12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256 |
- /*
- * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
- *
- * (C) Copyright 2014, 2015 Linaro Ltd.
- * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; version 2
- * of the License.
- *
- * CPPC describes a few methods for controlling CPU performance using
- * information from a per CPU table called CPC. This table is described in
- * the ACPI v5.0+ specification. The table consists of a list of
- * registers which may be memory mapped or hardware registers and also may
- * include some static integer values.
- *
- * CPU performance is on an abstract continuous scale as against a discretized
- * P-state scale which is tied to CPU frequency only. In brief, the basic
- * operation involves:
- *
- * - OS makes a CPU performance request. (Can provide min and max bounds)
- *
- * - Platform (such as BMC) is free to optimize request within requested bounds
- * depending on power/thermal budgets etc.
- *
- * - Platform conveys its decision back to OS
- *
- * The communication between OS and platform occurs through another medium
- * called (PCC) Platform Communication Channel. This is a generic mailbox like
- * mechanism which includes doorbell semantics to indicate register updates.
- * See drivers/mailbox/pcc.c for details on PCC.
- *
- * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
- * above specifications.
- */
- #define pr_fmt(fmt) "ACPI CPPC: " fmt
- #include <linux/cpufreq.h>
- #include <linux/delay.h>
- #include <linux/ktime.h>
- #include <linux/rwsem.h>
- #include <linux/wait.h>
- #include <acpi/cppc_acpi.h>
- struct cppc_pcc_data {
- struct mbox_chan *pcc_channel;
- void __iomem *pcc_comm_addr;
- int pcc_subspace_idx;
- bool pcc_channel_acquired;
- ktime_t deadline;
- unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
- bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
- bool platform_owns_pcc; /* Ownership of PCC subspace */
- unsigned int pcc_write_cnt; /* Running count of PCC write commands */
- /*
- * Lock to provide controlled access to the PCC channel.
- *
- * For performance critical usecases(currently cppc_set_perf)
- * We need to take read_lock and check if channel belongs to OSPM
- * before reading or writing to PCC subspace
- * We need to take write_lock before transferring the channel
- * ownership to the platform via a Doorbell
- * This allows us to batch a number of CPPC requests if they happen
- * to originate in about the same time
- *
- * For non-performance critical usecases(init)
- * Take write_lock for all purposes which gives exclusive access
- */
- struct rw_semaphore pcc_lock;
- /* Wait queue for CPUs whose requests were batched */
- wait_queue_head_t pcc_write_wait_q;
- };
- /* Structure to represent the single PCC channel */
- static struct cppc_pcc_data pcc_data = {
- .pcc_subspace_idx = -1,
- .platform_owns_pcc = true,
- };
- /*
- * The cpc_desc structure contains the ACPI register details
- * as described in the per CPU _CPC tables. The details
- * include the type of register (e.g. PCC, System IO, FFH etc.)
- * and destination addresses which lets us READ/WRITE CPU performance
- * information using the appropriate I/O methods.
- */
- static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
- /* pcc mapped address + header size + offset within PCC subspace */
- #define GET_PCC_VADDR(offs) (pcc_data.pcc_comm_addr + 0x8 + (offs))
- /* Check if a CPC register is in PCC */
- #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
- (cpc)->cpc_entry.reg.space_id == \
- ACPI_ADR_SPACE_PLATFORM_COMM)
- /* Evalutes to True if reg is a NULL register descriptor */
- #define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
- (reg)->address == 0 && \
- (reg)->bit_width == 0 && \
- (reg)->bit_offset == 0 && \
- (reg)->access_width == 0)
- /* Evalutes to True if an optional cpc field is supported */
- #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
- !!(cpc)->cpc_entry.int_value : \
- !IS_NULL_REG(&(cpc)->cpc_entry.reg))
- /*
- * Arbitrary Retries in case the remote processor is slow to respond
- * to PCC commands. Keeping it high enough to cover emulators where
- * the processors run painfully slow.
- */
- #define NUM_RETRIES 500
- #define define_one_cppc_ro(_name) \
- static struct kobj_attribute _name = \
- __ATTR(_name, 0444, show_##_name, NULL)
- #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
- #define show_cppc_data(access_fn, struct_name, member_name) \
- static ssize_t show_##member_name(struct kobject *kobj, \
- struct kobj_attribute *attr, char *buf) \
- { \
- struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
- struct struct_name st_name = {0}; \
- int ret; \
- \
- ret = access_fn(cpc_ptr->cpu_id, &st_name); \
- if (ret) \
- return ret; \
- \
- return scnprintf(buf, PAGE_SIZE, "%llu\n", \
- (u64)st_name.member_name); \
- } \
- define_one_cppc_ro(member_name)
- show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
- show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
- show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
- show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
- show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
- show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
- static ssize_t show_feedback_ctrs(struct kobject *kobj,
- struct kobj_attribute *attr, char *buf)
- {
- struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
- struct cppc_perf_fb_ctrs fb_ctrs = {0};
- int ret;
- ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
- if (ret)
- return ret;
- return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
- fb_ctrs.reference, fb_ctrs.delivered);
- }
- define_one_cppc_ro(feedback_ctrs);
- static struct attribute *cppc_attrs[] = {
- &feedback_ctrs.attr,
- &reference_perf.attr,
- &wraparound_time.attr,
- &highest_perf.attr,
- &lowest_perf.attr,
- &lowest_nonlinear_perf.attr,
- &nominal_perf.attr,
- NULL
- };
- static struct kobj_type cppc_ktype = {
- .sysfs_ops = &kobj_sysfs_ops,
- .default_attrs = cppc_attrs,
- };
- static int check_pcc_chan(bool chk_err_bit)
- {
- int ret = -EIO, status = 0;
- struct acpi_pcct_shared_memory __iomem *generic_comm_base = pcc_data.pcc_comm_addr;
- ktime_t next_deadline = ktime_add(ktime_get(), pcc_data.deadline);
- if (!pcc_data.platform_owns_pcc)
- return 0;
- /* Retry in case the remote processor was too slow to catch up. */
- while (!ktime_after(ktime_get(), next_deadline)) {
- /*
- * Per spec, prior to boot the PCC space wil be initialized by
- * platform and should have set the command completion bit when
- * PCC can be used by OSPM
- */
- status = readw_relaxed(&generic_comm_base->status);
- if (status & PCC_CMD_COMPLETE_MASK) {
- ret = 0;
- if (chk_err_bit && (status & PCC_ERROR_MASK))
- ret = -EIO;
- break;
- }
- /*
- * Reducing the bus traffic in case this loop takes longer than
- * a few retries.
- */
- udelay(3);
- }
- if (likely(!ret))
- pcc_data.platform_owns_pcc = false;
- else
- pr_err("PCC check channel failed. Status=%x\n", status);
- return ret;
- }
- /*
- * This function transfers the ownership of the PCC to the platform
- * So it must be called while holding write_lock(pcc_lock)
- */
- static int send_pcc_cmd(u16 cmd)
- {
- int ret = -EIO, i;
- struct acpi_pcct_shared_memory *generic_comm_base =
- (struct acpi_pcct_shared_memory *) pcc_data.pcc_comm_addr;
- static ktime_t last_cmd_cmpl_time, last_mpar_reset;
- static int mpar_count;
- unsigned int time_delta;
- /*
- * For CMD_WRITE we know for a fact the caller should have checked
- * the channel before writing to PCC space
- */
- if (cmd == CMD_READ) {
- /*
- * If there are pending cpc_writes, then we stole the channel
- * before write completion, so first send a WRITE command to
- * platform
- */
- if (pcc_data.pending_pcc_write_cmd)
- send_pcc_cmd(CMD_WRITE);
- ret = check_pcc_chan(false);
- if (ret)
- goto end;
- } else /* CMD_WRITE */
- pcc_data.pending_pcc_write_cmd = FALSE;
- /*
- * Handle the Minimum Request Turnaround Time(MRTT)
- * "The minimum amount of time that OSPM must wait after the completion
- * of a command before issuing the next command, in microseconds"
- */
- if (pcc_data.pcc_mrtt) {
- time_delta = ktime_us_delta(ktime_get(), last_cmd_cmpl_time);
- if (pcc_data.pcc_mrtt > time_delta)
- udelay(pcc_data.pcc_mrtt - time_delta);
- }
- /*
- * Handle the non-zero Maximum Periodic Access Rate(MPAR)
- * "The maximum number of periodic requests that the subspace channel can
- * support, reported in commands per minute. 0 indicates no limitation."
- *
- * This parameter should be ideally zero or large enough so that it can
- * handle maximum number of requests that all the cores in the system can
- * collectively generate. If it is not, we will follow the spec and just
- * not send the request to the platform after hitting the MPAR limit in
- * any 60s window
- */
- if (pcc_data.pcc_mpar) {
- if (mpar_count == 0) {
- time_delta = ktime_ms_delta(ktime_get(), last_mpar_reset);
- if (time_delta < 60 * MSEC_PER_SEC) {
- pr_debug("PCC cmd not sent due to MPAR limit");
- ret = -EIO;
- goto end;
- }
- last_mpar_reset = ktime_get();
- mpar_count = pcc_data.pcc_mpar;
- }
- mpar_count--;
- }
- /* Write to the shared comm region. */
- writew_relaxed(cmd, &generic_comm_base->command);
- /* Flip CMD COMPLETE bit */
- writew_relaxed(0, &generic_comm_base->status);
- pcc_data.platform_owns_pcc = true;
- /* Ring doorbell */
- ret = mbox_send_message(pcc_data.pcc_channel, &cmd);
- if (ret < 0) {
- pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
- cmd, ret);
- goto end;
- }
- /* wait for completion and check for PCC errro bit */
- ret = check_pcc_chan(true);
- if (pcc_data.pcc_mrtt)
- last_cmd_cmpl_time = ktime_get();
- if (pcc_data.pcc_channel->mbox->txdone_irq)
- mbox_chan_txdone(pcc_data.pcc_channel, ret);
- else
- mbox_client_txdone(pcc_data.pcc_channel, ret);
- end:
- if (cmd == CMD_WRITE) {
- if (unlikely(ret)) {
- for_each_possible_cpu(i) {
- struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
- if (!desc)
- continue;
- if (desc->write_cmd_id == pcc_data.pcc_write_cnt)
- desc->write_cmd_status = ret;
- }
- }
- pcc_data.pcc_write_cnt++;
- wake_up_all(&pcc_data.pcc_write_wait_q);
- }
- return ret;
- }
- static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
- {
- if (ret < 0)
- pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
- *(u16 *)msg, ret);
- else
- pr_debug("TX completed. CMD sent:%x, ret:%d\n",
- *(u16 *)msg, ret);
- }
- struct mbox_client cppc_mbox_cl = {
- .tx_done = cppc_chan_tx_done,
- .knows_txdone = true,
- };
- static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
- {
- int result = -EFAULT;
- acpi_status status = AE_OK;
- struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
- struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
- struct acpi_buffer state = {0, NULL};
- union acpi_object *psd = NULL;
- struct acpi_psd_package *pdomain;
- status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
- &buffer, ACPI_TYPE_PACKAGE);
- if (status == AE_NOT_FOUND) /* _PSD is optional */
- return 0;
- if (ACPI_FAILURE(status))
- return -ENODEV;
- psd = buffer.pointer;
- if (!psd || psd->package.count != 1) {
- pr_debug("Invalid _PSD data\n");
- goto end;
- }
- pdomain = &(cpc_ptr->domain_info);
- state.length = sizeof(struct acpi_psd_package);
- state.pointer = pdomain;
- status = acpi_extract_package(&(psd->package.elements[0]),
- &format, &state);
- if (ACPI_FAILURE(status)) {
- pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
- goto end;
- }
- if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
- pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
- goto end;
- }
- if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
- pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
- goto end;
- }
- if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
- pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
- pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
- pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
- goto end;
- }
- result = 0;
- end:
- kfree(buffer.pointer);
- return result;
- }
- /**
- * acpi_get_psd_map - Map the CPUs in a common freq domain.
- * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
- *
- * Return: 0 for success or negative value for err.
- */
- int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
- {
- int count_target;
- int retval = 0;
- unsigned int i, j;
- cpumask_var_t covered_cpus;
- struct cppc_cpudata *pr, *match_pr;
- struct acpi_psd_package *pdomain;
- struct acpi_psd_package *match_pdomain;
- struct cpc_desc *cpc_ptr, *match_cpc_ptr;
- if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
- return -ENOMEM;
- /*
- * Now that we have _PSD data from all CPUs, lets setup P-state
- * domain info.
- */
- for_each_possible_cpu(i) {
- pr = all_cpu_data[i];
- if (!pr)
- continue;
- if (cpumask_test_cpu(i, covered_cpus))
- continue;
- cpc_ptr = per_cpu(cpc_desc_ptr, i);
- if (!cpc_ptr) {
- retval = -EFAULT;
- goto err_ret;
- }
- pdomain = &(cpc_ptr->domain_info);
- cpumask_set_cpu(i, pr->shared_cpu_map);
- cpumask_set_cpu(i, covered_cpus);
- if (pdomain->num_processors <= 1)
- continue;
- /* Validate the Domain info */
- count_target = pdomain->num_processors;
- if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
- pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
- else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
- pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
- else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
- pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
- for_each_possible_cpu(j) {
- if (i == j)
- continue;
- match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
- if (!match_cpc_ptr) {
- retval = -EFAULT;
- goto err_ret;
- }
- match_pdomain = &(match_cpc_ptr->domain_info);
- if (match_pdomain->domain != pdomain->domain)
- continue;
- /* Here i and j are in the same domain */
- if (match_pdomain->num_processors != count_target) {
- retval = -EFAULT;
- goto err_ret;
- }
- if (pdomain->coord_type != match_pdomain->coord_type) {
- retval = -EFAULT;
- goto err_ret;
- }
- cpumask_set_cpu(j, covered_cpus);
- cpumask_set_cpu(j, pr->shared_cpu_map);
- }
- for_each_possible_cpu(j) {
- if (i == j)
- continue;
- match_pr = all_cpu_data[j];
- if (!match_pr)
- continue;
- match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
- if (!match_cpc_ptr) {
- retval = -EFAULT;
- goto err_ret;
- }
- match_pdomain = &(match_cpc_ptr->domain_info);
- if (match_pdomain->domain != pdomain->domain)
- continue;
- match_pr->shared_type = pr->shared_type;
- cpumask_copy(match_pr->shared_cpu_map,
- pr->shared_cpu_map);
- }
- }
- err_ret:
- for_each_possible_cpu(i) {
- pr = all_cpu_data[i];
- if (!pr)
- continue;
- /* Assume no coordination on any error parsing domain info */
- if (retval) {
- cpumask_clear(pr->shared_cpu_map);
- cpumask_set_cpu(i, pr->shared_cpu_map);
- pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
- }
- }
- free_cpumask_var(covered_cpus);
- return retval;
- }
- EXPORT_SYMBOL_GPL(acpi_get_psd_map);
- static int register_pcc_channel(int pcc_subspace_idx)
- {
- struct acpi_pcct_hw_reduced *cppc_ss;
- u64 usecs_lat;
- if (pcc_subspace_idx >= 0) {
- pcc_data.pcc_channel = pcc_mbox_request_channel(&cppc_mbox_cl,
- pcc_subspace_idx);
- if (IS_ERR(pcc_data.pcc_channel)) {
- pr_err("Failed to find PCC communication channel\n");
- return -ENODEV;
- }
- /*
- * The PCC mailbox controller driver should
- * have parsed the PCCT (global table of all
- * PCC channels) and stored pointers to the
- * subspace communication region in con_priv.
- */
- cppc_ss = (pcc_data.pcc_channel)->con_priv;
- if (!cppc_ss) {
- pr_err("No PCC subspace found for CPPC\n");
- return -ENODEV;
- }
- /*
- * cppc_ss->latency is just a Nominal value. In reality
- * the remote processor could be much slower to reply.
- * So add an arbitrary amount of wait on top of Nominal.
- */
- usecs_lat = NUM_RETRIES * cppc_ss->latency;
- pcc_data.deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
- pcc_data.pcc_mrtt = cppc_ss->min_turnaround_time;
- pcc_data.pcc_mpar = cppc_ss->max_access_rate;
- pcc_data.pcc_nominal = cppc_ss->latency;
- pcc_data.pcc_comm_addr = acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
- if (!pcc_data.pcc_comm_addr) {
- pr_err("Failed to ioremap PCC comm region mem\n");
- return -ENOMEM;
- }
- /* Set flag so that we dont come here for each CPU. */
- pcc_data.pcc_channel_acquired = true;
- }
- return 0;
- }
- /**
- * cpc_ffh_supported() - check if FFH reading supported
- *
- * Check if the architecture has support for functional fixed hardware
- * read/write capability.
- *
- * Return: true for supported, false for not supported
- */
- bool __weak cpc_ffh_supported(void)
- {
- return false;
- }
- /*
- * An example CPC table looks like the following.
- *
- * Name(_CPC, Package()
- * {
- * 17,
- * NumEntries
- * 1,
- * // Revision
- * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
- * // Highest Performance
- * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
- * // Nominal Performance
- * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
- * // Lowest Nonlinear Performance
- * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
- * // Lowest Performance
- * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
- * // Guaranteed Performance Register
- * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
- * // Desired Performance Register
- * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
- * ..
- * ..
- * ..
- *
- * }
- * Each Register() encodes how to access that specific register.
- * e.g. a sample PCC entry has the following encoding:
- *
- * Register (
- * PCC,
- * AddressSpaceKeyword
- * 8,
- * //RegisterBitWidth
- * 8,
- * //RegisterBitOffset
- * 0x30,
- * //RegisterAddress
- * 9
- * //AccessSize (subspace ID)
- * 0
- * )
- * }
- */
- /**
- * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
- * @pr: Ptr to acpi_processor containing this CPUs logical Id.
- *
- * Return: 0 for success or negative value for err.
- */
- int acpi_cppc_processor_probe(struct acpi_processor *pr)
- {
- struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
- union acpi_object *out_obj, *cpc_obj;
- struct cpc_desc *cpc_ptr;
- struct cpc_reg *gas_t;
- struct device *cpu_dev;
- acpi_handle handle = pr->handle;
- unsigned int num_ent, i, cpc_rev;
- acpi_status status;
- int ret = -EFAULT;
- /* Parse the ACPI _CPC table for this cpu. */
- status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
- ACPI_TYPE_PACKAGE);
- if (ACPI_FAILURE(status)) {
- ret = -ENODEV;
- goto out_buf_free;
- }
- out_obj = (union acpi_object *) output.pointer;
- cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
- if (!cpc_ptr) {
- ret = -ENOMEM;
- goto out_buf_free;
- }
- /* First entry is NumEntries. */
- cpc_obj = &out_obj->package.elements[0];
- if (cpc_obj->type == ACPI_TYPE_INTEGER) {
- num_ent = cpc_obj->integer.value;
- } else {
- pr_debug("Unexpected entry type(%d) for NumEntries\n",
- cpc_obj->type);
- goto out_free;
- }
- /* Only support CPPCv2. Bail otherwise. */
- if (num_ent != CPPC_NUM_ENT) {
- pr_debug("Firmware exports %d entries. Expected: %d\n",
- num_ent, CPPC_NUM_ENT);
- goto out_free;
- }
- cpc_ptr->num_entries = num_ent;
- /* Second entry should be revision. */
- cpc_obj = &out_obj->package.elements[1];
- if (cpc_obj->type == ACPI_TYPE_INTEGER) {
- cpc_rev = cpc_obj->integer.value;
- } else {
- pr_debug("Unexpected entry type(%d) for Revision\n",
- cpc_obj->type);
- goto out_free;
- }
- if (cpc_rev != CPPC_REV) {
- pr_debug("Firmware exports revision:%d. Expected:%d\n",
- cpc_rev, CPPC_REV);
- goto out_free;
- }
- /* Iterate through remaining entries in _CPC */
- for (i = 2; i < num_ent; i++) {
- cpc_obj = &out_obj->package.elements[i];
- if (cpc_obj->type == ACPI_TYPE_INTEGER) {
- cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
- cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
- } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
- gas_t = (struct cpc_reg *)
- cpc_obj->buffer.pointer;
- /*
- * The PCC Subspace index is encoded inside
- * the CPC table entries. The same PCC index
- * will be used for all the PCC entries,
- * so extract it only once.
- */
- if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
- if (pcc_data.pcc_subspace_idx < 0)
- pcc_data.pcc_subspace_idx = gas_t->access_width;
- else if (pcc_data.pcc_subspace_idx != gas_t->access_width) {
- pr_debug("Mismatched PCC ids.\n");
- goto out_free;
- }
- } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
- if (gas_t->address) {
- void __iomem *addr;
- addr = ioremap(gas_t->address, gas_t->bit_width/8);
- if (!addr)
- goto out_free;
- cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
- }
- } else {
- if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
- /* Support only PCC ,SYS MEM and FFH type regs */
- pr_debug("Unsupported register type: %d\n", gas_t->space_id);
- goto out_free;
- }
- }
- cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
- memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
- } else {
- pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
- goto out_free;
- }
- }
- /* Store CPU Logical ID */
- cpc_ptr->cpu_id = pr->id;
- /* Parse PSD data for this CPU */
- ret = acpi_get_psd(cpc_ptr, handle);
- if (ret)
- goto out_free;
- /* Register PCC channel once for all CPUs. */
- if (!pcc_data.pcc_channel_acquired) {
- ret = register_pcc_channel(pcc_data.pcc_subspace_idx);
- if (ret)
- goto out_free;
- init_rwsem(&pcc_data.pcc_lock);
- init_waitqueue_head(&pcc_data.pcc_write_wait_q);
- }
- /* Everything looks okay */
- pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
- /* Add per logical CPU nodes for reading its feedback counters. */
- cpu_dev = get_cpu_device(pr->id);
- if (!cpu_dev) {
- ret = -EINVAL;
- goto out_free;
- }
- /* Plug PSD data into this CPUs CPC descriptor. */
- per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
- ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
- "acpi_cppc");
- if (ret) {
- per_cpu(cpc_desc_ptr, pr->id) = NULL;
- kobject_put(&cpc_ptr->kobj);
- goto out_free;
- }
- kfree(output.pointer);
- return 0;
- out_free:
- /* Free all the mapped sys mem areas for this CPU */
- for (i = 2; i < cpc_ptr->num_entries; i++) {
- void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
- if (addr)
- iounmap(addr);
- }
- kfree(cpc_ptr);
- out_buf_free:
- kfree(output.pointer);
- return ret;
- }
- EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
- /**
- * acpi_cppc_processor_exit - Cleanup CPC structs.
- * @pr: Ptr to acpi_processor containing this CPUs logical Id.
- *
- * Return: Void
- */
- void acpi_cppc_processor_exit(struct acpi_processor *pr)
- {
- struct cpc_desc *cpc_ptr;
- unsigned int i;
- void __iomem *addr;
- cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
- if (!cpc_ptr)
- return;
- /* Free all the mapped sys mem areas for this CPU */
- for (i = 2; i < cpc_ptr->num_entries; i++) {
- addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
- if (addr)
- iounmap(addr);
- }
- kobject_put(&cpc_ptr->kobj);
- kfree(cpc_ptr);
- }
- EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
- /**
- * cpc_read_ffh() - Read FFH register
- * @cpunum: cpu number to read
- * @reg: cppc register information
- * @val: place holder for return value
- *
- * Read bit_width bits from a specified address and bit_offset
- *
- * Return: 0 for success and error code
- */
- int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
- {
- return -ENOTSUPP;
- }
- /**
- * cpc_write_ffh() - Write FFH register
- * @cpunum: cpu number to write
- * @reg: cppc register information
- * @val: value to write
- *
- * Write value of bit_width bits to a specified address and bit_offset
- *
- * Return: 0 for success and error code
- */
- int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
- {
- return -ENOTSUPP;
- }
- /*
- * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
- * as fast as possible. We have already mapped the PCC subspace during init, so
- * we can directly write to it.
- */
- static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
- {
- int ret_val = 0;
- void __iomem *vaddr = 0;
- struct cpc_reg *reg = ®_res->cpc_entry.reg;
- if (reg_res->type == ACPI_TYPE_INTEGER) {
- *val = reg_res->cpc_entry.int_value;
- return ret_val;
- }
- *val = 0;
- if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
- vaddr = GET_PCC_VADDR(reg->address);
- else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
- vaddr = reg_res->sys_mem_vaddr;
- else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
- return cpc_read_ffh(cpu, reg, val);
- else
- return acpi_os_read_memory((acpi_physical_address)reg->address,
- val, reg->bit_width);
- switch (reg->bit_width) {
- case 8:
- *val = readb_relaxed(vaddr);
- break;
- case 16:
- *val = readw_relaxed(vaddr);
- break;
- case 32:
- *val = readl_relaxed(vaddr);
- break;
- case 64:
- *val = readq_relaxed(vaddr);
- break;
- default:
- pr_debug("Error: Cannot read %u bit width from PCC\n",
- reg->bit_width);
- ret_val = -EFAULT;
- }
- return ret_val;
- }
- static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
- {
- int ret_val = 0;
- void __iomem *vaddr = 0;
- struct cpc_reg *reg = ®_res->cpc_entry.reg;
- if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
- vaddr = GET_PCC_VADDR(reg->address);
- else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
- vaddr = reg_res->sys_mem_vaddr;
- else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
- return cpc_write_ffh(cpu, reg, val);
- else
- return acpi_os_write_memory((acpi_physical_address)reg->address,
- val, reg->bit_width);
- switch (reg->bit_width) {
- case 8:
- writeb_relaxed(val, vaddr);
- break;
- case 16:
- writew_relaxed(val, vaddr);
- break;
- case 32:
- writel_relaxed(val, vaddr);
- break;
- case 64:
- writeq_relaxed(val, vaddr);
- break;
- default:
- pr_debug("Error: Cannot write %u bit width to PCC\n",
- reg->bit_width);
- ret_val = -EFAULT;
- break;
- }
- return ret_val;
- }
- /**
- * cppc_get_perf_caps - Get a CPUs performance capabilities.
- * @cpunum: CPU from which to get capabilities info.
- * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
- *
- * Return: 0 for success with perf_caps populated else -ERRNO.
- */
- int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
- {
- struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
- struct cpc_register_resource *highest_reg, *lowest_reg,
- *lowest_non_linear_reg, *nominal_reg;
- u64 high, low, nom, min_nonlinear;
- int ret = 0, regs_in_pcc = 0;
- if (!cpc_desc) {
- pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
- return -ENODEV;
- }
- highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
- lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
- lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
- nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
- /* Are any of the regs PCC ?*/
- if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
- CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg)) {
- regs_in_pcc = 1;
- down_write(&pcc_data.pcc_lock);
- /* Ring doorbell once to update PCC subspace */
- if (send_pcc_cmd(CMD_READ) < 0) {
- ret = -EIO;
- goto out_err;
- }
- }
- cpc_read(cpunum, highest_reg, &high);
- perf_caps->highest_perf = high;
- cpc_read(cpunum, lowest_reg, &low);
- perf_caps->lowest_perf = low;
- cpc_read(cpunum, nominal_reg, &nom);
- perf_caps->nominal_perf = nom;
- cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
- perf_caps->lowest_nonlinear_perf = min_nonlinear;
- if (!high || !low || !nom || !min_nonlinear)
- ret = -EFAULT;
- out_err:
- if (regs_in_pcc)
- up_write(&pcc_data.pcc_lock);
- return ret;
- }
- EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
- /**
- * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
- * @cpunum: CPU from which to read counters.
- * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
- *
- * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
- */
- int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
- {
- struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
- struct cpc_register_resource *delivered_reg, *reference_reg,
- *ref_perf_reg, *ctr_wrap_reg;
- u64 delivered, reference, ref_perf, ctr_wrap_time;
- int ret = 0, regs_in_pcc = 0;
- if (!cpc_desc) {
- pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
- return -ENODEV;
- }
- delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
- reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
- ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
- ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
- /*
- * If refernce perf register is not supported then we should
- * use the nominal perf value
- */
- if (!CPC_SUPPORTED(ref_perf_reg))
- ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
- /* Are any of the regs PCC ?*/
- if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
- CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
- down_write(&pcc_data.pcc_lock);
- regs_in_pcc = 1;
- /* Ring doorbell once to update PCC subspace */
- if (send_pcc_cmd(CMD_READ) < 0) {
- ret = -EIO;
- goto out_err;
- }
- }
- cpc_read(cpunum, delivered_reg, &delivered);
- cpc_read(cpunum, reference_reg, &reference);
- cpc_read(cpunum, ref_perf_reg, &ref_perf);
- /*
- * Per spec, if ctr_wrap_time optional register is unsupported, then the
- * performance counters are assumed to never wrap during the lifetime of
- * platform
- */
- ctr_wrap_time = (u64)(~((u64)0));
- if (CPC_SUPPORTED(ctr_wrap_reg))
- cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
- if (!delivered || !reference || !ref_perf) {
- ret = -EFAULT;
- goto out_err;
- }
- perf_fb_ctrs->delivered = delivered;
- perf_fb_ctrs->reference = reference;
- perf_fb_ctrs->reference_perf = ref_perf;
- perf_fb_ctrs->wraparound_time = ctr_wrap_time;
- out_err:
- if (regs_in_pcc)
- up_write(&pcc_data.pcc_lock);
- return ret;
- }
- EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
- /**
- * cppc_set_perf - Set a CPUs performance controls.
- * @cpu: CPU for which to set performance controls.
- * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
- *
- * Return: 0 for success, -ERRNO otherwise.
- */
- int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
- {
- struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
- struct cpc_register_resource *desired_reg;
- int ret = 0;
- if (!cpc_desc) {
- pr_debug("No CPC descriptor for CPU:%d\n", cpu);
- return -ENODEV;
- }
- desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
- /*
- * This is Phase-I where we want to write to CPC registers
- * -> We want all CPUs to be able to execute this phase in parallel
- *
- * Since read_lock can be acquired by multiple CPUs simultaneously we
- * achieve that goal here
- */
- if (CPC_IN_PCC(desired_reg)) {
- down_read(&pcc_data.pcc_lock); /* BEGIN Phase-I */
- if (pcc_data.platform_owns_pcc) {
- ret = check_pcc_chan(false);
- if (ret) {
- up_read(&pcc_data.pcc_lock);
- return ret;
- }
- }
- /*
- * Update the pending_write to make sure a PCC CMD_READ will not
- * arrive and steal the channel during the switch to write lock
- */
- pcc_data.pending_pcc_write_cmd = true;
- cpc_desc->write_cmd_id = pcc_data.pcc_write_cnt;
- cpc_desc->write_cmd_status = 0;
- }
- /*
- * Skip writing MIN/MAX until Linux knows how to come up with
- * useful values.
- */
- cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
- if (CPC_IN_PCC(desired_reg))
- up_read(&pcc_data.pcc_lock); /* END Phase-I */
- /*
- * This is Phase-II where we transfer the ownership of PCC to Platform
- *
- * Short Summary: Basically if we think of a group of cppc_set_perf
- * requests that happened in short overlapping interval. The last CPU to
- * come out of Phase-I will enter Phase-II and ring the doorbell.
- *
- * We have the following requirements for Phase-II:
- * 1. We want to execute Phase-II only when there are no CPUs
- * currently executing in Phase-I
- * 2. Once we start Phase-II we want to avoid all other CPUs from
- * entering Phase-I.
- * 3. We want only one CPU among all those who went through Phase-I
- * to run phase-II
- *
- * If write_trylock fails to get the lock and doesn't transfer the
- * PCC ownership to the platform, then one of the following will be TRUE
- * 1. There is at-least one CPU in Phase-I which will later execute
- * write_trylock, so the CPUs in Phase-I will be responsible for
- * executing the Phase-II.
- * 2. Some other CPU has beaten this CPU to successfully execute the
- * write_trylock and has already acquired the write_lock. We know for a
- * fact it(other CPU acquiring the write_lock) couldn't have happened
- * before this CPU's Phase-I as we held the read_lock.
- * 3. Some other CPU executing pcc CMD_READ has stolen the
- * down_write, in which case, send_pcc_cmd will check for pending
- * CMD_WRITE commands by checking the pending_pcc_write_cmd.
- * So this CPU can be certain that its request will be delivered
- * So in all cases, this CPU knows that its request will be delivered
- * by another CPU and can return
- *
- * After getting the down_write we still need to check for
- * pending_pcc_write_cmd to take care of the following scenario
- * The thread running this code could be scheduled out between
- * Phase-I and Phase-II. Before it is scheduled back on, another CPU
- * could have delivered the request to Platform by triggering the
- * doorbell and transferred the ownership of PCC to platform. So this
- * avoids triggering an unnecessary doorbell and more importantly before
- * triggering the doorbell it makes sure that the PCC channel ownership
- * is still with OSPM.
- * pending_pcc_write_cmd can also be cleared by a different CPU, if
- * there was a pcc CMD_READ waiting on down_write and it steals the lock
- * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
- * case during a CMD_READ and if there are pending writes it delivers
- * the write command before servicing the read command
- */
- if (CPC_IN_PCC(desired_reg)) {
- if (down_write_trylock(&pcc_data.pcc_lock)) { /* BEGIN Phase-II */
- /* Update only if there are pending write commands */
- if (pcc_data.pending_pcc_write_cmd)
- send_pcc_cmd(CMD_WRITE);
- up_write(&pcc_data.pcc_lock); /* END Phase-II */
- } else
- /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
- wait_event(pcc_data.pcc_write_wait_q,
- cpc_desc->write_cmd_id != pcc_data.pcc_write_cnt);
- /* send_pcc_cmd updates the status in case of failure */
- ret = cpc_desc->write_cmd_status;
- }
- return ret;
- }
- EXPORT_SYMBOL_GPL(cppc_set_perf);
- /**
- * cppc_get_transition_latency - returns frequency transition latency in ns
- *
- * ACPI CPPC does not explicitly specifiy how a platform can specify the
- * transition latency for perfromance change requests. The closest we have
- * is the timing information from the PCCT tables which provides the info
- * on the number and frequency of PCC commands the platform can handle.
- */
- unsigned int cppc_get_transition_latency(int cpu_num)
- {
- /*
- * Expected transition latency is based on the PCCT timing values
- * Below are definition from ACPI spec:
- * pcc_nominal- Expected latency to process a command, in microseconds
- * pcc_mpar - The maximum number of periodic requests that the subspace
- * channel can support, reported in commands per minute. 0
- * indicates no limitation.
- * pcc_mrtt - The minimum amount of time that OSPM must wait after the
- * completion of a command before issuing the next command,
- * in microseconds.
- */
- unsigned int latency_ns = 0;
- struct cpc_desc *cpc_desc;
- struct cpc_register_resource *desired_reg;
- cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
- if (!cpc_desc)
- return CPUFREQ_ETERNAL;
- desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
- if (!CPC_IN_PCC(desired_reg))
- return CPUFREQ_ETERNAL;
- if (pcc_data.pcc_mpar)
- latency_ns = 60 * (1000 * 1000 * 1000 / pcc_data.pcc_mpar);
- latency_ns = max(latency_ns, pcc_data.pcc_nominal * 1000);
- latency_ns = max(latency_ns, pcc_data.pcc_mrtt * 1000);
- return latency_ns;
- }
- EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
|