm85_data *data = lm85_update_device(dev);
  568. return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
  569. }
  570. static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
  571. static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
  572. static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
  573. static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
  574. static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
  575. static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
  576. static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
  577. static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
  578. static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
  579. static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
  580. static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
  581. static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
  582. static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
  583. static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
  584. static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
  585. static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
  586. static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
  587. /* pwm */
  588. static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
  589. char *buf)
  590. {
  591. int nr = to_sensor_dev_attr(attr)->index;
  592. struct lm85_data *data = lm85_update_device(dev);
  593. return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
  594. }
  595. static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
  596. const char *buf, size_t count)
  597. {
  598. int nr = to_sensor_dev_attr(attr)->index;
  599. struct lm85_data *data = dev_get_drvdata(dev);
  600. struct i2c_client *client = data->client;
  601. unsigned long val;
  602. int err;
  603. err = kstrtoul(buf, 10, &val);
  604. if (err)
  605. return err;
  606. mutex_lock(&data->update_lock);
  607. data->pwm[nr] = PWM_TO_REG(val);
  608. lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
  609. mutex_unlock(&data->update_lock);
  610. return count;
  611. }
  612. static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
  613. *attr, char *buf)
  614. {
  615. int nr = to_sensor_dev_attr(attr)->index;
  616. struct lm85_data *data = lm85_update_device(dev);
  617. int pwm_zone, enable;
  618. pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
  619. switch (pwm_zone) {
  620. case -1: /* PWM is always at 100% */
  621. enable = 0;
  622. break;
  623. case 0: /* PWM is always at 0% */
  624. case -2: /* PWM responds to manual control */
  625. enable = 1;
  626. break;
  627. default: /* PWM in automatic mode */
  628. enable = 2;
  629. }
  630. return sprintf(buf, "%d\n", enable);
  631. }
  632. static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
  633. *attr, const char *buf, size_t count)
  634. {
  635. int nr = to_sensor_dev_attr(attr)->index;
  636. struct lm85_data *data = dev_get_drvdata(dev);
  637. struct i2c_client *client = data->client;
  638. u8 config;
  639. unsigned long val;
  640. int err;
  641. err = kstrtoul(buf, 10, &val);
  642. if (err)
  643. return err;
  644. switch (val) {
  645. case 0:
  646. config = 3;
  647. break;
  648. case 1:
  649. config = 7;
  650. break;
  651. case 2:
  652. /*
  653. * Here we have to choose arbitrarily one of the 5 possible
  654. * configurations; I go for the safest
  655. */
  656. config = 6;
  657. break;
  658. default:
  659. return -EINVAL;
  660. }
  661. mutex_lock(&data->update_lock);
  662. data->autofan[nr].config = lm85_read_value(client,
  663. LM85_REG_AFAN_CONFIG(nr));
  664. data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
  665. | (config << 5);
  666. lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
  667. data->autofan[nr].config);
  668. mutex_unlock(&data->update_lock);
  669. return count;
  670. }
  671. static ssize_t show_pwm_freq(struct device *dev,
  672. struct device_attribute *attr, char *buf)
  673. {
  674. int nr = to_sensor_dev_attr(attr)->index;
  675. struct lm85_data *data = lm85_update_device(dev);
  676. int freq;
  677. if (IS_ADT7468_HFPWM(data))
  678. freq = 22500;
  679. else
  680. freq = FREQ_FROM_REG(data->freq_map, data->pwm_freq[nr]);
  681. return sprintf(buf, "%d\n", freq);
  682. }
  683. static ssize_t set_pwm_freq(struct device *dev,
  684. struct device_attribute *attr, const char *buf, size_t count)
  685. {
  686. int nr = to_sensor_dev_attr(attr)->index;
  687. struct lm85_data *data = dev_get_drvdata(dev);
  688. struct i2c_client *client = data->client;
  689. unsigned long val;
  690. int err;
  691. err = kstrtoul(buf, 10, &val);
  692. if (err)
  693. return err;
  694. mutex_lock(&data->update_lock);
  695. /*
  696. * The ADT7468 has a special high-frequency PWM output mode,
  697. * where all PWM outputs are driven by a 22.5 kHz clock.
  698. * This might confuse the user, but there's not much we can do.
  699. */
  700. if (data->type == adt7468 && val >= 11300) { /* High freq. mode */
  701. data->cfg5 &= ~ADT7468_HFPWM;
  702. lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
  703. } else { /* Low freq. mode */
  704. data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
  705. FREQ_MAP_LEN, val);
  706. lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
  707. (data->zone[nr].range << 4)
  708. | data->pwm_freq[nr]);
  709. if (data->type == adt7468) {
  710. data->cfg5 |= ADT7468_HFPWM;
  711. lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
  712. }
  713. }
  714. mutex_unlock(&data->update_lock);
  715. return count;
  716. }
  717. #define show_pwm_reg(offset) \
  718. static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR, \
  719. show_pwm, set_pwm, offset - 1); \
  720. static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR, \
  721. show_pwm_enable, set_pwm_enable, offset - 1); \
  722. static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR, \
  723. show_pwm_freq, set_pwm_freq, offset - 1)
  724. show_pwm_reg(1);
  725. show_pwm_reg(2);
  726. show_pwm_reg(3);
  727. /* Voltages */
  728. static ssize_t show_in(struct device *dev, struct device_attribute *attr,
  729. char *buf)
  730. {
  731. int nr = to_sensor_dev_attr(attr)->index;
  732. struct lm85_data *data = lm85_update_device(dev);
  733. return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
  734. data->in_ext[nr]));
  735. }
  736. static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
  737. char *buf)
  738. {
  739. int nr = to_sensor_dev_attr(attr)->index;
  740. struct lm85_data *data = lm85_update_device(dev);
  741. return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
  742. }
  743. static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
  744. const char *buf, size_t count)
  745. {
  746. int nr = to_sensor_dev_attr(attr)->index;
  747. struct lm85_data *data = dev_get_drvdata(dev);
  748. struct i2c_client *client = data->client;
  749. long val;
  750. int err;
  751. err = kstrtol(buf, 10, &val);
  752. if (err)
  753. return err;
  754. mutex_lock(&data->update_lock);
  755. data->in_min[nr] = INS_TO_REG(nr, val);
  756. lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
  757. mutex_unlock(&data->update_lock);
  758. return count;
  759. }
  760. static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
  761. char *buf)
  762. {
  763. int nr = to_sensor_dev_attr(attr)->index;
  764. struct lm85_data *data = lm85_update_device(dev);
  765. return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
  766. }
  767. static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
  768. const char *buf, size_t count)
  769. {
  770. int nr = to_sensor_dev_attr(attr)->index;
  771. struct lm85_data *data = dev_get_drvdata(dev);
  772. struct i2c_client *client = data->client;
  773. long val;
  774. int err;
  775. err = kstrtol(buf, 10, &val);
  776. if (err)
  777. return err;
  778. mutex_lock(&data->update_lock);
  779. data->in_max[nr] = INS_TO_REG(nr, val);
  780. lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
  781. mutex_unlock(&data->update_lock);
  782. return count;
  783. }
  784. #define show_in_reg(offset) \
  785. static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
  786. show_in, NULL, offset); \
  787. static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
  788. show_in_min, set_in_min, offset); \
  789. static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
  790. show_in_max, set_in_max, offset)
  791. show_in_reg(0);
  792. show_in_reg(1);
  793. show_in_reg(2);
  794. show_in_reg(3);
  795. show_in_reg(4);
  796. show_in_reg(5);
  797. show_in_reg(6);
  798. show_in_reg(7);
  799. /* Temps */
  800. static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
  801. char *buf)
  802. {
  803. int nr = to_sensor_dev_attr(attr)->index;
  804. struct lm85_data *data = lm85_update_device(dev);
  805. return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
  806. data->temp_ext[nr]));
  807. }
  808. static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
  809. char *buf)
  810. {
  811. int nr = to_sensor_dev_attr(attr)->index;
  812. struct lm85_data *data = lm85_update_device(dev);
  813. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
  814. }
  815. static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
  816. const char *buf, size_t count)
  817. {
  818. int nr = to_sensor_dev_attr(attr)->index;
  819. struct lm85_data *data = dev_get_drvdata(dev);
  820. struct i2c_client *client = data->client;
  821. long val;
  822. int err;
  823. err = kstrtol(buf, 10, &val);
  824. if (err)
  825. return err;
  826. if (IS_ADT7468_OFF64(data))
  827. val += 64;
  828. mutex_lock(&data->update_lock);
  829. data->temp_min[nr] = TEMP_TO_REG(val);
  830. lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
  831. mutex_unlock(&data->update_lock);
  832. return count;
  833. }
  834. static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
  835. char *buf)
  836. {
  837. int nr = to_sensor_dev_attr(attr)->index;
  838. struct lm85_data *data = lm85_update_device(dev);
  839. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
  840. }
  841. static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
  842. const char *buf, size_t count)
  843. {
  844. int nr = to_sensor_dev_attr(attr)->index;
  845. struct lm85_data *data = dev_get_drvdata(dev);
  846. struct i2c_client *client = data->client;
  847. long val;
  848. int err;
  849. err = kstrtol(buf, 10, &val);
  850. if (err)
  851. return err;
  852. if (IS_ADT7468_OFF64(data))
  853. val += 64;
  854. mutex_lock(&data->update_lock);
  855. data->temp_max[nr] = TEMP_TO_REG(val);
  856. lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
  857. mutex_unlock(&data->update_lock);
  858. return count;
  859. }
  860. #define show_temp_reg(offset) \
  861. static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
  862. show_temp, NULL, offset - 1); \
  863. static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
  864. show_temp_min, set_temp_min, offset - 1); \
  865. static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
  866. show_temp_max, set_temp_max, offset - 1);
  867. show_temp_reg(1);
  868. show_temp_reg(2);
  869. show_temp_reg(3);
  870. /* Automatic PWM control */
  871. static ssize_t show_pwm_auto_channels(struct device *dev,
  872. struct device_attribute *attr, char *buf)
  873. {
  874. int nr = to_sensor_dev_attr(attr)->index;
  875. struct lm85_data *data = lm85_update_device(dev);
  876. return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
  877. }
  878. static ssize_t set_pwm_auto_channels(struct device *dev,
  879. struct device_attribute *attr, const char *buf, size_t count)
  880. {
  881. int nr = to_sensor_dev_attr(attr)->index;
  882. struct lm85_data *data = dev_get_drvdata(dev);
  883. struct i2c_client *client = data->client;
  884. long val;
  885. int err;
  886. err = kstrtol(buf, 10, &val);
  887. if (err)
  888. return err;
  889. mutex_lock(&data->update_lock);
  890. data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
  891. | ZONE_TO_REG(val);
  892. lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
  893. data->autofan[nr].config);
  894. mutex_unlock(&data->update_lock);
  895. return count;
  896. }
  897. static ssize_t show_pwm_auto_pwm_min(struct device *dev,
  898. struct device_attribute *attr, char *buf)
  899. {
  900. int nr = to_sensor_dev_attr(attr)->index;
  901. struct lm85_data *data = lm85_update_device(dev);
  902. return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
  903. }
  904. static ssize_t set_pwm_auto_pwm_min(struct device *dev,
  905. struct device_attribute *attr, const char *buf, size_t count)
  906. {
  907. int nr = to_sensor_dev_attr(attr)->index;
  908. struct lm85_data *data = dev_get_drvdata(dev);
  909. struct i2c_client *client = data->client;
  910. unsigned long val;
  911. int err;
  912. err = kstrtoul(buf, 10, &val);
  913. if (err)
  914. return err;
  915. mutex_lock(&data->update_lock);
  916. data->autofan[nr].min_pwm = PWM_TO_REG(val);
  917. lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
  918. data->autofan[nr].min_pwm);
  919. mutex_unlock(&data->update_lock);
  920. return count;
  921. }
  922. static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
  923. struct device_attribute *attr, char *buf)
  924. {
  925. int nr = to_sensor_dev_attr(attr)->index;
  926. struct lm85_data *data = lm85_update_device(dev);
  927. return sprintf(buf, "%d\n", data->autofan[nr].min_off);
  928. }
  929. static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
  930. struct device_attribute *attr, const char *buf, size_t count)
  931. {
  932. int nr = to_sensor_dev_attr(attr)->index;
  933. struct lm85_data *data = dev_get_drvdata(dev);
  934. struct i2c_client *client = data->client;
  935. u8 tmp;
  936. long val;
  937. int err;
  938. err = kstrtol(buf, 10, &val);
  939. if (err)
  940. return err;
  941. mutex_lock(&data->update_lock);
  942. data->autofan[nr].min_off = val;
  943. tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
  944. tmp &= ~(0x20 << nr);
  945. if (data->autofan[nr].min_off)
  946. tmp |= 0x20 << nr;
  947. lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
  948. mutex_unlock(&data->update_lock);
  949. return count;
  950. }
  951. #define pwm_auto(offset) \
  952. static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels, \
  953. S_IRUGO | S_IWUSR, show_pwm_auto_channels, \
  954. set_pwm_auto_channels, offset - 1); \
  955. static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min, \
  956. S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min, \
  957. set_pwm_auto_pwm_min, offset - 1); \
  958. static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl, \
  959. S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl, \
  960. set_pwm_auto_pwm_minctl, offset - 1)
  961. pwm_auto(1);
  962. pwm_auto(2);
  963. pwm_auto(3);
  964. /* Temperature settings for automatic PWM control */
  965. static ssize_t show_temp_auto_temp_off(struct device *dev,
  966. struct device_attribute *attr, char *buf)
  967. {
  968. int nr = to_sensor_dev_attr(attr)->index;
  969. struct lm85_data *data = lm85_update_device(dev);
  970. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
  971. HYST_FROM_REG(data->zone[nr].hyst));
  972. }
  973. static ssize_t set_temp_auto_temp_off(struct device *dev,
  974. struct device_attribute *attr, const char *buf, size_t count)
  975. {
  976. int nr = to_sensor_dev_attr(attr)->index;
  977. struct lm85_data *data = dev_get_drvdata(dev);
  978. struct i2c_client *client = data->client;
  979. int min;
  980. long val;
  981. int err;
  982. err = kstrtol(buf, 10, &val);
  983. if (err)
  984. return err;
  985. mutex_lock(&data->update_lock);
  986. min = TEMP_FROM_REG(data->zone[nr].limit);
  987. data->zone[nr].hyst = HYST_TO_REG(min - val);
  988. if (nr == 0 || nr == 1) {
  989. lm85_write_value(client, LM85_REG_AFAN_HYST1,
  990. (data->zone[0].hyst << 4)
  991. | data->zone[1].hyst);
  992. } else {
  993. lm85_write_value(client, LM85_REG_AFAN_HYST2,
  994. (data->zone[2].hyst << 4));
  995. }
  996. mutex_unlock(&data->update_lock);
  997. return count;
  998. }
  999. static ssize_t show_temp_auto_temp_min(struct device *dev,
  1000. struct device_attribute *attr, char *buf)
  1001. {
  1002. int nr = to_sensor_dev_attr(attr)->index;
  1003. struct lm85_data *data = lm85_update_device(dev);
  1004. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
  1005. }
  1006. static ssize_t set_temp_auto_temp_min(struct device *dev,
  1007. struct device_attribute *attr, const char *buf, size_t count)
  1008. {
  1009. int nr = to_sensor_dev_attr(attr)->index;
  1010. struct lm85_data *data = dev_get_drvdata(dev);
  1011. struct i2c_client *client = data->client;
  1012. long val;
  1013. int err;
  1014. err = kstrtol(buf, 10, &val);
  1015. if (err)
  1016. return err;
  1017. mutex_lock(&data->update_lock);
  1018. data->zone[nr].limit = TEMP_TO_REG(val);
  1019. lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
  1020. data->zone[nr].limit);
  1021. /* Update temp_auto_max and temp_auto_range */
  1022. data->zone[nr].range = RANGE_TO_REG(
  1023. TEMP_FROM_REG(data->zone[nr].max_desired) -
  1024. TEMP_FROM_REG(data->zone[nr].limit));
  1025. lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
  1026. ((data->zone[nr].range & 0x0f) << 4)
  1027. | (data->pwm_freq[nr] & 0x07));
  1028. mutex_unlock(&data->update_lock);
  1029. return count;
  1030. }
  1031. static ssize_t show_temp_auto_temp_max(struct device *dev,
  1032. struct device_attribute *attr, char *buf)
  1033. {
  1034. int nr = to_sensor_dev_attr(attr)->index;
  1035. struct lm85_data *data = lm85_update_device(dev);
  1036. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
  1037. RANGE_FROM_REG(data->zone[nr].range));
  1038. }
  1039. static ssize_t set_temp_auto_temp_max(struct device *dev,
  1040. struct device_attribute *attr, const char *buf, size_t count)
  1041. {
  1042. int nr = to_sensor_dev_attr(attr)->index;
  1043. struct lm85_data *data = dev_get_drvdata(dev);
  1044. struct i2c_client *client = data->client;
  1045. int min;
  1046. long val;
  1047. int err;
  1048. err = kstrtol(buf, 10, &val);
  1049. if (err)
  1050. return err;
  1051. mutex_lock(&data->update_lock);
  1052. min = TEMP_FROM_REG(data->zone[nr].limit);
  1053. data->zone[nr].max_desired = TEMP_TO_REG(val);
  1054. data->zone[nr].range = RANGE_TO_REG(
  1055. val - min);
  1056. lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
  1057. ((data->zone[nr].range & 0x0f) << 4)
  1058. | (data->pwm_freq[nr] & 0x07));
  1059. mutex_unlock(&data->update_lock);
  1060. return count;
  1061. }
  1062. static ssize_t show_temp_auto_temp_crit(struct device *dev,
  1063. struct device_attribute *attr, char *buf)
  1064. {
  1065. int nr = to_sensor_dev_attr(attr)->index;
  1066. struct lm85_data *data = lm85_update_device(dev);
  1067. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
  1068. }
  1069. static ssize_t set_temp_auto_temp_crit(struct device *dev,
  1070. struct device_attribute *attr, const char *buf, size_t count)
  1071. {
  1072. int nr = to_sensor_dev_attr(attr)->index;
  1073. struct lm85_data *data = dev_get_drvdata(dev);
  1074. struct i2c_client *client = data->client;
  1075. long val;
  1076. int err;
  1077. err = kstrtol(buf, 10, &val);
  1078. if (err)
  1079. return err;
  1080. mutex_lock(&data->update_lock);
  1081. data->zone[nr].critical = TEMP_TO_REG(val);
  1082. lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
  1083. data->zone[nr].critical);
  1084. mutex_unlock(&data->update_lock);
  1085. return count;
  1086. }
  1087. #define temp_auto(offset) \
  1088. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off, \
  1089. S_IRUGO | S_IWUSR, show_temp_auto_temp_off, \
  1090. set_temp_auto_temp_off, offset - 1); \
  1091. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min, \
  1092. S_IRUGO | S_IWUSR, show_temp_auto_temp_min, \
  1093. set_temp_auto_temp_min, offset - 1); \
  1094. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max, \
  1095. S_IRUGO | S_IWUSR, show_temp_auto_temp_max, \
  1096. set_temp_auto_temp_max, offset - 1); \
  1097. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit, \
  1098. S_IRUGO | S_IWUSR, show_temp_auto_temp_crit, \
  1099. set_temp_auto_temp_crit, offset - 1);
  1100. temp_auto(1);
  1101. temp_auto(2);
  1102. temp_auto(3);
  1103. static struct attribute *lm85_attributes[] = {
  1104. &sensor_dev_attr_fan1_input.dev_attr.attr,
  1105. &sensor_dev_attr_fan2_input.dev_attr.attr,
  1106. &sensor_dev_attr_fan3_input.dev_attr.attr,
  1107. &sensor_dev_attr_fan4_input.dev_attr.attr,
  1108. &sensor_dev_attr_fan1_min.dev_attr.attr,
  1109. &sensor_dev_attr_fan2_min.dev_attr.attr,
  1110. &sensor_dev_attr_fan3_min.dev_attr.attr,
  1111. &sensor_dev_attr_fan4_min.dev_attr.attr,
  1112. &sensor_dev_attr_fan1_alarm.dev_attr.attr,
  1113. &sensor_dev_attr_fan2_alarm.dev_attr.attr,
  1114. &sensor_dev_attr_fan3_alarm.dev_attr.attr,
  1115. &sensor_dev_attr_fan4_alarm.dev_attr.attr,
  1116. &sensor_dev_attr_pwm1.dev_attr.attr,
  1117. &sensor_dev_attr_pwm2.dev_attr.attr,
  1118. &sensor_dev_attr_pwm3.dev_attr.attr,
  1119. &sensor_dev_attr_pwm1_enable.dev_attr.attr,
  1120. &sensor_dev_attr_pwm2_enable.dev_attr.attr,
  1121. &sensor_dev_attr_pwm3_enable.dev_attr.attr,
  1122. &sensor_dev_attr_pwm1_freq.dev_attr.attr,
  1123. &sensor_dev_attr_pwm2_freq.dev_attr.attr,
  1124. &sensor_dev_attr_pwm3_freq.dev_attr.attr,
  1125. &sensor_dev_attr_in0_input.dev_attr.attr,
  1126. &sensor_dev_attr_in1_input.dev_attr.attr,
  1127. &sensor_dev_attr_in2_input.dev_attr.attr,
  1128. &sensor_dev_attr_in3_input.dev_attr.attr,
  1129. &sensor_dev_attr_in0_min.dev_attr.attr,
  1130. &sensor_dev_attr_in1_min.dev_attr.attr,
  1131. &sensor_dev_attr_in2_min.dev_attr.attr,
  1132. &sensor_dev_attr_in3_min.dev_attr.attr,
  1133. &sensor_dev_attr_in0_max.dev_attr.attr,
  1134. &sensor_dev_attr_in1_max.dev_attr.attr,
  1135. &sensor_dev_attr_in2_max.dev_attr.attr,
  1136. &sensor_dev_attr_in3_max.dev_attr.attr,
  1137. &sensor_dev_attr_in0_alarm.dev_attr.attr,
  1138. &sensor_dev_attr_in1_alarm.dev_attr.attr,
  1139. &sensor_dev_attr_in2_alarm.dev_attr.attr,
  1140. &sensor_dev_attr_in3_alarm.dev_attr.attr,
  1141. &sensor_dev_attr_temp1_input.dev_attr.attr,
  1142. &sensor_dev_attr_temp2_input.dev_attr.attr,
  1143. &sensor_dev_attr_temp3_input.dev_attr.attr,
  1144. &sensor_dev_attr_temp1_min.dev_attr.attr,
  1145. &sensor_dev_attr_temp2_min.dev_attr.attr,
  1146. &sensor_dev_attr_temp3_min.dev_attr.attr,
  1147. &sensor_dev_attr_temp1_max.dev_attr.attr,
  1148. &sensor_dev_attr_temp2_max.dev_attr.attr,
  1149. &sensor_dev_attr_temp3_max.dev_attr.attr,
  1150. &sensor_dev_attr_temp1_alarm.dev_attr.attr,
  1151. &sensor_dev_attr_temp2_alarm.dev_attr.attr,
  1152. &sensor_dev_attr_temp3_alarm.dev_attr.attr,
  1153. &sensor_dev_attr_temp1_fault.dev_attr.attr,
  1154. &sensor_dev_attr_temp3_fault.dev_attr.attr,
  1155. &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
  1156. &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
  1157. &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
  1158. &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
  1159. &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
  1160. &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
  1161. &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
  1162. &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
  1163. &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
  1164. &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
  1165. &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
  1166. &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
  1167. &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
  1168. &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
  1169. &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
  1170. &dev_attr_vrm.attr,
  1171. &dev_attr_cpu0_vid.attr,
  1172. &dev_attr_alarms.attr,
  1173. NULL
  1174. };
  1175. static const struct attribute_group lm85_group = {
  1176. .attrs = lm85_attributes,
  1177. };
  1178. static struct attribute *lm85_attributes_minctl[] = {
  1179. &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
  1180. &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
  1181. &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
  1182. NULL
  1183. };
  1184. static const struct attribute_group lm85_group_minctl = {
  1185. .attrs = lm85_attributes_minctl,
  1186. };
  1187. static struct attribute *lm85_attributes_temp_off[] = {
  1188. &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
  1189. &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
  1190. &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
  1191. NULL
  1192. };
  1193. static const struct attribute_group lm85_group_temp_off = {
  1194. .attrs = lm85_attributes_temp_off,
  1195. };
  1196. static struct attribute *lm85_attributes_in4[] = {
  1197. &sensor_dev_attr_in4_input.dev_attr.attr,
  1198. &sensor_dev_attr_in4_min.dev_attr.attr,
  1199. &sensor_dev_attr_in4_max.dev_attr.attr,
  1200. &sensor_dev_attr_in4_alarm.dev_attr.attr,
  1201. NULL
  1202. };
  1203. static const struct attribute_group lm85_group_in4 = {
  1204. .attrs = lm85_attributes_in4,
  1205. };
  1206. static struct attribute *lm85_attributes_in567[] = {
  1207. &sensor_dev_attr_in5_input.dev_attr.attr,
  1208. &sensor_dev_attr_in6_input.dev_attr.attr,
  1209. &sensor_dev_attr_in7_input.dev_attr.attr,
  1210. &sensor_dev_attr_in5_min.dev_attr.attr,
  1211. &sensor_dev_attr_in6_min.dev_attr.attr,
  1212. &sensor_dev_attr_in7_min.dev_attr.attr,
  1213. &sensor_dev_attr_in5_max.dev_attr.attr,
  1214. &sensor_dev_attr_in6_max.dev_attr.attr,
  1215. &sensor_dev_attr_in7_max.dev_attr.attr,
  1216. &sensor_dev_attr_in5_alarm.dev_attr.attr,
  1217. &sensor_dev_attr_in6_alarm.dev_attr.attr,
  1218. &sensor_dev_attr_in7_alarm.dev_attr.attr,
  1219. NULL
  1220. };
  1221. static const struct attribute_group lm85_group_in567 = {
  1222. .attrs = lm85_attributes_in567,
  1223. };
  1224. static void lm85_init_client(struct i2c_client *client)
  1225. {
  1226. int value;
  1227. /* Start monitoring if needed */
  1228. value = lm85_read_value(client, LM85_REG_CONFIG);
  1229. if (!(value & 0x01)) {
  1230. dev_info(&client->dev, "Starting monitoring\n");
  1231. lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
  1232. }
  1233. /* Warn about unusual configuration bits */
  1234. if (value & 0x02)
  1235. dev_warn(&client->dev, "Device configuration is locked\n");
  1236. if (!(value & 0x04))
  1237. dev_warn(&client->dev, "Device is not ready\n");
  1238. }
  1239. static int lm85_is_fake(struct i2c_client *client)
  1240. {
  1241. /*
  1242. * Differenciate between real LM96000 and Winbond WPCD377I. The latter
  1243. * emulate the former except that it has no hardware monitoring function
  1244. * so the readings are always 0.
  1245. */
  1246. int i;
  1247. u8 in_temp, fan;
  1248. for (i = 0; i < 8; i++) {
  1249. in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
  1250. fan = i2c_smbus_read_byte_data(client, 0x28 + i);
  1251. if (in_temp != 0x00 || fan != 0xff)
  1252. return 0;
  1253. }
  1254. return 1;
  1255. }
  1256. /* Return 0 if detection is successful, -ENODEV otherwise */
  1257. static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
  1258. {
  1259. struct i2c_adapter *adapter = client->adapter;
  1260. int address = client->addr;
  1261. const char *type_name = NULL;
  1262. int company, verstep;
  1263. if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
  1264. /* We need to be able to do byte I/O */
  1265. return -ENODEV;
  1266. }
  1267. /* Determine the chip type */
  1268. company = lm85_read_value(client, LM85_REG_COMPANY);
  1269. verstep = lm85_read_value(client, LM85_REG_VERSTEP);
  1270. dev_dbg(&adapter->dev,
  1271. "Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
  1272. address, company, verstep);
  1273. if (company == LM85_COMPANY_NATIONAL) {
  1274. switch (verstep) {
  1275. case LM85_VERSTEP_LM85C:
  1276. type_name = "lm85c";
  1277. break;
  1278. case LM85_VERSTEP_LM85B:
  1279. type_name = "lm85b";
  1280. break;
  1281. case LM85_VERSTEP_LM96000_1:
  1282. case LM85_VERSTEP_LM96000_2:
  1283. /* Check for Winbond WPCD377I */
  1284. if (lm85_is_fake(client)) {
  1285. dev_dbg(&adapter->dev,
  1286. "Found Winbond WPCD377I, ignoring\n");
  1287. return -ENODEV;
  1288. }
  1289. type_name = "lm85";
  1290. break;
  1291. }
  1292. } else if (company == LM85_COMPANY_ANALOG_DEV) {
  1293. switch (verstep) {
  1294. case LM85_VERSTEP_ADM1027:
  1295. type_name = "adm1027";
  1296. break;
  1297. case LM85_VERSTEP_ADT7463:
  1298. case LM85_VERSTEP_ADT7463C:
  1299. type_name = "adt7463";
  1300. break;
  1301. case LM85_VERSTEP_ADT7468_1:
  1302. case LM85_VERSTEP_ADT7468_2:
  1303. type_name = "adt7468";
  1304. break;
  1305. }
  1306. } else if (company == LM85_COMPANY_SMSC) {
  1307. switch (verstep) {
  1308. case LM85_VERSTEP_EMC6D100_A0:
  1309. case LM85_VERSTEP_EMC6D100_A1:
  1310. /* Note: we can't tell a '100 from a '101 */
  1311. type_name = "emc6d100";
  1312. break;
  1313. case LM85_VERSTEP_EMC6D102:
  1314. type_name = "emc6d102";
  1315. break;
  1316. case LM85_VERSTEP_EMC6D103_A0:
  1317. case LM85_VERSTEP_EMC6D103_A1:
  1318. type_name = "emc6d103";
  1319. break;
  1320. case LM85_VERSTEP_EMC6D103S:
  1321. type_name = "emc6d103s";
  1322. break;
  1323. }
  1324. }
  1325. if (!type_name)
  1326. return -ENODEV;
  1327. strlcpy(info->type, type_name, I2C_NAME_SIZE);
  1328. return 0;
  1329. }
  1330. static int lm85_probe(struct i2c_client *client, const struct i2c_device_id *id)
  1331. {
  1332. struct device *dev = &client->dev;
  1333. struct device *hwmon_dev;
  1334. struct lm85_data *data;
  1335. int idx = 0;
  1336. data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
  1337. if (!data)
  1338. return -ENOMEM;
  1339. data->client = client;
  1340. if (client->dev.of_node)
  1341. data->type = (enum chips)of_device_get_match_data(&client->dev);
  1342. else
  1343. data->type = id->driver_data;
  1344. mutex_init(&data->update_lock);
  1345. /* Fill in the chip specific driver values */
  1346. switch (data->type) {
  1347. case adm1027:
  1348. case adt7463:
  1349. case adt7468:
  1350. case emc6d100:
  1351. case emc6d102:
  1352. case emc6d103:
  1353. case emc6d103s:
  1354. data->freq_map = adm1027_freq_map;
  1355. break;
  1356. default:
  1357. data->freq_map = lm85_freq_map;
  1358. }
  1359. /* Set the VRM version */
  1360. data->vrm = vid_which_vrm();
  1361. /* Initialize the LM85 chip */
  1362. lm85_init_client(client);
  1363. /* sysfs hooks */
  1364. data->groups[idx++] = &lm85_group;
  1365. /* minctl and temp_off exist on all chips except emc6d103s */
  1366. if (data->type != emc6d103s) {
  1367. data->groups[idx++] = &lm85_group_minctl;
  1368. data->groups[idx++] = &lm85_group_temp_off;
  1369. }
  1370. /*
  1371. * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
  1372. * as a sixth digital VID input rather than an analog input.
  1373. */
  1374. if (data->type == adt7463 || data->type == adt7468) {
  1375. u8 vid = lm85_read_value(client, LM85_REG_VID);
  1376. if (vid & 0x80)
  1377. data->has_vid5 = true;
  1378. }
  1379. if (!data->has_vid5)
  1380. data->groups[idx++] = &lm85_group_in4;
  1381. /* The EMC6D100 has 3 additional voltage inputs */
  1382. if (data->type == emc6d100)
  1383. data->groups[idx++] = &lm85_group_in567;
  1384. hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
  1385. data, data->groups);
  1386. return PTR_ERR_OR_ZERO(hwmon_dev);
  1387. }
  1388. static const struct i2c_device_id lm85_id[] = {
  1389. { "adm1027", adm1027 },
  1390. { "adt7463", adt7463 },
  1391. { "adt7468", adt7468 },
  1392. { "lm85", lm85 },
  1393. { "lm85b", lm85 },
  1394. { "lm85c", lm85 },
  1395. { "emc6d100", emc6d100 },
  1396. { "emc6d101", emc6d100 },
  1397. { "emc6d102", emc6d102 },
  1398. { "emc6d103", emc6d103 },
  1399. { "emc6d103s", emc6d103s },
  1400. { }
  1401. };
  1402. MODULE_DEVICE_TABLE(i2c, lm85_id);
  1403. static const struct of_device_id lm85_of_match[] = {
  1404. {
  1405. .compatible = "adi,adm1027",
  1406. .data = (void *)adm1027
  1407. },
  1408. {
  1409. .compatible = "adi,adt7463",
  1410. .data = (void *)adt7463
  1411. },
  1412. {
  1413. .compatible = "adi,adt7468",
  1414. .data = (void *)adt7468
  1415. },
  1416. {
  1417. .compatible = "national,lm85",
  1418. .data = (void *)lm85
  1419. },
  1420. {
  1421. .compatible = "national,lm85b",
  1422. .data = (void *)lm85
  1423. },
  1424. {
  1425. .compatible = "national,lm85c",
  1426. .data = (void *)lm85
  1427. },
  1428. {
  1429. .compatible = "smsc,emc6d100",
  1430. .data = (void *)emc6d100
  1431. },
  1432. {
  1433. .compatible = "smsc,emc6d101",
  1434. .data = (void *)emc6d100
  1435. },
  1436. {
  1437. .compatible = "smsc,emc6d102",
  1438. .data = (void *)emc6d102
  1439. },
  1440. {
  1441. .compatible = "smsc,emc6d103",
  1442. .data = (void *)emc6d103
  1443. },
  1444. {
  1445. .compatible = "smsc,emc6d103s",
  1446. .data = (void *)emc6d103s
  1447. },
  1448. { },
  1449. };
  1450. MODULE_DEVICE_TABLE(of, lm85_of_match);
  1451. static struct i2c_driver lm85_driver = {
  1452. .class = I2C_CLASS_HWMON,
  1453. .driver = {
  1454. .name = "lm85",
  1455. .of_match_table = of_match_ptr(lm85_of_match),
  1456. },
  1457. .probe = lm85_probe,
  1458. .id_table = lm85_id,
  1459. .detect = lm85_detect,
  1460. .address_list = normal_i2c,
  1461. };
  1462. module_i2c_driver(lm85_driver);
  1463. MODULE_LICENSE("GPL");
  1464. MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
  1465. "Margit Schubert-While <margitsw@t-online.de>, "
  1466. "Justin Thiessen <jthiessen@penguincomputing.com>");
  1467. MODULE_DESCRIPTION("LM85-B, LM85-C driver");