dma-mapping.c 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372
  1. /*
  2. * drivers/base/dma-mapping.c - arch-independent dma-mapping routines
  3. *
  4. * Copyright (c) 2006 SUSE Linux Products GmbH
  5. * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
  6. *
  7. * This file is released under the GPLv2.
  8. */
  9. #include <linux/acpi.h>
  10. #include <linux/dma-mapping.h>
  11. #include <linux/export.h>
  12. #include <linux/gfp.h>
  13. #include <linux/of_device.h>
  14. #include <linux/slab.h>
  15. #include <linux/vmalloc.h>
  16. /*
  17. * Managed DMA API
  18. */
  19. struct dma_devres {
  20. size_t size;
  21. void *vaddr;
  22. dma_addr_t dma_handle;
  23. unsigned long attrs;
  24. };
  25. static void dmam_release(struct device *dev, void *res)
  26. {
  27. struct dma_devres *this = res;
  28. dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
  29. this->attrs);
  30. }
  31. static int dmam_match(struct device *dev, void *res, void *match_data)
  32. {
  33. struct dma_devres *this = res, *match = match_data;
  34. if (this->vaddr == match->vaddr) {
  35. WARN_ON(this->size != match->size ||
  36. this->dma_handle != match->dma_handle);
  37. return 1;
  38. }
  39. return 0;
  40. }
  41. /**
  42. * dmam_alloc_coherent - Managed dma_alloc_coherent()
  43. * @dev: Device to allocate coherent memory for
  44. * @size: Size of allocation
  45. * @dma_handle: Out argument for allocated DMA handle
  46. * @gfp: Allocation flags
  47. *
  48. * Managed dma_alloc_coherent(). Memory allocated using this function
  49. * will be automatically released on driver detach.
  50. *
  51. * RETURNS:
  52. * Pointer to allocated memory on success, NULL on failure.
  53. */
  54. void *dmam_alloc_coherent(struct device *dev, size_t size,
  55. dma_addr_t *dma_handle, gfp_t gfp)
  56. {
  57. struct dma_devres *dr;
  58. void *vaddr;
  59. dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
  60. if (!dr)
  61. return NULL;
  62. vaddr = dma_alloc_coherent(dev, size, dma_handle, gfp);
  63. if (!vaddr) {
  64. devres_free(dr);
  65. return NULL;
  66. }
  67. dr->vaddr = vaddr;
  68. dr->dma_handle = *dma_handle;
  69. dr->size = size;
  70. devres_add(dev, dr);
  71. return vaddr;
  72. }
  73. EXPORT_SYMBOL(dmam_alloc_coherent);
  74. /**
  75. * dmam_free_coherent - Managed dma_free_coherent()
  76. * @dev: Device to free coherent memory for
  77. * @size: Size of allocation
  78. * @vaddr: Virtual address of the memory to free
  79. * @dma_handle: DMA handle of the memory to free
  80. *
  81. * Managed dma_free_coherent().
  82. */
  83. void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
  84. dma_addr_t dma_handle)
  85. {
  86. struct dma_devres match_data = { size, vaddr, dma_handle };
  87. dma_free_coherent(dev, size, vaddr, dma_handle);
  88. WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
  89. }
  90. EXPORT_SYMBOL(dmam_free_coherent);
  91. /**
  92. * dmam_alloc_attrs - Managed dma_alloc_attrs()
  93. * @dev: Device to allocate non_coherent memory for
  94. * @size: Size of allocation
  95. * @dma_handle: Out argument for allocated DMA handle
  96. * @gfp: Allocation flags
  97. * @attrs: Flags in the DMA_ATTR_* namespace.
  98. *
  99. * Managed dma_alloc_attrs(). Memory allocated using this function will be
  100. * automatically released on driver detach.
  101. *
  102. * RETURNS:
  103. * Pointer to allocated memory on success, NULL on failure.
  104. */
  105. void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
  106. gfp_t gfp, unsigned long attrs)
  107. {
  108. struct dma_devres *dr;
  109. void *vaddr;
  110. dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
  111. if (!dr)
  112. return NULL;
  113. vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
  114. if (!vaddr) {
  115. devres_free(dr);
  116. return NULL;
  117. }
  118. dr->vaddr = vaddr;
  119. dr->dma_handle = *dma_handle;
  120. dr->size = size;
  121. dr->attrs = attrs;
  122. devres_add(dev, dr);
  123. return vaddr;
  124. }
  125. EXPORT_SYMBOL(dmam_alloc_attrs);
  126. #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT
  127. static void dmam_coherent_decl_release(struct device *dev, void *res)
  128. {
  129. dma_release_declared_memory(dev);
  130. }
  131. /**
  132. * dmam_declare_coherent_memory - Managed dma_declare_coherent_memory()
  133. * @dev: Device to declare coherent memory for
  134. * @phys_addr: Physical address of coherent memory to be declared
  135. * @device_addr: Device address of coherent memory to be declared
  136. * @size: Size of coherent memory to be declared
  137. * @flags: Flags
  138. *
  139. * Managed dma_declare_coherent_memory().
  140. *
  141. * RETURNS:
  142. * 0 on success, -errno on failure.
  143. */
  144. int dmam_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
  145. dma_addr_t device_addr, size_t size, int flags)
  146. {
  147. void *res;
  148. int rc;
  149. res = devres_alloc(dmam_coherent_decl_release, 0, GFP_KERNEL);
  150. if (!res)
  151. return -ENOMEM;
  152. rc = dma_declare_coherent_memory(dev, phys_addr, device_addr, size,
  153. flags);
  154. if (!rc)
  155. devres_add(dev, res);
  156. else
  157. devres_free(res);
  158. return rc;
  159. }
  160. EXPORT_SYMBOL(dmam_declare_coherent_memory);
  161. /**
  162. * dmam_release_declared_memory - Managed dma_release_declared_memory().
  163. * @dev: Device to release declared coherent memory for
  164. *
  165. * Managed dmam_release_declared_memory().
  166. */
  167. void dmam_release_declared_memory(struct device *dev)
  168. {
  169. WARN_ON(devres_destroy(dev, dmam_coherent_decl_release, NULL, NULL));
  170. }
  171. EXPORT_SYMBOL(dmam_release_declared_memory);
  172. #endif
  173. /*
  174. * Create scatter-list for the already allocated DMA buffer.
  175. */
  176. int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
  177. void *cpu_addr, dma_addr_t handle, size_t size)
  178. {
  179. struct page *page = virt_to_page(cpu_addr);
  180. int ret;
  181. ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
  182. if (unlikely(ret))
  183. return ret;
  184. sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
  185. return 0;
  186. }
  187. EXPORT_SYMBOL(dma_common_get_sgtable);
  188. /*
  189. * Create userspace mapping for the DMA-coherent memory.
  190. */
  191. int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
  192. void *cpu_addr, dma_addr_t dma_addr, size_t size)
  193. {
  194. int ret = -ENXIO;
  195. #ifndef CONFIG_ARCH_NO_COHERENT_DMA_MMAP
  196. unsigned long user_count = vma_pages(vma);
  197. unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
  198. unsigned long pfn = page_to_pfn(virt_to_page(cpu_addr));
  199. unsigned long off = vma->vm_pgoff;
  200. vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
  201. if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
  202. return ret;
  203. if (off < count && user_count <= (count - off)) {
  204. ret = remap_pfn_range(vma, vma->vm_start,
  205. pfn + off,
  206. user_count << PAGE_SHIFT,
  207. vma->vm_page_prot);
  208. }
  209. #endif /* !CONFIG_ARCH_NO_COHERENT_DMA_MMAP */
  210. return ret;
  211. }
  212. EXPORT_SYMBOL(dma_common_mmap);
  213. #ifdef CONFIG_MMU
  214. static struct vm_struct *__dma_common_pages_remap(struct page **pages,
  215. size_t size, unsigned long vm_flags, pgprot_t prot,
  216. const void *caller)
  217. {
  218. struct vm_struct *area;
  219. area = get_vm_area_caller(size, vm_flags, caller);
  220. if (!area)
  221. return NULL;
  222. if (map_vm_area(area, prot, pages)) {
  223. vunmap(area->addr);
  224. return NULL;
  225. }
  226. return area;
  227. }
  228. /*
  229. * remaps an array of PAGE_SIZE pages into another vm_area
  230. * Cannot be used in non-sleeping contexts
  231. */
  232. void *dma_common_pages_remap(struct page **pages, size_t size,
  233. unsigned long vm_flags, pgprot_t prot,
  234. const void *caller)
  235. {
  236. struct vm_struct *area;
  237. area = __dma_common_pages_remap(pages, size, vm_flags, prot, caller);
  238. if (!area)
  239. return NULL;
  240. area->pages = pages;
  241. return area->addr;
  242. }
  243. /*
  244. * remaps an allocated contiguous region into another vm_area.
  245. * Cannot be used in non-sleeping contexts
  246. */
  247. void *dma_common_contiguous_remap(struct page *page, size_t size,
  248. unsigned long vm_flags,
  249. pgprot_t prot, const void *caller)
  250. {
  251. int i;
  252. struct page **pages;
  253. struct vm_struct *area;
  254. pages = kmalloc(sizeof(struct page *) << get_order(size), GFP_KERNEL);
  255. if (!pages)
  256. return NULL;
  257. for (i = 0; i < (size >> PAGE_SHIFT); i++)
  258. pages[i] = nth_page(page, i);
  259. area = __dma_common_pages_remap(pages, size, vm_flags, prot, caller);
  260. kfree(pages);
  261. if (!area)
  262. return NULL;
  263. return area->addr;
  264. }
  265. /*
  266. * unmaps a range previously mapped by dma_common_*_remap
  267. */
  268. void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags)
  269. {
  270. struct vm_struct *area = find_vm_area(cpu_addr);
  271. if (!area || (area->flags & vm_flags) != vm_flags) {
  272. WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
  273. return;
  274. }
  275. unmap_kernel_range((unsigned long)cpu_addr, PAGE_ALIGN(size));
  276. vunmap(cpu_addr);
  277. }
  278. #endif
  279. /*
  280. * Common configuration to enable DMA API use for a device
  281. */
  282. #include <linux/pci.h>
  283. int dma_configure(struct device *dev)
  284. {
  285. struct device *bridge = NULL, *dma_dev = dev;
  286. enum dev_dma_attr attr;
  287. int ret = 0;
  288. if (dev_is_pci(dev)) {
  289. bridge = pci_get_host_bridge_device(to_pci_dev(dev));
  290. dma_dev = bridge;
  291. if (IS_ENABLED(CONFIG_OF) && dma_dev->parent &&
  292. dma_dev->parent->of_node)
  293. dma_dev = dma_dev->parent;
  294. }
  295. if (dma_dev->of_node) {
  296. ret = of_dma_configure(dev, dma_dev->of_node);
  297. } else if (has_acpi_companion(dma_dev)) {
  298. attr = acpi_get_dma_attr(to_acpi_device_node(dma_dev->fwnode));
  299. if (attr != DEV_DMA_NOT_SUPPORTED)
  300. ret = acpi_dma_configure(dev, attr);
  301. }
  302. if (bridge)
  303. pci_put_host_bridge_device(bridge);
  304. return ret;
  305. }
  306. void dma_deconfigure(struct device *dev)
  307. {
  308. of_dma_deconfigure(dev);
  309. acpi_dma_deconfigure(dev);
  310. }