clk.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450
  1. /*
  2. * Copyright 2014 Linaro Ltd.
  3. * Copyright (C) 2014 ZTE Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License version 2 as
  7. * published by the Free Software Foundation.
  8. */
  9. #include <linux/clk-provider.h>
  10. #include <linux/err.h>
  11. #include <linux/gcd.h>
  12. #include <linux/io.h>
  13. #include <linux/iopoll.h>
  14. #include <linux/slab.h>
  15. #include <linux/spinlock.h>
  16. #include <asm/div64.h>
  17. #include "clk.h"
  18. #define to_clk_zx_pll(_hw) container_of(_hw, struct clk_zx_pll, hw)
  19. #define to_clk_zx_audio(_hw) container_of(_hw, struct clk_zx_audio, hw)
  20. #define CFG0_CFG1_OFFSET 4
  21. #define LOCK_FLAG 30
  22. #define POWER_DOWN 31
  23. static int rate_to_idx(struct clk_zx_pll *zx_pll, unsigned long rate)
  24. {
  25. const struct zx_pll_config *config = zx_pll->lookup_table;
  26. int i;
  27. for (i = 0; i < zx_pll->count; i++) {
  28. if (config[i].rate > rate)
  29. return i > 0 ? i - 1 : 0;
  30. if (config[i].rate == rate)
  31. return i;
  32. }
  33. return i - 1;
  34. }
  35. static int hw_to_idx(struct clk_zx_pll *zx_pll)
  36. {
  37. const struct zx_pll_config *config = zx_pll->lookup_table;
  38. u32 hw_cfg0, hw_cfg1;
  39. int i;
  40. hw_cfg0 = readl_relaxed(zx_pll->reg_base);
  41. hw_cfg1 = readl_relaxed(zx_pll->reg_base + CFG0_CFG1_OFFSET);
  42. /* For matching the value in lookup table */
  43. hw_cfg0 &= ~BIT(zx_pll->lock_bit);
  44. /* Check availability of pd_bit */
  45. if (zx_pll->pd_bit < 32)
  46. hw_cfg0 |= BIT(zx_pll->pd_bit);
  47. for (i = 0; i < zx_pll->count; i++) {
  48. if (hw_cfg0 == config[i].cfg0 && hw_cfg1 == config[i].cfg1)
  49. return i;
  50. }
  51. return -EINVAL;
  52. }
  53. static unsigned long zx_pll_recalc_rate(struct clk_hw *hw,
  54. unsigned long parent_rate)
  55. {
  56. struct clk_zx_pll *zx_pll = to_clk_zx_pll(hw);
  57. int idx;
  58. idx = hw_to_idx(zx_pll);
  59. if (unlikely(idx == -EINVAL))
  60. return 0;
  61. return zx_pll->lookup_table[idx].rate;
  62. }
  63. static long zx_pll_round_rate(struct clk_hw *hw, unsigned long rate,
  64. unsigned long *prate)
  65. {
  66. struct clk_zx_pll *zx_pll = to_clk_zx_pll(hw);
  67. int idx;
  68. idx = rate_to_idx(zx_pll, rate);
  69. return zx_pll->lookup_table[idx].rate;
  70. }
  71. static int zx_pll_set_rate(struct clk_hw *hw, unsigned long rate,
  72. unsigned long parent_rate)
  73. {
  74. /* Assume current cpu is not running on current PLL */
  75. struct clk_zx_pll *zx_pll = to_clk_zx_pll(hw);
  76. const struct zx_pll_config *config;
  77. int idx;
  78. idx = rate_to_idx(zx_pll, rate);
  79. config = &zx_pll->lookup_table[idx];
  80. writel_relaxed(config->cfg0, zx_pll->reg_base);
  81. writel_relaxed(config->cfg1, zx_pll->reg_base + CFG0_CFG1_OFFSET);
  82. return 0;
  83. }
  84. static int zx_pll_enable(struct clk_hw *hw)
  85. {
  86. struct clk_zx_pll *zx_pll = to_clk_zx_pll(hw);
  87. u32 reg;
  88. /* If pd_bit is not available, simply return success. */
  89. if (zx_pll->pd_bit > 31)
  90. return 0;
  91. reg = readl_relaxed(zx_pll->reg_base);
  92. writel_relaxed(reg & ~BIT(zx_pll->pd_bit), zx_pll->reg_base);
  93. return readl_relaxed_poll_timeout(zx_pll->reg_base, reg,
  94. reg & BIT(zx_pll->lock_bit), 0, 100);
  95. }
  96. static void zx_pll_disable(struct clk_hw *hw)
  97. {
  98. struct clk_zx_pll *zx_pll = to_clk_zx_pll(hw);
  99. u32 reg;
  100. if (zx_pll->pd_bit > 31)
  101. return;
  102. reg = readl_relaxed(zx_pll->reg_base);
  103. writel_relaxed(reg | BIT(zx_pll->pd_bit), zx_pll->reg_base);
  104. }
  105. static int zx_pll_is_enabled(struct clk_hw *hw)
  106. {
  107. struct clk_zx_pll *zx_pll = to_clk_zx_pll(hw);
  108. u32 reg;
  109. reg = readl_relaxed(zx_pll->reg_base);
  110. return !(reg & BIT(zx_pll->pd_bit));
  111. }
  112. const struct clk_ops zx_pll_ops = {
  113. .recalc_rate = zx_pll_recalc_rate,
  114. .round_rate = zx_pll_round_rate,
  115. .set_rate = zx_pll_set_rate,
  116. .enable = zx_pll_enable,
  117. .disable = zx_pll_disable,
  118. .is_enabled = zx_pll_is_enabled,
  119. };
  120. EXPORT_SYMBOL(zx_pll_ops);
  121. struct clk *clk_register_zx_pll(const char *name, const char *parent_name,
  122. unsigned long flags, void __iomem *reg_base,
  123. const struct zx_pll_config *lookup_table,
  124. int count, spinlock_t *lock)
  125. {
  126. struct clk_zx_pll *zx_pll;
  127. struct clk *clk;
  128. struct clk_init_data init;
  129. zx_pll = kzalloc(sizeof(*zx_pll), GFP_KERNEL);
  130. if (!zx_pll)
  131. return ERR_PTR(-ENOMEM);
  132. init.name = name;
  133. init.ops = &zx_pll_ops;
  134. init.flags = flags;
  135. init.parent_names = parent_name ? &parent_name : NULL;
  136. init.num_parents = parent_name ? 1 : 0;
  137. zx_pll->reg_base = reg_base;
  138. zx_pll->lookup_table = lookup_table;
  139. zx_pll->count = count;
  140. zx_pll->lock_bit = LOCK_FLAG;
  141. zx_pll->pd_bit = POWER_DOWN;
  142. zx_pll->lock = lock;
  143. zx_pll->hw.init = &init;
  144. clk = clk_register(NULL, &zx_pll->hw);
  145. if (IS_ERR(clk))
  146. kfree(zx_pll);
  147. return clk;
  148. }
  149. #define BPAR 1000000
  150. static u32 calc_reg(u32 parent_rate, u32 rate)
  151. {
  152. u32 sel, integ, fra_div, tmp;
  153. u64 tmp64 = (u64)parent_rate * BPAR;
  154. do_div(tmp64, rate);
  155. integ = (u32)tmp64 / BPAR;
  156. integ = integ >> 1;
  157. tmp = (u32)tmp64 % BPAR;
  158. sel = tmp / BPAR;
  159. tmp = tmp % BPAR;
  160. fra_div = tmp * 0xff / BPAR;
  161. tmp = (sel << 24) | (integ << 16) | (0xff << 8) | fra_div;
  162. /* Set I2S integer divider as 1. This bit is reserved for SPDIF
  163. * and do no harm.
  164. */
  165. tmp |= BIT(28);
  166. return tmp;
  167. }
  168. static u32 calc_rate(u32 reg, u32 parent_rate)
  169. {
  170. u32 sel, integ, fra_div, tmp;
  171. u64 tmp64 = (u64)parent_rate * BPAR;
  172. tmp = reg;
  173. sel = (tmp >> 24) & BIT(0);
  174. integ = (tmp >> 16) & 0xff;
  175. fra_div = tmp & 0xff;
  176. tmp = fra_div * BPAR;
  177. tmp = tmp / 0xff;
  178. tmp += sel * BPAR;
  179. tmp += 2 * integ * BPAR;
  180. do_div(tmp64, tmp);
  181. return (u32)tmp64;
  182. }
  183. static unsigned long zx_audio_recalc_rate(struct clk_hw *hw,
  184. unsigned long parent_rate)
  185. {
  186. struct clk_zx_audio *zx_audio = to_clk_zx_audio(hw);
  187. u32 reg;
  188. reg = readl_relaxed(zx_audio->reg_base);
  189. return calc_rate(reg, parent_rate);
  190. }
  191. static long zx_audio_round_rate(struct clk_hw *hw, unsigned long rate,
  192. unsigned long *prate)
  193. {
  194. u32 reg;
  195. if (rate * 2 > *prate)
  196. return -EINVAL;
  197. reg = calc_reg(*prate, rate);
  198. return calc_rate(reg, *prate);
  199. }
  200. static int zx_audio_set_rate(struct clk_hw *hw, unsigned long rate,
  201. unsigned long parent_rate)
  202. {
  203. struct clk_zx_audio *zx_audio = to_clk_zx_audio(hw);
  204. u32 reg;
  205. reg = calc_reg(parent_rate, rate);
  206. writel_relaxed(reg, zx_audio->reg_base);
  207. return 0;
  208. }
  209. #define ZX_AUDIO_EN BIT(25)
  210. static int zx_audio_enable(struct clk_hw *hw)
  211. {
  212. struct clk_zx_audio *zx_audio = to_clk_zx_audio(hw);
  213. u32 reg;
  214. reg = readl_relaxed(zx_audio->reg_base);
  215. writel_relaxed(reg & ~ZX_AUDIO_EN, zx_audio->reg_base);
  216. return 0;
  217. }
  218. static void zx_audio_disable(struct clk_hw *hw)
  219. {
  220. struct clk_zx_audio *zx_audio = to_clk_zx_audio(hw);
  221. u32 reg;
  222. reg = readl_relaxed(zx_audio->reg_base);
  223. writel_relaxed(reg | ZX_AUDIO_EN, zx_audio->reg_base);
  224. }
  225. static const struct clk_ops zx_audio_ops = {
  226. .recalc_rate = zx_audio_recalc_rate,
  227. .round_rate = zx_audio_round_rate,
  228. .set_rate = zx_audio_set_rate,
  229. .enable = zx_audio_enable,
  230. .disable = zx_audio_disable,
  231. };
  232. struct clk *clk_register_zx_audio(const char *name,
  233. const char * const parent_name,
  234. unsigned long flags,
  235. void __iomem *reg_base)
  236. {
  237. struct clk_zx_audio *zx_audio;
  238. struct clk *clk;
  239. struct clk_init_data init;
  240. zx_audio = kzalloc(sizeof(*zx_audio), GFP_KERNEL);
  241. if (!zx_audio)
  242. return ERR_PTR(-ENOMEM);
  243. init.name = name;
  244. init.ops = &zx_audio_ops;
  245. init.flags = flags;
  246. init.parent_names = parent_name ? &parent_name : NULL;
  247. init.num_parents = parent_name ? 1 : 0;
  248. zx_audio->reg_base = reg_base;
  249. zx_audio->hw.init = &init;
  250. clk = clk_register(NULL, &zx_audio->hw);
  251. if (IS_ERR(clk))
  252. kfree(zx_audio);
  253. return clk;
  254. }
  255. #define CLK_AUDIO_DIV_FRAC BIT(0)
  256. #define CLK_AUDIO_DIV_INT BIT(1)
  257. #define CLK_AUDIO_DIV_UNCOMMON BIT(1)
  258. #define CLK_AUDIO_DIV_FRAC_NSHIFT 16
  259. #define CLK_AUDIO_DIV_INT_FRAC_RE BIT(16)
  260. #define CLK_AUDIO_DIV_INT_FRAC_MAX (0xffff)
  261. #define CLK_AUDIO_DIV_INT_FRAC_MIN (0x2)
  262. #define CLK_AUDIO_DIV_INT_INT_SHIFT 24
  263. #define CLK_AUDIO_DIV_INT_INT_WIDTH 4
  264. struct zx_clk_audio_div_table {
  265. unsigned long rate;
  266. unsigned int int_reg;
  267. unsigned int frac_reg;
  268. };
  269. #define to_clk_zx_audio_div(_hw) container_of(_hw, struct clk_zx_audio_divider, hw)
  270. static unsigned long audio_calc_rate(struct clk_zx_audio_divider *audio_div,
  271. u32 reg_frac, u32 reg_int,
  272. unsigned long parent_rate)
  273. {
  274. unsigned long rate, m, n;
  275. m = reg_frac & 0xffff;
  276. n = (reg_frac >> 16) & 0xffff;
  277. m = (reg_int & 0xffff) * n + m;
  278. rate = (parent_rate * n) / m;
  279. return rate;
  280. }
  281. static void audio_calc_reg(struct clk_zx_audio_divider *audio_div,
  282. struct zx_clk_audio_div_table *div_table,
  283. unsigned long rate, unsigned long parent_rate)
  284. {
  285. unsigned int reg_int, reg_frac;
  286. unsigned long m, n, div;
  287. reg_int = parent_rate / rate;
  288. if (reg_int > CLK_AUDIO_DIV_INT_FRAC_MAX)
  289. reg_int = CLK_AUDIO_DIV_INT_FRAC_MAX;
  290. else if (reg_int < CLK_AUDIO_DIV_INT_FRAC_MIN)
  291. reg_int = 0;
  292. m = parent_rate - rate * reg_int;
  293. n = rate;
  294. div = gcd(m, n);
  295. m = m / div;
  296. n = n / div;
  297. if ((m >> 16) || (n >> 16)) {
  298. if (m > n) {
  299. n = n * 0xffff / m;
  300. m = 0xffff;
  301. } else {
  302. m = m * 0xffff / n;
  303. n = 0xffff;
  304. }
  305. }
  306. reg_frac = m | (n << 16);
  307. div_table->rate = parent_rate * n / (reg_int * n + m);
  308. div_table->int_reg = reg_int;
  309. div_table->frac_reg = reg_frac;
  310. }
  311. static unsigned long zx_audio_div_recalc_rate(struct clk_hw *hw,
  312. unsigned long parent_rate)
  313. {
  314. struct clk_zx_audio_divider *zx_audio_div = to_clk_zx_audio_div(hw);
  315. u32 reg_frac, reg_int;
  316. reg_frac = readl_relaxed(zx_audio_div->reg_base);
  317. reg_int = readl_relaxed(zx_audio_div->reg_base + 0x4);
  318. return audio_calc_rate(zx_audio_div, reg_frac, reg_int, parent_rate);
  319. }
  320. static long zx_audio_div_round_rate(struct clk_hw *hw, unsigned long rate,
  321. unsigned long *prate)
  322. {
  323. struct clk_zx_audio_divider *zx_audio_div = to_clk_zx_audio_div(hw);
  324. struct zx_clk_audio_div_table divt;
  325. audio_calc_reg(zx_audio_div, &divt, rate, *prate);
  326. return audio_calc_rate(zx_audio_div, divt.frac_reg, divt.int_reg, *prate);
  327. }
  328. static int zx_audio_div_set_rate(struct clk_hw *hw, unsigned long rate,
  329. unsigned long parent_rate)
  330. {
  331. struct clk_zx_audio_divider *zx_audio_div = to_clk_zx_audio_div(hw);
  332. struct zx_clk_audio_div_table divt;
  333. unsigned int val;
  334. audio_calc_reg(zx_audio_div, &divt, rate, parent_rate);
  335. if (divt.rate != rate)
  336. pr_debug("the real rate is:%ld", divt.rate);
  337. writel_relaxed(divt.frac_reg, zx_audio_div->reg_base);
  338. val = readl_relaxed(zx_audio_div->reg_base + 0x4);
  339. val &= ~0xffff;
  340. val |= divt.int_reg | CLK_AUDIO_DIV_INT_FRAC_RE;
  341. writel_relaxed(val, zx_audio_div->reg_base + 0x4);
  342. mdelay(1);
  343. val = readl_relaxed(zx_audio_div->reg_base + 0x4);
  344. val &= ~CLK_AUDIO_DIV_INT_FRAC_RE;
  345. writel_relaxed(val, zx_audio_div->reg_base + 0x4);
  346. return 0;
  347. }
  348. const struct clk_ops zx_audio_div_ops = {
  349. .recalc_rate = zx_audio_div_recalc_rate,
  350. .round_rate = zx_audio_div_round_rate,
  351. .set_rate = zx_audio_div_set_rate,
  352. };