caamhash.c 52 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944
  1. /*
  2. * caam - Freescale FSL CAAM support for ahash functions of crypto API
  3. *
  4. * Copyright 2011 Freescale Semiconductor, Inc.
  5. *
  6. * Based on caamalg.c crypto API driver.
  7. *
  8. * relationship of digest job descriptor or first job descriptor after init to
  9. * shared descriptors:
  10. *
  11. * --------------- ---------------
  12. * | JobDesc #1 |-------------------->| ShareDesc |
  13. * | *(packet 1) | | (hashKey) |
  14. * --------------- | (operation) |
  15. * ---------------
  16. *
  17. * relationship of subsequent job descriptors to shared descriptors:
  18. *
  19. * --------------- ---------------
  20. * | JobDesc #2 |-------------------->| ShareDesc |
  21. * | *(packet 2) | |------------->| (hashKey) |
  22. * --------------- | |-------->| (operation) |
  23. * . | | | (load ctx2) |
  24. * . | | ---------------
  25. * --------------- | |
  26. * | JobDesc #3 |------| |
  27. * | *(packet 3) | |
  28. * --------------- |
  29. * . |
  30. * . |
  31. * --------------- |
  32. * | JobDesc #4 |------------
  33. * | *(packet 4) |
  34. * ---------------
  35. *
  36. * The SharedDesc never changes for a connection unless rekeyed, but
  37. * each packet will likely be in a different place. So all we need
  38. * to know to process the packet is where the input is, where the
  39. * output goes, and what context we want to process with. Context is
  40. * in the SharedDesc, packet references in the JobDesc.
  41. *
  42. * So, a job desc looks like:
  43. *
  44. * ---------------------
  45. * | Header |
  46. * | ShareDesc Pointer |
  47. * | SEQ_OUT_PTR |
  48. * | (output buffer) |
  49. * | (output length) |
  50. * | SEQ_IN_PTR |
  51. * | (input buffer) |
  52. * | (input length) |
  53. * ---------------------
  54. */
  55. #include "compat.h"
  56. #include "regs.h"
  57. #include "intern.h"
  58. #include "desc_constr.h"
  59. #include "jr.h"
  60. #include "error.h"
  61. #include "sg_sw_sec4.h"
  62. #include "key_gen.h"
  63. #define CAAM_CRA_PRIORITY 3000
  64. /* max hash key is max split key size */
  65. #define CAAM_MAX_HASH_KEY_SIZE (SHA512_DIGEST_SIZE * 2)
  66. #define CAAM_MAX_HASH_BLOCK_SIZE SHA512_BLOCK_SIZE
  67. #define CAAM_MAX_HASH_DIGEST_SIZE SHA512_DIGEST_SIZE
  68. /* length of descriptors text */
  69. #define DESC_AHASH_BASE (3 * CAAM_CMD_SZ)
  70. #define DESC_AHASH_UPDATE_LEN (6 * CAAM_CMD_SZ)
  71. #define DESC_AHASH_UPDATE_FIRST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
  72. #define DESC_AHASH_FINAL_LEN (DESC_AHASH_BASE + 5 * CAAM_CMD_SZ)
  73. #define DESC_AHASH_FINUP_LEN (DESC_AHASH_BASE + 5 * CAAM_CMD_SZ)
  74. #define DESC_AHASH_DIGEST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
  75. #define DESC_HASH_MAX_USED_BYTES (DESC_AHASH_FINAL_LEN + \
  76. CAAM_MAX_HASH_KEY_SIZE)
  77. #define DESC_HASH_MAX_USED_LEN (DESC_HASH_MAX_USED_BYTES / CAAM_CMD_SZ)
  78. /* caam context sizes for hashes: running digest + 8 */
  79. #define HASH_MSG_LEN 8
  80. #define MAX_CTX_LEN (HASH_MSG_LEN + SHA512_DIGEST_SIZE)
  81. #ifdef DEBUG
  82. /* for print_hex_dumps with line references */
  83. #define debug(format, arg...) printk(format, arg)
  84. #else
  85. #define debug(format, arg...)
  86. #endif
  87. static struct list_head hash_list;
  88. /* ahash per-session context */
  89. struct caam_hash_ctx {
  90. u32 sh_desc_update[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
  91. u32 sh_desc_update_first[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
  92. u32 sh_desc_fin[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
  93. u32 sh_desc_digest[DESC_HASH_MAX_USED_LEN] ____cacheline_aligned;
  94. dma_addr_t sh_desc_update_dma ____cacheline_aligned;
  95. dma_addr_t sh_desc_update_first_dma;
  96. dma_addr_t sh_desc_fin_dma;
  97. dma_addr_t sh_desc_digest_dma;
  98. struct device *jrdev;
  99. u8 key[CAAM_MAX_HASH_KEY_SIZE];
  100. int ctx_len;
  101. struct alginfo adata;
  102. };
  103. /* ahash state */
  104. struct caam_hash_state {
  105. dma_addr_t buf_dma;
  106. dma_addr_t ctx_dma;
  107. u8 buf_0[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  108. int buflen_0;
  109. u8 buf_1[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  110. int buflen_1;
  111. u8 caam_ctx[MAX_CTX_LEN] ____cacheline_aligned;
  112. int (*update)(struct ahash_request *req);
  113. int (*final)(struct ahash_request *req);
  114. int (*finup)(struct ahash_request *req);
  115. int current_buf;
  116. };
  117. struct caam_export_state {
  118. u8 buf[CAAM_MAX_HASH_BLOCK_SIZE];
  119. u8 caam_ctx[MAX_CTX_LEN];
  120. int buflen;
  121. int (*update)(struct ahash_request *req);
  122. int (*final)(struct ahash_request *req);
  123. int (*finup)(struct ahash_request *req);
  124. };
  125. static inline void switch_buf(struct caam_hash_state *state)
  126. {
  127. state->current_buf ^= 1;
  128. }
  129. static inline u8 *current_buf(struct caam_hash_state *state)
  130. {
  131. return state->current_buf ? state->buf_1 : state->buf_0;
  132. }
  133. static inline u8 *alt_buf(struct caam_hash_state *state)
  134. {
  135. return state->current_buf ? state->buf_0 : state->buf_1;
  136. }
  137. static inline int *current_buflen(struct caam_hash_state *state)
  138. {
  139. return state->current_buf ? &state->buflen_1 : &state->buflen_0;
  140. }
  141. static inline int *alt_buflen(struct caam_hash_state *state)
  142. {
  143. return state->current_buf ? &state->buflen_0 : &state->buflen_1;
  144. }
  145. /* Common job descriptor seq in/out ptr routines */
  146. /* Map state->caam_ctx, and append seq_out_ptr command that points to it */
  147. static inline int map_seq_out_ptr_ctx(u32 *desc, struct device *jrdev,
  148. struct caam_hash_state *state,
  149. int ctx_len)
  150. {
  151. state->ctx_dma = dma_map_single(jrdev, state->caam_ctx,
  152. ctx_len, DMA_FROM_DEVICE);
  153. if (dma_mapping_error(jrdev, state->ctx_dma)) {
  154. dev_err(jrdev, "unable to map ctx\n");
  155. state->ctx_dma = 0;
  156. return -ENOMEM;
  157. }
  158. append_seq_out_ptr(desc, state->ctx_dma, ctx_len, 0);
  159. return 0;
  160. }
  161. /* Map req->result, and append seq_out_ptr command that points to it */
  162. static inline dma_addr_t map_seq_out_ptr_result(u32 *desc, struct device *jrdev,
  163. u8 *result, int digestsize)
  164. {
  165. dma_addr_t dst_dma;
  166. dst_dma = dma_map_single(jrdev, result, digestsize, DMA_FROM_DEVICE);
  167. append_seq_out_ptr(desc, dst_dma, digestsize, 0);
  168. return dst_dma;
  169. }
  170. /* Map current buffer in state (if length > 0) and put it in link table */
  171. static inline int buf_map_to_sec4_sg(struct device *jrdev,
  172. struct sec4_sg_entry *sec4_sg,
  173. struct caam_hash_state *state)
  174. {
  175. int buflen = *current_buflen(state);
  176. if (!buflen)
  177. return 0;
  178. state->buf_dma = dma_map_single(jrdev, current_buf(state), buflen,
  179. DMA_TO_DEVICE);
  180. if (dma_mapping_error(jrdev, state->buf_dma)) {
  181. dev_err(jrdev, "unable to map buf\n");
  182. state->buf_dma = 0;
  183. return -ENOMEM;
  184. }
  185. dma_to_sec4_sg_one(sec4_sg, state->buf_dma, buflen, 0);
  186. return 0;
  187. }
  188. /* Map state->caam_ctx, and add it to link table */
  189. static inline int ctx_map_to_sec4_sg(u32 *desc, struct device *jrdev,
  190. struct caam_hash_state *state, int ctx_len,
  191. struct sec4_sg_entry *sec4_sg, u32 flag)
  192. {
  193. state->ctx_dma = dma_map_single(jrdev, state->caam_ctx, ctx_len, flag);
  194. if (dma_mapping_error(jrdev, state->ctx_dma)) {
  195. dev_err(jrdev, "unable to map ctx\n");
  196. state->ctx_dma = 0;
  197. return -ENOMEM;
  198. }
  199. dma_to_sec4_sg_one(sec4_sg, state->ctx_dma, ctx_len, 0);
  200. return 0;
  201. }
  202. /*
  203. * For ahash update, final and finup (import_ctx = true)
  204. * import context, read and write to seqout
  205. * For ahash firsts and digest (import_ctx = false)
  206. * read and write to seqout
  207. */
  208. static inline void ahash_gen_sh_desc(u32 *desc, u32 state, int digestsize,
  209. struct caam_hash_ctx *ctx, bool import_ctx)
  210. {
  211. u32 op = ctx->adata.algtype;
  212. u32 *skip_key_load;
  213. init_sh_desc(desc, HDR_SHARE_SERIAL);
  214. /* Append key if it has been set; ahash update excluded */
  215. if ((state != OP_ALG_AS_UPDATE) && (ctx->adata.keylen)) {
  216. /* Skip key loading if already shared */
  217. skip_key_load = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
  218. JUMP_COND_SHRD);
  219. append_key_as_imm(desc, ctx->key, ctx->adata.keylen_pad,
  220. ctx->adata.keylen, CLASS_2 |
  221. KEY_DEST_MDHA_SPLIT | KEY_ENC);
  222. set_jump_tgt_here(desc, skip_key_load);
  223. op |= OP_ALG_AAI_HMAC_PRECOMP;
  224. }
  225. /* If needed, import context from software */
  226. if (import_ctx)
  227. append_seq_load(desc, ctx->ctx_len, LDST_CLASS_2_CCB |
  228. LDST_SRCDST_BYTE_CONTEXT);
  229. /* Class 2 operation */
  230. append_operation(desc, op | state | OP_ALG_ENCRYPT);
  231. /*
  232. * Load from buf and/or src and write to req->result or state->context
  233. * Calculate remaining bytes to read
  234. */
  235. append_math_add(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
  236. /* Read remaining bytes */
  237. append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_LAST2 |
  238. FIFOLD_TYPE_MSG | KEY_VLF);
  239. /* Store class2 context bytes */
  240. append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
  241. LDST_SRCDST_BYTE_CONTEXT);
  242. }
  243. static int ahash_set_sh_desc(struct crypto_ahash *ahash)
  244. {
  245. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  246. int digestsize = crypto_ahash_digestsize(ahash);
  247. struct device *jrdev = ctx->jrdev;
  248. u32 *desc;
  249. /* ahash_update shared descriptor */
  250. desc = ctx->sh_desc_update;
  251. ahash_gen_sh_desc(desc, OP_ALG_AS_UPDATE, ctx->ctx_len, ctx, true);
  252. dma_sync_single_for_device(jrdev, ctx->sh_desc_update_dma,
  253. desc_bytes(desc), DMA_TO_DEVICE);
  254. #ifdef DEBUG
  255. print_hex_dump(KERN_ERR,
  256. "ahash update shdesc@"__stringify(__LINE__)": ",
  257. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  258. #endif
  259. /* ahash_update_first shared descriptor */
  260. desc = ctx->sh_desc_update_first;
  261. ahash_gen_sh_desc(desc, OP_ALG_AS_INIT, ctx->ctx_len, ctx, false);
  262. dma_sync_single_for_device(jrdev, ctx->sh_desc_update_first_dma,
  263. desc_bytes(desc), DMA_TO_DEVICE);
  264. #ifdef DEBUG
  265. print_hex_dump(KERN_ERR,
  266. "ahash update first shdesc@"__stringify(__LINE__)": ",
  267. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  268. #endif
  269. /* ahash_final shared descriptor */
  270. desc = ctx->sh_desc_fin;
  271. ahash_gen_sh_desc(desc, OP_ALG_AS_FINALIZE, digestsize, ctx, true);
  272. dma_sync_single_for_device(jrdev, ctx->sh_desc_fin_dma,
  273. desc_bytes(desc), DMA_TO_DEVICE);
  274. #ifdef DEBUG
  275. print_hex_dump(KERN_ERR, "ahash final shdesc@"__stringify(__LINE__)": ",
  276. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  277. desc_bytes(desc), 1);
  278. #endif
  279. /* ahash_digest shared descriptor */
  280. desc = ctx->sh_desc_digest;
  281. ahash_gen_sh_desc(desc, OP_ALG_AS_INITFINAL, digestsize, ctx, false);
  282. dma_sync_single_for_device(jrdev, ctx->sh_desc_digest_dma,
  283. desc_bytes(desc), DMA_TO_DEVICE);
  284. #ifdef DEBUG
  285. print_hex_dump(KERN_ERR,
  286. "ahash digest shdesc@"__stringify(__LINE__)": ",
  287. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  288. desc_bytes(desc), 1);
  289. #endif
  290. return 0;
  291. }
  292. /* Digest hash size if it is too large */
  293. static int hash_digest_key(struct caam_hash_ctx *ctx, const u8 *key_in,
  294. u32 *keylen, u8 *key_out, u32 digestsize)
  295. {
  296. struct device *jrdev = ctx->jrdev;
  297. u32 *desc;
  298. struct split_key_result result;
  299. dma_addr_t src_dma, dst_dma;
  300. int ret;
  301. desc = kmalloc(CAAM_CMD_SZ * 8 + CAAM_PTR_SZ * 2, GFP_KERNEL | GFP_DMA);
  302. if (!desc) {
  303. dev_err(jrdev, "unable to allocate key input memory\n");
  304. return -ENOMEM;
  305. }
  306. init_job_desc(desc, 0);
  307. src_dma = dma_map_single(jrdev, (void *)key_in, *keylen,
  308. DMA_TO_DEVICE);
  309. if (dma_mapping_error(jrdev, src_dma)) {
  310. dev_err(jrdev, "unable to map key input memory\n");
  311. kfree(desc);
  312. return -ENOMEM;
  313. }
  314. dst_dma = dma_map_single(jrdev, (void *)key_out, digestsize,
  315. DMA_FROM_DEVICE);
  316. if (dma_mapping_error(jrdev, dst_dma)) {
  317. dev_err(jrdev, "unable to map key output memory\n");
  318. dma_unmap_single(jrdev, src_dma, *keylen, DMA_TO_DEVICE);
  319. kfree(desc);
  320. return -ENOMEM;
  321. }
  322. /* Job descriptor to perform unkeyed hash on key_in */
  323. append_operation(desc, ctx->adata.algtype | OP_ALG_ENCRYPT |
  324. OP_ALG_AS_INITFINAL);
  325. append_seq_in_ptr(desc, src_dma, *keylen, 0);
  326. append_seq_fifo_load(desc, *keylen, FIFOLD_CLASS_CLASS2 |
  327. FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_MSG);
  328. append_seq_out_ptr(desc, dst_dma, digestsize, 0);
  329. append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
  330. LDST_SRCDST_BYTE_CONTEXT);
  331. #ifdef DEBUG
  332. print_hex_dump(KERN_ERR, "key_in@"__stringify(__LINE__)": ",
  333. DUMP_PREFIX_ADDRESS, 16, 4, key_in, *keylen, 1);
  334. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  335. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  336. #endif
  337. result.err = 0;
  338. init_completion(&result.completion);
  339. ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result);
  340. if (!ret) {
  341. /* in progress */
  342. wait_for_completion(&result.completion);
  343. ret = result.err;
  344. #ifdef DEBUG
  345. print_hex_dump(KERN_ERR,
  346. "digested key@"__stringify(__LINE__)": ",
  347. DUMP_PREFIX_ADDRESS, 16, 4, key_in,
  348. digestsize, 1);
  349. #endif
  350. }
  351. dma_unmap_single(jrdev, src_dma, *keylen, DMA_TO_DEVICE);
  352. dma_unmap_single(jrdev, dst_dma, digestsize, DMA_FROM_DEVICE);
  353. *keylen = digestsize;
  354. kfree(desc);
  355. return ret;
  356. }
  357. static int ahash_setkey(struct crypto_ahash *ahash,
  358. const u8 *key, unsigned int keylen)
  359. {
  360. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  361. int blocksize = crypto_tfm_alg_blocksize(&ahash->base);
  362. int digestsize = crypto_ahash_digestsize(ahash);
  363. int ret;
  364. u8 *hashed_key = NULL;
  365. #ifdef DEBUG
  366. printk(KERN_ERR "keylen %d\n", keylen);
  367. #endif
  368. if (keylen > blocksize) {
  369. hashed_key = kmalloc_array(digestsize,
  370. sizeof(*hashed_key),
  371. GFP_KERNEL | GFP_DMA);
  372. if (!hashed_key)
  373. return -ENOMEM;
  374. ret = hash_digest_key(ctx, key, &keylen, hashed_key,
  375. digestsize);
  376. if (ret)
  377. goto bad_free_key;
  378. key = hashed_key;
  379. }
  380. ret = gen_split_key(ctx->jrdev, ctx->key, &ctx->adata, key, keylen,
  381. CAAM_MAX_HASH_KEY_SIZE);
  382. if (ret)
  383. goto bad_free_key;
  384. #ifdef DEBUG
  385. print_hex_dump(KERN_ERR, "ctx.key@"__stringify(__LINE__)": ",
  386. DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
  387. ctx->adata.keylen_pad, 1);
  388. #endif
  389. kfree(hashed_key);
  390. return ahash_set_sh_desc(ahash);
  391. bad_free_key:
  392. kfree(hashed_key);
  393. crypto_ahash_set_flags(ahash, CRYPTO_TFM_RES_BAD_KEY_LEN);
  394. return -EINVAL;
  395. }
  396. /*
  397. * ahash_edesc - s/w-extended ahash descriptor
  398. * @dst_dma: physical mapped address of req->result
  399. * @sec4_sg_dma: physical mapped address of h/w link table
  400. * @src_nents: number of segments in input scatterlist
  401. * @sec4_sg_bytes: length of dma mapped sec4_sg space
  402. * @hw_desc: the h/w job descriptor followed by any referenced link tables
  403. * @sec4_sg: h/w link table
  404. */
  405. struct ahash_edesc {
  406. dma_addr_t dst_dma;
  407. dma_addr_t sec4_sg_dma;
  408. int src_nents;
  409. int sec4_sg_bytes;
  410. u32 hw_desc[DESC_JOB_IO_LEN / sizeof(u32)] ____cacheline_aligned;
  411. struct sec4_sg_entry sec4_sg[0];
  412. };
  413. static inline void ahash_unmap(struct device *dev,
  414. struct ahash_edesc *edesc,
  415. struct ahash_request *req, int dst_len)
  416. {
  417. struct caam_hash_state *state = ahash_request_ctx(req);
  418. if (edesc->src_nents)
  419. dma_unmap_sg(dev, req->src, edesc->src_nents, DMA_TO_DEVICE);
  420. if (edesc->dst_dma)
  421. dma_unmap_single(dev, edesc->dst_dma, dst_len, DMA_FROM_DEVICE);
  422. if (edesc->sec4_sg_bytes)
  423. dma_unmap_single(dev, edesc->sec4_sg_dma,
  424. edesc->sec4_sg_bytes, DMA_TO_DEVICE);
  425. if (state->buf_dma) {
  426. dma_unmap_single(dev, state->buf_dma, *current_buflen(state),
  427. DMA_TO_DEVICE);
  428. state->buf_dma = 0;
  429. }
  430. }
  431. static inline void ahash_unmap_ctx(struct device *dev,
  432. struct ahash_edesc *edesc,
  433. struct ahash_request *req, int dst_len, u32 flag)
  434. {
  435. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  436. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  437. struct caam_hash_state *state = ahash_request_ctx(req);
  438. if (state->ctx_dma) {
  439. dma_unmap_single(dev, state->ctx_dma, ctx->ctx_len, flag);
  440. state->ctx_dma = 0;
  441. }
  442. ahash_unmap(dev, edesc, req, dst_len);
  443. }
  444. static void ahash_done(struct device *jrdev, u32 *desc, u32 err,
  445. void *context)
  446. {
  447. struct ahash_request *req = context;
  448. struct ahash_edesc *edesc;
  449. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  450. int digestsize = crypto_ahash_digestsize(ahash);
  451. #ifdef DEBUG
  452. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  453. struct caam_hash_state *state = ahash_request_ctx(req);
  454. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  455. #endif
  456. edesc = container_of(desc, struct ahash_edesc, hw_desc[0]);
  457. if (err)
  458. caam_jr_strstatus(jrdev, err);
  459. ahash_unmap(jrdev, edesc, req, digestsize);
  460. kfree(edesc);
  461. #ifdef DEBUG
  462. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  463. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  464. ctx->ctx_len, 1);
  465. if (req->result)
  466. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  467. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  468. digestsize, 1);
  469. #endif
  470. req->base.complete(&req->base, err);
  471. }
  472. static void ahash_done_bi(struct device *jrdev, u32 *desc, u32 err,
  473. void *context)
  474. {
  475. struct ahash_request *req = context;
  476. struct ahash_edesc *edesc;
  477. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  478. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  479. struct caam_hash_state *state = ahash_request_ctx(req);
  480. #ifdef DEBUG
  481. int digestsize = crypto_ahash_digestsize(ahash);
  482. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  483. #endif
  484. edesc = container_of(desc, struct ahash_edesc, hw_desc[0]);
  485. if (err)
  486. caam_jr_strstatus(jrdev, err);
  487. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_BIDIRECTIONAL);
  488. switch_buf(state);
  489. kfree(edesc);
  490. #ifdef DEBUG
  491. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  492. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  493. ctx->ctx_len, 1);
  494. if (req->result)
  495. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  496. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  497. digestsize, 1);
  498. #endif
  499. req->base.complete(&req->base, err);
  500. }
  501. static void ahash_done_ctx_src(struct device *jrdev, u32 *desc, u32 err,
  502. void *context)
  503. {
  504. struct ahash_request *req = context;
  505. struct ahash_edesc *edesc;
  506. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  507. int digestsize = crypto_ahash_digestsize(ahash);
  508. #ifdef DEBUG
  509. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  510. struct caam_hash_state *state = ahash_request_ctx(req);
  511. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  512. #endif
  513. edesc = container_of(desc, struct ahash_edesc, hw_desc[0]);
  514. if (err)
  515. caam_jr_strstatus(jrdev, err);
  516. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_TO_DEVICE);
  517. kfree(edesc);
  518. #ifdef DEBUG
  519. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  520. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  521. ctx->ctx_len, 1);
  522. if (req->result)
  523. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  524. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  525. digestsize, 1);
  526. #endif
  527. req->base.complete(&req->base, err);
  528. }
  529. static void ahash_done_ctx_dst(struct device *jrdev, u32 *desc, u32 err,
  530. void *context)
  531. {
  532. struct ahash_request *req = context;
  533. struct ahash_edesc *edesc;
  534. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  535. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  536. struct caam_hash_state *state = ahash_request_ctx(req);
  537. #ifdef DEBUG
  538. int digestsize = crypto_ahash_digestsize(ahash);
  539. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  540. #endif
  541. edesc = container_of(desc, struct ahash_edesc, hw_desc[0]);
  542. if (err)
  543. caam_jr_strstatus(jrdev, err);
  544. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_FROM_DEVICE);
  545. switch_buf(state);
  546. kfree(edesc);
  547. #ifdef DEBUG
  548. print_hex_dump(KERN_ERR, "ctx@"__stringify(__LINE__)": ",
  549. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  550. ctx->ctx_len, 1);
  551. if (req->result)
  552. print_hex_dump(KERN_ERR, "result@"__stringify(__LINE__)": ",
  553. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  554. digestsize, 1);
  555. #endif
  556. req->base.complete(&req->base, err);
  557. }
  558. /*
  559. * Allocate an enhanced descriptor, which contains the hardware descriptor
  560. * and space for hardware scatter table containing sg_num entries.
  561. */
  562. static struct ahash_edesc *ahash_edesc_alloc(struct caam_hash_ctx *ctx,
  563. int sg_num, u32 *sh_desc,
  564. dma_addr_t sh_desc_dma,
  565. gfp_t flags)
  566. {
  567. struct ahash_edesc *edesc;
  568. unsigned int sg_size = sg_num * sizeof(struct sec4_sg_entry);
  569. edesc = kzalloc(sizeof(*edesc) + sg_size, GFP_DMA | flags);
  570. if (!edesc) {
  571. dev_err(ctx->jrdev, "could not allocate extended descriptor\n");
  572. return NULL;
  573. }
  574. init_job_desc_shared(edesc->hw_desc, sh_desc_dma, desc_len(sh_desc),
  575. HDR_SHARE_DEFER | HDR_REVERSE);
  576. return edesc;
  577. }
  578. static int ahash_edesc_add_src(struct caam_hash_ctx *ctx,
  579. struct ahash_edesc *edesc,
  580. struct ahash_request *req, int nents,
  581. unsigned int first_sg,
  582. unsigned int first_bytes, size_t to_hash)
  583. {
  584. dma_addr_t src_dma;
  585. u32 options;
  586. if (nents > 1 || first_sg) {
  587. struct sec4_sg_entry *sg = edesc->sec4_sg;
  588. unsigned int sgsize = sizeof(*sg) * (first_sg + nents);
  589. sg_to_sec4_sg_last(req->src, nents, sg + first_sg, 0);
  590. src_dma = dma_map_single(ctx->jrdev, sg, sgsize, DMA_TO_DEVICE);
  591. if (dma_mapping_error(ctx->jrdev, src_dma)) {
  592. dev_err(ctx->jrdev, "unable to map S/G table\n");
  593. return -ENOMEM;
  594. }
  595. edesc->sec4_sg_bytes = sgsize;
  596. edesc->sec4_sg_dma = src_dma;
  597. options = LDST_SGF;
  598. } else {
  599. src_dma = sg_dma_address(req->src);
  600. options = 0;
  601. }
  602. append_seq_in_ptr(edesc->hw_desc, src_dma, first_bytes + to_hash,
  603. options);
  604. return 0;
  605. }
  606. /* submit update job descriptor */
  607. static int ahash_update_ctx(struct ahash_request *req)
  608. {
  609. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  610. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  611. struct caam_hash_state *state = ahash_request_ctx(req);
  612. struct device *jrdev = ctx->jrdev;
  613. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  614. GFP_KERNEL : GFP_ATOMIC;
  615. u8 *buf = current_buf(state);
  616. int *buflen = current_buflen(state);
  617. u8 *next_buf = alt_buf(state);
  618. int *next_buflen = alt_buflen(state), last_buflen;
  619. int in_len = *buflen + req->nbytes, to_hash;
  620. u32 *desc;
  621. int src_nents, mapped_nents, sec4_sg_bytes, sec4_sg_src_index;
  622. struct ahash_edesc *edesc;
  623. int ret = 0;
  624. last_buflen = *next_buflen;
  625. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  626. to_hash = in_len - *next_buflen;
  627. if (to_hash) {
  628. src_nents = sg_nents_for_len(req->src,
  629. req->nbytes - (*next_buflen));
  630. if (src_nents < 0) {
  631. dev_err(jrdev, "Invalid number of src SG.\n");
  632. return src_nents;
  633. }
  634. if (src_nents) {
  635. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  636. DMA_TO_DEVICE);
  637. if (!mapped_nents) {
  638. dev_err(jrdev, "unable to DMA map source\n");
  639. return -ENOMEM;
  640. }
  641. } else {
  642. mapped_nents = 0;
  643. }
  644. sec4_sg_src_index = 1 + (*buflen ? 1 : 0);
  645. sec4_sg_bytes = (sec4_sg_src_index + mapped_nents) *
  646. sizeof(struct sec4_sg_entry);
  647. /*
  648. * allocate space for base edesc and hw desc commands,
  649. * link tables
  650. */
  651. edesc = ahash_edesc_alloc(ctx, sec4_sg_src_index + mapped_nents,
  652. ctx->sh_desc_update,
  653. ctx->sh_desc_update_dma, flags);
  654. if (!edesc) {
  655. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  656. return -ENOMEM;
  657. }
  658. edesc->src_nents = src_nents;
  659. edesc->sec4_sg_bytes = sec4_sg_bytes;
  660. ret = ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len,
  661. edesc->sec4_sg, DMA_BIDIRECTIONAL);
  662. if (ret)
  663. goto unmap_ctx;
  664. ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state);
  665. if (ret)
  666. goto unmap_ctx;
  667. if (mapped_nents) {
  668. sg_to_sec4_sg_last(req->src, mapped_nents,
  669. edesc->sec4_sg + sec4_sg_src_index,
  670. 0);
  671. if (*next_buflen)
  672. scatterwalk_map_and_copy(next_buf, req->src,
  673. to_hash - *buflen,
  674. *next_buflen, 0);
  675. } else {
  676. sg_to_sec4_set_last(edesc->sec4_sg + sec4_sg_src_index -
  677. 1);
  678. }
  679. desc = edesc->hw_desc;
  680. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  681. sec4_sg_bytes,
  682. DMA_TO_DEVICE);
  683. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  684. dev_err(jrdev, "unable to map S/G table\n");
  685. ret = -ENOMEM;
  686. goto unmap_ctx;
  687. }
  688. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len +
  689. to_hash, LDST_SGF);
  690. append_seq_out_ptr(desc, state->ctx_dma, ctx->ctx_len, 0);
  691. #ifdef DEBUG
  692. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  693. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  694. desc_bytes(desc), 1);
  695. #endif
  696. ret = caam_jr_enqueue(jrdev, desc, ahash_done_bi, req);
  697. if (ret)
  698. goto unmap_ctx;
  699. ret = -EINPROGRESS;
  700. } else if (*next_buflen) {
  701. scatterwalk_map_and_copy(buf + *buflen, req->src, 0,
  702. req->nbytes, 0);
  703. *buflen = *next_buflen;
  704. *next_buflen = last_buflen;
  705. }
  706. #ifdef DEBUG
  707. print_hex_dump(KERN_ERR, "buf@"__stringify(__LINE__)": ",
  708. DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
  709. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  710. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  711. *next_buflen, 1);
  712. #endif
  713. return ret;
  714. unmap_ctx:
  715. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_BIDIRECTIONAL);
  716. kfree(edesc);
  717. return ret;
  718. }
  719. static int ahash_final_ctx(struct ahash_request *req)
  720. {
  721. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  722. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  723. struct caam_hash_state *state = ahash_request_ctx(req);
  724. struct device *jrdev = ctx->jrdev;
  725. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  726. GFP_KERNEL : GFP_ATOMIC;
  727. int buflen = *current_buflen(state);
  728. u32 *desc;
  729. int sec4_sg_bytes, sec4_sg_src_index;
  730. int digestsize = crypto_ahash_digestsize(ahash);
  731. struct ahash_edesc *edesc;
  732. int ret;
  733. sec4_sg_src_index = 1 + (buflen ? 1 : 0);
  734. sec4_sg_bytes = sec4_sg_src_index * sizeof(struct sec4_sg_entry);
  735. /* allocate space for base edesc and hw desc commands, link tables */
  736. edesc = ahash_edesc_alloc(ctx, sec4_sg_src_index,
  737. ctx->sh_desc_fin, ctx->sh_desc_fin_dma,
  738. flags);
  739. if (!edesc)
  740. return -ENOMEM;
  741. desc = edesc->hw_desc;
  742. edesc->sec4_sg_bytes = sec4_sg_bytes;
  743. edesc->src_nents = 0;
  744. ret = ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len,
  745. edesc->sec4_sg, DMA_TO_DEVICE);
  746. if (ret)
  747. goto unmap_ctx;
  748. ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state);
  749. if (ret)
  750. goto unmap_ctx;
  751. sg_to_sec4_set_last(edesc->sec4_sg + sec4_sg_src_index - 1);
  752. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  753. sec4_sg_bytes, DMA_TO_DEVICE);
  754. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  755. dev_err(jrdev, "unable to map S/G table\n");
  756. ret = -ENOMEM;
  757. goto unmap_ctx;
  758. }
  759. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len + buflen,
  760. LDST_SGF);
  761. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  762. digestsize);
  763. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  764. dev_err(jrdev, "unable to map dst\n");
  765. ret = -ENOMEM;
  766. goto unmap_ctx;
  767. }
  768. #ifdef DEBUG
  769. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  770. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  771. #endif
  772. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_src, req);
  773. if (ret)
  774. goto unmap_ctx;
  775. return -EINPROGRESS;
  776. unmap_ctx:
  777. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  778. kfree(edesc);
  779. return ret;
  780. }
  781. static int ahash_finup_ctx(struct ahash_request *req)
  782. {
  783. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  784. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  785. struct caam_hash_state *state = ahash_request_ctx(req);
  786. struct device *jrdev = ctx->jrdev;
  787. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  788. GFP_KERNEL : GFP_ATOMIC;
  789. int buflen = *current_buflen(state);
  790. u32 *desc;
  791. int sec4_sg_src_index;
  792. int src_nents, mapped_nents;
  793. int digestsize = crypto_ahash_digestsize(ahash);
  794. struct ahash_edesc *edesc;
  795. int ret;
  796. src_nents = sg_nents_for_len(req->src, req->nbytes);
  797. if (src_nents < 0) {
  798. dev_err(jrdev, "Invalid number of src SG.\n");
  799. return src_nents;
  800. }
  801. if (src_nents) {
  802. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  803. DMA_TO_DEVICE);
  804. if (!mapped_nents) {
  805. dev_err(jrdev, "unable to DMA map source\n");
  806. return -ENOMEM;
  807. }
  808. } else {
  809. mapped_nents = 0;
  810. }
  811. sec4_sg_src_index = 1 + (buflen ? 1 : 0);
  812. /* allocate space for base edesc and hw desc commands, link tables */
  813. edesc = ahash_edesc_alloc(ctx, sec4_sg_src_index + mapped_nents,
  814. ctx->sh_desc_fin, ctx->sh_desc_fin_dma,
  815. flags);
  816. if (!edesc) {
  817. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  818. return -ENOMEM;
  819. }
  820. desc = edesc->hw_desc;
  821. edesc->src_nents = src_nents;
  822. ret = ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len,
  823. edesc->sec4_sg, DMA_TO_DEVICE);
  824. if (ret)
  825. goto unmap_ctx;
  826. ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1, state);
  827. if (ret)
  828. goto unmap_ctx;
  829. ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents,
  830. sec4_sg_src_index, ctx->ctx_len + buflen,
  831. req->nbytes);
  832. if (ret)
  833. goto unmap_ctx;
  834. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  835. digestsize);
  836. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  837. dev_err(jrdev, "unable to map dst\n");
  838. ret = -ENOMEM;
  839. goto unmap_ctx;
  840. }
  841. #ifdef DEBUG
  842. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  843. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  844. #endif
  845. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_src, req);
  846. if (ret)
  847. goto unmap_ctx;
  848. return -EINPROGRESS;
  849. unmap_ctx:
  850. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  851. kfree(edesc);
  852. return ret;
  853. }
  854. static int ahash_digest(struct ahash_request *req)
  855. {
  856. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  857. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  858. struct caam_hash_state *state = ahash_request_ctx(req);
  859. struct device *jrdev = ctx->jrdev;
  860. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  861. GFP_KERNEL : GFP_ATOMIC;
  862. u32 *desc;
  863. int digestsize = crypto_ahash_digestsize(ahash);
  864. int src_nents, mapped_nents;
  865. struct ahash_edesc *edesc;
  866. int ret;
  867. state->buf_dma = 0;
  868. src_nents = sg_nents_for_len(req->src, req->nbytes);
  869. if (src_nents < 0) {
  870. dev_err(jrdev, "Invalid number of src SG.\n");
  871. return src_nents;
  872. }
  873. if (src_nents) {
  874. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  875. DMA_TO_DEVICE);
  876. if (!mapped_nents) {
  877. dev_err(jrdev, "unable to map source for DMA\n");
  878. return -ENOMEM;
  879. }
  880. } else {
  881. mapped_nents = 0;
  882. }
  883. /* allocate space for base edesc and hw desc commands, link tables */
  884. edesc = ahash_edesc_alloc(ctx, mapped_nents > 1 ? mapped_nents : 0,
  885. ctx->sh_desc_digest, ctx->sh_desc_digest_dma,
  886. flags);
  887. if (!edesc) {
  888. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  889. return -ENOMEM;
  890. }
  891. edesc->src_nents = src_nents;
  892. ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 0, 0,
  893. req->nbytes);
  894. if (ret) {
  895. ahash_unmap(jrdev, edesc, req, digestsize);
  896. kfree(edesc);
  897. return ret;
  898. }
  899. desc = edesc->hw_desc;
  900. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  901. digestsize);
  902. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  903. dev_err(jrdev, "unable to map dst\n");
  904. ahash_unmap(jrdev, edesc, req, digestsize);
  905. kfree(edesc);
  906. return -ENOMEM;
  907. }
  908. #ifdef DEBUG
  909. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  910. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  911. #endif
  912. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  913. if (!ret) {
  914. ret = -EINPROGRESS;
  915. } else {
  916. ahash_unmap(jrdev, edesc, req, digestsize);
  917. kfree(edesc);
  918. }
  919. return ret;
  920. }
  921. /* submit ahash final if it the first job descriptor */
  922. static int ahash_final_no_ctx(struct ahash_request *req)
  923. {
  924. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  925. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  926. struct caam_hash_state *state = ahash_request_ctx(req);
  927. struct device *jrdev = ctx->jrdev;
  928. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  929. GFP_KERNEL : GFP_ATOMIC;
  930. u8 *buf = current_buf(state);
  931. int buflen = *current_buflen(state);
  932. u32 *desc;
  933. int digestsize = crypto_ahash_digestsize(ahash);
  934. struct ahash_edesc *edesc;
  935. int ret;
  936. /* allocate space for base edesc and hw desc commands, link tables */
  937. edesc = ahash_edesc_alloc(ctx, 0, ctx->sh_desc_digest,
  938. ctx->sh_desc_digest_dma, flags);
  939. if (!edesc)
  940. return -ENOMEM;
  941. desc = edesc->hw_desc;
  942. if (buflen) {
  943. state->buf_dma = dma_map_single(jrdev, buf, buflen,
  944. DMA_TO_DEVICE);
  945. if (dma_mapping_error(jrdev, state->buf_dma)) {
  946. dev_err(jrdev, "unable to map src\n");
  947. goto unmap;
  948. }
  949. append_seq_in_ptr(desc, state->buf_dma, buflen, 0);
  950. }
  951. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  952. digestsize);
  953. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  954. dev_err(jrdev, "unable to map dst\n");
  955. goto unmap;
  956. }
  957. edesc->src_nents = 0;
  958. #ifdef DEBUG
  959. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  960. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  961. #endif
  962. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  963. if (!ret) {
  964. ret = -EINPROGRESS;
  965. } else {
  966. ahash_unmap(jrdev, edesc, req, digestsize);
  967. kfree(edesc);
  968. }
  969. return ret;
  970. unmap:
  971. ahash_unmap(jrdev, edesc, req, digestsize);
  972. kfree(edesc);
  973. return -ENOMEM;
  974. }
  975. /* submit ahash update if it the first job descriptor after update */
  976. static int ahash_update_no_ctx(struct ahash_request *req)
  977. {
  978. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  979. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  980. struct caam_hash_state *state = ahash_request_ctx(req);
  981. struct device *jrdev = ctx->jrdev;
  982. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  983. GFP_KERNEL : GFP_ATOMIC;
  984. u8 *buf = current_buf(state);
  985. int *buflen = current_buflen(state);
  986. u8 *next_buf = alt_buf(state);
  987. int *next_buflen = alt_buflen(state);
  988. int in_len = *buflen + req->nbytes, to_hash;
  989. int sec4_sg_bytes, src_nents, mapped_nents;
  990. struct ahash_edesc *edesc;
  991. u32 *desc;
  992. int ret = 0;
  993. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  994. to_hash = in_len - *next_buflen;
  995. if (to_hash) {
  996. src_nents = sg_nents_for_len(req->src,
  997. req->nbytes - *next_buflen);
  998. if (src_nents < 0) {
  999. dev_err(jrdev, "Invalid number of src SG.\n");
  1000. return src_nents;
  1001. }
  1002. if (src_nents) {
  1003. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  1004. DMA_TO_DEVICE);
  1005. if (!mapped_nents) {
  1006. dev_err(jrdev, "unable to DMA map source\n");
  1007. return -ENOMEM;
  1008. }
  1009. } else {
  1010. mapped_nents = 0;
  1011. }
  1012. sec4_sg_bytes = (1 + mapped_nents) *
  1013. sizeof(struct sec4_sg_entry);
  1014. /*
  1015. * allocate space for base edesc and hw desc commands,
  1016. * link tables
  1017. */
  1018. edesc = ahash_edesc_alloc(ctx, 1 + mapped_nents,
  1019. ctx->sh_desc_update_first,
  1020. ctx->sh_desc_update_first_dma,
  1021. flags);
  1022. if (!edesc) {
  1023. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  1024. return -ENOMEM;
  1025. }
  1026. edesc->src_nents = src_nents;
  1027. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1028. edesc->dst_dma = 0;
  1029. ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, state);
  1030. if (ret)
  1031. goto unmap_ctx;
  1032. sg_to_sec4_sg_last(req->src, mapped_nents,
  1033. edesc->sec4_sg + 1, 0);
  1034. if (*next_buflen) {
  1035. scatterwalk_map_and_copy(next_buf, req->src,
  1036. to_hash - *buflen,
  1037. *next_buflen, 0);
  1038. }
  1039. desc = edesc->hw_desc;
  1040. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  1041. sec4_sg_bytes,
  1042. DMA_TO_DEVICE);
  1043. if (dma_mapping_error(jrdev, edesc->sec4_sg_dma)) {
  1044. dev_err(jrdev, "unable to map S/G table\n");
  1045. ret = -ENOMEM;
  1046. goto unmap_ctx;
  1047. }
  1048. append_seq_in_ptr(desc, edesc->sec4_sg_dma, to_hash, LDST_SGF);
  1049. ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
  1050. if (ret)
  1051. goto unmap_ctx;
  1052. #ifdef DEBUG
  1053. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1054. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  1055. desc_bytes(desc), 1);
  1056. #endif
  1057. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_dst, req);
  1058. if (ret)
  1059. goto unmap_ctx;
  1060. ret = -EINPROGRESS;
  1061. state->update = ahash_update_ctx;
  1062. state->finup = ahash_finup_ctx;
  1063. state->final = ahash_final_ctx;
  1064. } else if (*next_buflen) {
  1065. scatterwalk_map_and_copy(buf + *buflen, req->src, 0,
  1066. req->nbytes, 0);
  1067. *buflen = *next_buflen;
  1068. *next_buflen = 0;
  1069. }
  1070. #ifdef DEBUG
  1071. print_hex_dump(KERN_ERR, "buf@"__stringify(__LINE__)": ",
  1072. DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
  1073. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  1074. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  1075. *next_buflen, 1);
  1076. #endif
  1077. return ret;
  1078. unmap_ctx:
  1079. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE);
  1080. kfree(edesc);
  1081. return ret;
  1082. }
  1083. /* submit ahash finup if it the first job descriptor after update */
  1084. static int ahash_finup_no_ctx(struct ahash_request *req)
  1085. {
  1086. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1087. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1088. struct caam_hash_state *state = ahash_request_ctx(req);
  1089. struct device *jrdev = ctx->jrdev;
  1090. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  1091. GFP_KERNEL : GFP_ATOMIC;
  1092. int buflen = *current_buflen(state);
  1093. u32 *desc;
  1094. int sec4_sg_bytes, sec4_sg_src_index, src_nents, mapped_nents;
  1095. int digestsize = crypto_ahash_digestsize(ahash);
  1096. struct ahash_edesc *edesc;
  1097. int ret;
  1098. src_nents = sg_nents_for_len(req->src, req->nbytes);
  1099. if (src_nents < 0) {
  1100. dev_err(jrdev, "Invalid number of src SG.\n");
  1101. return src_nents;
  1102. }
  1103. if (src_nents) {
  1104. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  1105. DMA_TO_DEVICE);
  1106. if (!mapped_nents) {
  1107. dev_err(jrdev, "unable to DMA map source\n");
  1108. return -ENOMEM;
  1109. }
  1110. } else {
  1111. mapped_nents = 0;
  1112. }
  1113. sec4_sg_src_index = 2;
  1114. sec4_sg_bytes = (sec4_sg_src_index + mapped_nents) *
  1115. sizeof(struct sec4_sg_entry);
  1116. /* allocate space for base edesc and hw desc commands, link tables */
  1117. edesc = ahash_edesc_alloc(ctx, sec4_sg_src_index + mapped_nents,
  1118. ctx->sh_desc_digest, ctx->sh_desc_digest_dma,
  1119. flags);
  1120. if (!edesc) {
  1121. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  1122. return -ENOMEM;
  1123. }
  1124. desc = edesc->hw_desc;
  1125. edesc->src_nents = src_nents;
  1126. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1127. ret = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, state);
  1128. if (ret)
  1129. goto unmap;
  1130. ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 1, buflen,
  1131. req->nbytes);
  1132. if (ret) {
  1133. dev_err(jrdev, "unable to map S/G table\n");
  1134. goto unmap;
  1135. }
  1136. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  1137. digestsize);
  1138. if (dma_mapping_error(jrdev, edesc->dst_dma)) {
  1139. dev_err(jrdev, "unable to map dst\n");
  1140. goto unmap;
  1141. }
  1142. #ifdef DEBUG
  1143. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1144. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  1145. #endif
  1146. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  1147. if (!ret) {
  1148. ret = -EINPROGRESS;
  1149. } else {
  1150. ahash_unmap(jrdev, edesc, req, digestsize);
  1151. kfree(edesc);
  1152. }
  1153. return ret;
  1154. unmap:
  1155. ahash_unmap(jrdev, edesc, req, digestsize);
  1156. kfree(edesc);
  1157. return -ENOMEM;
  1158. }
  1159. /* submit first update job descriptor after init */
  1160. static int ahash_update_first(struct ahash_request *req)
  1161. {
  1162. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1163. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1164. struct caam_hash_state *state = ahash_request_ctx(req);
  1165. struct device *jrdev = ctx->jrdev;
  1166. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  1167. GFP_KERNEL : GFP_ATOMIC;
  1168. u8 *next_buf = alt_buf(state);
  1169. int *next_buflen = alt_buflen(state);
  1170. int to_hash;
  1171. u32 *desc;
  1172. int src_nents, mapped_nents;
  1173. struct ahash_edesc *edesc;
  1174. int ret = 0;
  1175. *next_buflen = req->nbytes & (crypto_tfm_alg_blocksize(&ahash->base) -
  1176. 1);
  1177. to_hash = req->nbytes - *next_buflen;
  1178. if (to_hash) {
  1179. src_nents = sg_nents_for_len(req->src,
  1180. req->nbytes - *next_buflen);
  1181. if (src_nents < 0) {
  1182. dev_err(jrdev, "Invalid number of src SG.\n");
  1183. return src_nents;
  1184. }
  1185. if (src_nents) {
  1186. mapped_nents = dma_map_sg(jrdev, req->src, src_nents,
  1187. DMA_TO_DEVICE);
  1188. if (!mapped_nents) {
  1189. dev_err(jrdev, "unable to map source for DMA\n");
  1190. return -ENOMEM;
  1191. }
  1192. } else {
  1193. mapped_nents = 0;
  1194. }
  1195. /*
  1196. * allocate space for base edesc and hw desc commands,
  1197. * link tables
  1198. */
  1199. edesc = ahash_edesc_alloc(ctx, mapped_nents > 1 ?
  1200. mapped_nents : 0,
  1201. ctx->sh_desc_update_first,
  1202. ctx->sh_desc_update_first_dma,
  1203. flags);
  1204. if (!edesc) {
  1205. dma_unmap_sg(jrdev, req->src, src_nents, DMA_TO_DEVICE);
  1206. return -ENOMEM;
  1207. }
  1208. edesc->src_nents = src_nents;
  1209. edesc->dst_dma = 0;
  1210. ret = ahash_edesc_add_src(ctx, edesc, req, mapped_nents, 0, 0,
  1211. to_hash);
  1212. if (ret)
  1213. goto unmap_ctx;
  1214. if (*next_buflen)
  1215. scatterwalk_map_and_copy(next_buf, req->src, to_hash,
  1216. *next_buflen, 0);
  1217. desc = edesc->hw_desc;
  1218. ret = map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
  1219. if (ret)
  1220. goto unmap_ctx;
  1221. #ifdef DEBUG
  1222. print_hex_dump(KERN_ERR, "jobdesc@"__stringify(__LINE__)": ",
  1223. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  1224. desc_bytes(desc), 1);
  1225. #endif
  1226. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_dst, req);
  1227. if (ret)
  1228. goto unmap_ctx;
  1229. ret = -EINPROGRESS;
  1230. state->update = ahash_update_ctx;
  1231. state->finup = ahash_finup_ctx;
  1232. state->final = ahash_final_ctx;
  1233. } else if (*next_buflen) {
  1234. state->update = ahash_update_no_ctx;
  1235. state->finup = ahash_finup_no_ctx;
  1236. state->final = ahash_final_no_ctx;
  1237. scatterwalk_map_and_copy(next_buf, req->src, 0,
  1238. req->nbytes, 0);
  1239. switch_buf(state);
  1240. }
  1241. #ifdef DEBUG
  1242. print_hex_dump(KERN_ERR, "next buf@"__stringify(__LINE__)": ",
  1243. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  1244. *next_buflen, 1);
  1245. #endif
  1246. return ret;
  1247. unmap_ctx:
  1248. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE);
  1249. kfree(edesc);
  1250. return ret;
  1251. }
  1252. static int ahash_finup_first(struct ahash_request *req)
  1253. {
  1254. return ahash_digest(req);
  1255. }
  1256. static int ahash_init(struct ahash_request *req)
  1257. {
  1258. struct caam_hash_state *state = ahash_request_ctx(req);
  1259. state->update = ahash_update_first;
  1260. state->finup = ahash_finup_first;
  1261. state->final = ahash_final_no_ctx;
  1262. state->ctx_dma = 0;
  1263. state->current_buf = 0;
  1264. state->buf_dma = 0;
  1265. state->buflen_0 = 0;
  1266. state->buflen_1 = 0;
  1267. return 0;
  1268. }
  1269. static int ahash_update(struct ahash_request *req)
  1270. {
  1271. struct caam_hash_state *state = ahash_request_ctx(req);
  1272. return state->update(req);
  1273. }
  1274. static int ahash_finup(struct ahash_request *req)
  1275. {
  1276. struct caam_hash_state *state = ahash_request_ctx(req);
  1277. return state->finup(req);
  1278. }
  1279. static int ahash_final(struct ahash_request *req)
  1280. {
  1281. struct caam_hash_state *state = ahash_request_ctx(req);
  1282. return state->final(req);
  1283. }
  1284. static int ahash_export(struct ahash_request *req, void *out)
  1285. {
  1286. struct caam_hash_state *state = ahash_request_ctx(req);
  1287. struct caam_export_state *export = out;
  1288. int len;
  1289. u8 *buf;
  1290. if (state->current_buf) {
  1291. buf = state->buf_1;
  1292. len = state->buflen_1;
  1293. } else {
  1294. buf = state->buf_0;
  1295. len = state->buflen_0;
  1296. }
  1297. memcpy(export->buf, buf, len);
  1298. memcpy(export->caam_ctx, state->caam_ctx, sizeof(export->caam_ctx));
  1299. export->buflen = len;
  1300. export->update = state->update;
  1301. export->final = state->final;
  1302. export->finup = state->finup;
  1303. return 0;
  1304. }
  1305. static int ahash_import(struct ahash_request *req, const void *in)
  1306. {
  1307. struct caam_hash_state *state = ahash_request_ctx(req);
  1308. const struct caam_export_state *export = in;
  1309. memset(state, 0, sizeof(*state));
  1310. memcpy(state->buf_0, export->buf, export->buflen);
  1311. memcpy(state->caam_ctx, export->caam_ctx, sizeof(state->caam_ctx));
  1312. state->buflen_0 = export->buflen;
  1313. state->update = export->update;
  1314. state->final = export->final;
  1315. state->finup = export->finup;
  1316. return 0;
  1317. }
  1318. struct caam_hash_template {
  1319. char name[CRYPTO_MAX_ALG_NAME];
  1320. char driver_name[CRYPTO_MAX_ALG_NAME];
  1321. char hmac_name[CRYPTO_MAX_ALG_NAME];
  1322. char hmac_driver_name[CRYPTO_MAX_ALG_NAME];
  1323. unsigned int blocksize;
  1324. struct ahash_alg template_ahash;
  1325. u32 alg_type;
  1326. };
  1327. /* ahash descriptors */
  1328. static struct caam_hash_template driver_hash[] = {
  1329. {
  1330. .name = "sha1",
  1331. .driver_name = "sha1-caam",
  1332. .hmac_name = "hmac(sha1)",
  1333. .hmac_driver_name = "hmac-sha1-caam",
  1334. .blocksize = SHA1_BLOCK_SIZE,
  1335. .template_ahash = {
  1336. .init = ahash_init,
  1337. .update = ahash_update,
  1338. .final = ahash_final,
  1339. .finup = ahash_finup,
  1340. .digest = ahash_digest,
  1341. .export = ahash_export,
  1342. .import = ahash_import,
  1343. .setkey = ahash_setkey,
  1344. .halg = {
  1345. .digestsize = SHA1_DIGEST_SIZE,
  1346. .statesize = sizeof(struct caam_export_state),
  1347. },
  1348. },
  1349. .alg_type = OP_ALG_ALGSEL_SHA1,
  1350. }, {
  1351. .name = "sha224",
  1352. .driver_name = "sha224-caam",
  1353. .hmac_name = "hmac(sha224)",
  1354. .hmac_driver_name = "hmac-sha224-caam",
  1355. .blocksize = SHA224_BLOCK_SIZE,
  1356. .template_ahash = {
  1357. .init = ahash_init,
  1358. .update = ahash_update,
  1359. .final = ahash_final,
  1360. .finup = ahash_finup,
  1361. .digest = ahash_digest,
  1362. .export = ahash_export,
  1363. .import = ahash_import,
  1364. .setkey = ahash_setkey,
  1365. .halg = {
  1366. .digestsize = SHA224_DIGEST_SIZE,
  1367. .statesize = sizeof(struct caam_export_state),
  1368. },
  1369. },
  1370. .alg_type = OP_ALG_ALGSEL_SHA224,
  1371. }, {
  1372. .name = "sha256",
  1373. .driver_name = "sha256-caam",
  1374. .hmac_name = "hmac(sha256)",
  1375. .hmac_driver_name = "hmac-sha256-caam",
  1376. .blocksize = SHA256_BLOCK_SIZE,
  1377. .template_ahash = {
  1378. .init = ahash_init,
  1379. .update = ahash_update,
  1380. .final = ahash_final,
  1381. .finup = ahash_finup,
  1382. .digest = ahash_digest,
  1383. .export = ahash_export,
  1384. .import = ahash_import,
  1385. .setkey = ahash_setkey,
  1386. .halg = {
  1387. .digestsize = SHA256_DIGEST_SIZE,
  1388. .statesize = sizeof(struct caam_export_state),
  1389. },
  1390. },
  1391. .alg_type = OP_ALG_ALGSEL_SHA256,
  1392. }, {
  1393. .name = "sha384",
  1394. .driver_name = "sha384-caam",
  1395. .hmac_name = "hmac(sha384)",
  1396. .hmac_driver_name = "hmac-sha384-caam",
  1397. .blocksize = SHA384_BLOCK_SIZE,
  1398. .template_ahash = {
  1399. .init = ahash_init,
  1400. .update = ahash_update,
  1401. .final = ahash_final,
  1402. .finup = ahash_finup,
  1403. .digest = ahash_digest,
  1404. .export = ahash_export,
  1405. .import = ahash_import,
  1406. .setkey = ahash_setkey,
  1407. .halg = {
  1408. .digestsize = SHA384_DIGEST_SIZE,
  1409. .statesize = sizeof(struct caam_export_state),
  1410. },
  1411. },
  1412. .alg_type = OP_ALG_ALGSEL_SHA384,
  1413. }, {
  1414. .name = "sha512",
  1415. .driver_name = "sha512-caam",
  1416. .hmac_name = "hmac(sha512)",
  1417. .hmac_driver_name = "hmac-sha512-caam",
  1418. .blocksize = SHA512_BLOCK_SIZE,
  1419. .template_ahash = {
  1420. .init = ahash_init,
  1421. .update = ahash_update,
  1422. .final = ahash_final,
  1423. .finup = ahash_finup,
  1424. .digest = ahash_digest,
  1425. .export = ahash_export,
  1426. .import = ahash_import,
  1427. .setkey = ahash_setkey,
  1428. .halg = {
  1429. .digestsize = SHA512_DIGEST_SIZE,
  1430. .statesize = sizeof(struct caam_export_state),
  1431. },
  1432. },
  1433. .alg_type = OP_ALG_ALGSEL_SHA512,
  1434. }, {
  1435. .name = "md5",
  1436. .driver_name = "md5-caam",
  1437. .hmac_name = "hmac(md5)",
  1438. .hmac_driver_name = "hmac-md5-caam",
  1439. .blocksize = MD5_BLOCK_WORDS * 4,
  1440. .template_ahash = {
  1441. .init = ahash_init,
  1442. .update = ahash_update,
  1443. .final = ahash_final,
  1444. .finup = ahash_finup,
  1445. .digest = ahash_digest,
  1446. .export = ahash_export,
  1447. .import = ahash_import,
  1448. .setkey = ahash_setkey,
  1449. .halg = {
  1450. .digestsize = MD5_DIGEST_SIZE,
  1451. .statesize = sizeof(struct caam_export_state),
  1452. },
  1453. },
  1454. .alg_type = OP_ALG_ALGSEL_MD5,
  1455. },
  1456. };
  1457. struct caam_hash_alg {
  1458. struct list_head entry;
  1459. int alg_type;
  1460. struct ahash_alg ahash_alg;
  1461. };
  1462. static int caam_hash_cra_init(struct crypto_tfm *tfm)
  1463. {
  1464. struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
  1465. struct crypto_alg *base = tfm->__crt_alg;
  1466. struct hash_alg_common *halg =
  1467. container_of(base, struct hash_alg_common, base);
  1468. struct ahash_alg *alg =
  1469. container_of(halg, struct ahash_alg, halg);
  1470. struct caam_hash_alg *caam_hash =
  1471. container_of(alg, struct caam_hash_alg, ahash_alg);
  1472. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1473. /* Sizes for MDHA running digests: MD5, SHA1, 224, 256, 384, 512 */
  1474. static const u8 runninglen[] = { HASH_MSG_LEN + MD5_DIGEST_SIZE,
  1475. HASH_MSG_LEN + SHA1_DIGEST_SIZE,
  1476. HASH_MSG_LEN + 32,
  1477. HASH_MSG_LEN + SHA256_DIGEST_SIZE,
  1478. HASH_MSG_LEN + 64,
  1479. HASH_MSG_LEN + SHA512_DIGEST_SIZE };
  1480. dma_addr_t dma_addr;
  1481. /*
  1482. * Get a Job ring from Job Ring driver to ensure in-order
  1483. * crypto request processing per tfm
  1484. */
  1485. ctx->jrdev = caam_jr_alloc();
  1486. if (IS_ERR(ctx->jrdev)) {
  1487. pr_err("Job Ring Device allocation for transform failed\n");
  1488. return PTR_ERR(ctx->jrdev);
  1489. }
  1490. dma_addr = dma_map_single_attrs(ctx->jrdev, ctx->sh_desc_update,
  1491. offsetof(struct caam_hash_ctx,
  1492. sh_desc_update_dma),
  1493. DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
  1494. if (dma_mapping_error(ctx->jrdev, dma_addr)) {
  1495. dev_err(ctx->jrdev, "unable to map shared descriptors\n");
  1496. caam_jr_free(ctx->jrdev);
  1497. return -ENOMEM;
  1498. }
  1499. ctx->sh_desc_update_dma = dma_addr;
  1500. ctx->sh_desc_update_first_dma = dma_addr +
  1501. offsetof(struct caam_hash_ctx,
  1502. sh_desc_update_first);
  1503. ctx->sh_desc_fin_dma = dma_addr + offsetof(struct caam_hash_ctx,
  1504. sh_desc_fin);
  1505. ctx->sh_desc_digest_dma = dma_addr + offsetof(struct caam_hash_ctx,
  1506. sh_desc_digest);
  1507. /* copy descriptor header template value */
  1508. ctx->adata.algtype = OP_TYPE_CLASS2_ALG | caam_hash->alg_type;
  1509. ctx->ctx_len = runninglen[(ctx->adata.algtype &
  1510. OP_ALG_ALGSEL_SUBMASK) >>
  1511. OP_ALG_ALGSEL_SHIFT];
  1512. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  1513. sizeof(struct caam_hash_state));
  1514. return ahash_set_sh_desc(ahash);
  1515. }
  1516. static void caam_hash_cra_exit(struct crypto_tfm *tfm)
  1517. {
  1518. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1519. dma_unmap_single_attrs(ctx->jrdev, ctx->sh_desc_update_dma,
  1520. offsetof(struct caam_hash_ctx,
  1521. sh_desc_update_dma),
  1522. DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
  1523. caam_jr_free(ctx->jrdev);
  1524. }
  1525. static void __exit caam_algapi_hash_exit(void)
  1526. {
  1527. struct caam_hash_alg *t_alg, *n;
  1528. if (!hash_list.next)
  1529. return;
  1530. list_for_each_entry_safe(t_alg, n, &hash_list, entry) {
  1531. crypto_unregister_ahash(&t_alg->ahash_alg);
  1532. list_del(&t_alg->entry);
  1533. kfree(t_alg);
  1534. }
  1535. }
  1536. static struct caam_hash_alg *
  1537. caam_hash_alloc(struct caam_hash_template *template,
  1538. bool keyed)
  1539. {
  1540. struct caam_hash_alg *t_alg;
  1541. struct ahash_alg *halg;
  1542. struct crypto_alg *alg;
  1543. t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL);
  1544. if (!t_alg) {
  1545. pr_err("failed to allocate t_alg\n");
  1546. return ERR_PTR(-ENOMEM);
  1547. }
  1548. t_alg->ahash_alg = template->template_ahash;
  1549. halg = &t_alg->ahash_alg;
  1550. alg = &halg->halg.base;
  1551. if (keyed) {
  1552. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1553. template->hmac_name);
  1554. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1555. template->hmac_driver_name);
  1556. } else {
  1557. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1558. template->name);
  1559. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1560. template->driver_name);
  1561. t_alg->ahash_alg.setkey = NULL;
  1562. }
  1563. alg->cra_module = THIS_MODULE;
  1564. alg->cra_init = caam_hash_cra_init;
  1565. alg->cra_exit = caam_hash_cra_exit;
  1566. alg->cra_ctxsize = sizeof(struct caam_hash_ctx);
  1567. alg->cra_priority = CAAM_CRA_PRIORITY;
  1568. alg->cra_blocksize = template->blocksize;
  1569. alg->cra_alignmask = 0;
  1570. alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_TYPE_AHASH;
  1571. alg->cra_type = &crypto_ahash_type;
  1572. t_alg->alg_type = template->alg_type;
  1573. return t_alg;
  1574. }
  1575. static int __init caam_algapi_hash_init(void)
  1576. {
  1577. struct device_node *dev_node;
  1578. struct platform_device *pdev;
  1579. struct device *ctrldev;
  1580. int i = 0, err = 0;
  1581. struct caam_drv_private *priv;
  1582. unsigned int md_limit = SHA512_DIGEST_SIZE;
  1583. u32 cha_inst, cha_vid;
  1584. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
  1585. if (!dev_node) {
  1586. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
  1587. if (!dev_node)
  1588. return -ENODEV;
  1589. }
  1590. pdev = of_find_device_by_node(dev_node);
  1591. if (!pdev) {
  1592. of_node_put(dev_node);
  1593. return -ENODEV;
  1594. }
  1595. ctrldev = &pdev->dev;
  1596. priv = dev_get_drvdata(ctrldev);
  1597. of_node_put(dev_node);
  1598. /*
  1599. * If priv is NULL, it's probably because the caam driver wasn't
  1600. * properly initialized (e.g. RNG4 init failed). Thus, bail out here.
  1601. */
  1602. if (!priv)
  1603. return -ENODEV;
  1604. /*
  1605. * Register crypto algorithms the device supports. First, identify
  1606. * presence and attributes of MD block.
  1607. */
  1608. cha_vid = rd_reg32(&priv->ctrl->perfmon.cha_id_ls);
  1609. cha_inst = rd_reg32(&priv->ctrl->perfmon.cha_num_ls);
  1610. /*
  1611. * Skip registration of any hashing algorithms if MD block
  1612. * is not present.
  1613. */
  1614. if (!((cha_inst & CHA_ID_LS_MD_MASK) >> CHA_ID_LS_MD_SHIFT))
  1615. return -ENODEV;
  1616. /* Limit digest size based on LP256 */
  1617. if ((cha_vid & CHA_ID_LS_MD_MASK) == CHA_ID_LS_MD_LP256)
  1618. md_limit = SHA256_DIGEST_SIZE;
  1619. INIT_LIST_HEAD(&hash_list);
  1620. /* register crypto algorithms the device supports */
  1621. for (i = 0; i < ARRAY_SIZE(driver_hash); i++) {
  1622. struct caam_hash_alg *t_alg;
  1623. struct caam_hash_template *alg = driver_hash + i;
  1624. /* If MD size is not supported by device, skip registration */
  1625. if (alg->template_ahash.halg.digestsize > md_limit)
  1626. continue;
  1627. /* register hmac version */
  1628. t_alg = caam_hash_alloc(alg, true);
  1629. if (IS_ERR(t_alg)) {
  1630. err = PTR_ERR(t_alg);
  1631. pr_warn("%s alg allocation failed\n", alg->driver_name);
  1632. continue;
  1633. }
  1634. err = crypto_register_ahash(&t_alg->ahash_alg);
  1635. if (err) {
  1636. pr_warn("%s alg registration failed: %d\n",
  1637. t_alg->ahash_alg.halg.base.cra_driver_name,
  1638. err);
  1639. kfree(t_alg);
  1640. } else
  1641. list_add_tail(&t_alg->entry, &hash_list);
  1642. /* register unkeyed version */
  1643. t_alg = caam_hash_alloc(alg, false);
  1644. if (IS_ERR(t_alg)) {
  1645. err = PTR_ERR(t_alg);
  1646. pr_warn("%s alg allocation failed\n", alg->driver_name);
  1647. continue;
  1648. }
  1649. err = crypto_register_ahash(&t_alg->ahash_alg);
  1650. if (err) {
  1651. pr_warn("%s alg registration failed: %d\n",
  1652. t_alg->ahash_alg.halg.base.cra_driver_name,
  1653. err);
  1654. kfree(t_alg);
  1655. } else
  1656. list_add_tail(&t_alg->entry, &hash_list);
  1657. }
  1658. return err;
  1659. }
  1660. module_init(caam_algapi_hash_init);
  1661. module_exit(caam_algapi_hash_exit);
  1662. MODULE_LICENSE("GPL");
  1663. MODULE_DESCRIPTION("FSL CAAM support for ahash functions of crypto API");
  1664. MODULE_AUTHOR("Freescale Semiconductor - NMG");