rme32.c 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997
  1. /*
  2. * ALSA driver for RME Digi32, Digi32/8 and Digi32 PRO audio interfaces
  3. *
  4. * Copyright (c) 2002-2004 Martin Langer <martin-langer@gmx.de>,
  5. * Pilo Chambert <pilo.c@wanadoo.fr>
  6. *
  7. * Thanks to : Anders Torger <torger@ludd.luth.se>,
  8. * Henk Hesselink <henk@anda.nl>
  9. * for writing the digi96-driver
  10. * and RME for all informations.
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License, or
  15. * (at your option) any later version.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. *
  26. *
  27. * ****************************************************************************
  28. *
  29. * Note #1 "Sek'd models" ................................... martin 2002-12-07
  30. *
  31. * Identical soundcards by Sek'd were labeled:
  32. * RME Digi 32 = Sek'd Prodif 32
  33. * RME Digi 32 Pro = Sek'd Prodif 96
  34. * RME Digi 32/8 = Sek'd Prodif Gold
  35. *
  36. * ****************************************************************************
  37. *
  38. * Note #2 "full duplex mode" ............................... martin 2002-12-07
  39. *
  40. * Full duplex doesn't work. All cards (32, 32/8, 32Pro) are working identical
  41. * in this mode. Rec data and play data are using the same buffer therefore. At
  42. * first you have got the playing bits in the buffer and then (after playing
  43. * them) they were overwitten by the captured sound of the CS8412/14. Both
  44. * modes (play/record) are running harmonically hand in hand in the same buffer
  45. * and you have only one start bit plus one interrupt bit to control this
  46. * paired action.
  47. * This is opposite to the latter rme96 where playing and capturing is totally
  48. * separated and so their full duplex mode is supported by alsa (using two
  49. * start bits and two interrupts for two different buffers).
  50. * But due to the wrong sequence of playing and capturing ALSA shows no solved
  51. * full duplex support for the rme32 at the moment. That's bad, but I'm not
  52. * able to solve it. Are you motivated enough to solve this problem now? Your
  53. * patch would be welcome!
  54. *
  55. * ****************************************************************************
  56. *
  57. * "The story after the long seeking" -- tiwai
  58. *
  59. * Ok, the situation regarding the full duplex is now improved a bit.
  60. * In the fullduplex mode (given by the module parameter), the hardware buffer
  61. * is split to halves for read and write directions at the DMA pointer.
  62. * That is, the half above the current DMA pointer is used for write, and
  63. * the half below is used for read. To mangle this strange behavior, an
  64. * software intermediate buffer is introduced. This is, of course, not good
  65. * from the viewpoint of the data transfer efficiency. However, this allows
  66. * you to use arbitrary buffer sizes, instead of the fixed I/O buffer size.
  67. *
  68. * ****************************************************************************
  69. */
  70. #include <linux/delay.h>
  71. #include <linux/gfp.h>
  72. #include <linux/init.h>
  73. #include <linux/interrupt.h>
  74. #include <linux/pci.h>
  75. #include <linux/module.h>
  76. #include <linux/io.h>
  77. #include <sound/core.h>
  78. #include <sound/info.h>
  79. #include <sound/control.h>
  80. #include <sound/pcm.h>
  81. #include <sound/pcm_params.h>
  82. #include <sound/pcm-indirect.h>
  83. #include <sound/asoundef.h>
  84. #include <sound/initval.h>
  85. static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
  86. static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
  87. static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
  88. static bool fullduplex[SNDRV_CARDS]; // = {[0 ... (SNDRV_CARDS - 1)] = 1};
  89. module_param_array(index, int, NULL, 0444);
  90. MODULE_PARM_DESC(index, "Index value for RME Digi32 soundcard.");
  91. module_param_array(id, charp, NULL, 0444);
  92. MODULE_PARM_DESC(id, "ID string for RME Digi32 soundcard.");
  93. module_param_array(enable, bool, NULL, 0444);
  94. MODULE_PARM_DESC(enable, "Enable RME Digi32 soundcard.");
  95. module_param_array(fullduplex, bool, NULL, 0444);
  96. MODULE_PARM_DESC(fullduplex, "Support full-duplex mode.");
  97. MODULE_AUTHOR("Martin Langer <martin-langer@gmx.de>, Pilo Chambert <pilo.c@wanadoo.fr>");
  98. MODULE_DESCRIPTION("RME Digi32, Digi32/8, Digi32 PRO");
  99. MODULE_LICENSE("GPL");
  100. MODULE_SUPPORTED_DEVICE("{{RME,Digi32}," "{RME,Digi32/8}," "{RME,Digi32 PRO}}");
  101. /* Defines for RME Digi32 series */
  102. #define RME32_SPDIF_NCHANNELS 2
  103. /* Playback and capture buffer size */
  104. #define RME32_BUFFER_SIZE 0x20000
  105. /* IO area size */
  106. #define RME32_IO_SIZE 0x30000
  107. /* IO area offsets */
  108. #define RME32_IO_DATA_BUFFER 0x0
  109. #define RME32_IO_CONTROL_REGISTER 0x20000
  110. #define RME32_IO_GET_POS 0x20000
  111. #define RME32_IO_CONFIRM_ACTION_IRQ 0x20004
  112. #define RME32_IO_RESET_POS 0x20100
  113. /* Write control register bits */
  114. #define RME32_WCR_START (1 << 0) /* startbit */
  115. #define RME32_WCR_MONO (1 << 1) /* 0=stereo, 1=mono
  116. Setting the whole card to mono
  117. doesn't seem to be very useful.
  118. A software-solution can handle
  119. full-duplex with one direction in
  120. stereo and the other way in mono.
  121. So, the hardware should work all
  122. the time in stereo! */
  123. #define RME32_WCR_MODE24 (1 << 2) /* 0=16bit, 1=32bit */
  124. #define RME32_WCR_SEL (1 << 3) /* 0=input on output, 1=normal playback/capture */
  125. #define RME32_WCR_FREQ_0 (1 << 4) /* frequency (play) */
  126. #define RME32_WCR_FREQ_1 (1 << 5)
  127. #define RME32_WCR_INP_0 (1 << 6) /* input switch */
  128. #define RME32_WCR_INP_1 (1 << 7)
  129. #define RME32_WCR_RESET (1 << 8) /* Reset address */
  130. #define RME32_WCR_MUTE (1 << 9) /* digital mute for output */
  131. #define RME32_WCR_PRO (1 << 10) /* 1=professional, 0=consumer */
  132. #define RME32_WCR_DS_BM (1 << 11) /* 1=DoubleSpeed (only PRO-Version); 1=BlockMode (only Adat-Version) */
  133. #define RME32_WCR_ADAT (1 << 12) /* Adat Mode (only Adat-Version) */
  134. #define RME32_WCR_AUTOSYNC (1 << 13) /* AutoSync */
  135. #define RME32_WCR_PD (1 << 14) /* DAC Reset (only PRO-Version) */
  136. #define RME32_WCR_EMP (1 << 15) /* 1=Emphasis on (only PRO-Version) */
  137. #define RME32_WCR_BITPOS_FREQ_0 4
  138. #define RME32_WCR_BITPOS_FREQ_1 5
  139. #define RME32_WCR_BITPOS_INP_0 6
  140. #define RME32_WCR_BITPOS_INP_1 7
  141. /* Read control register bits */
  142. #define RME32_RCR_AUDIO_ADDR_MASK 0x1ffff
  143. #define RME32_RCR_LOCK (1 << 23) /* 1=locked, 0=not locked */
  144. #define RME32_RCR_ERF (1 << 26) /* 1=Error, 0=no Error */
  145. #define RME32_RCR_FREQ_0 (1 << 27) /* CS841x frequency (record) */
  146. #define RME32_RCR_FREQ_1 (1 << 28)
  147. #define RME32_RCR_FREQ_2 (1 << 29)
  148. #define RME32_RCR_KMODE (1 << 30) /* card mode: 1=PLL, 0=quartz */
  149. #define RME32_RCR_IRQ (1 << 31) /* interrupt */
  150. #define RME32_RCR_BITPOS_F0 27
  151. #define RME32_RCR_BITPOS_F1 28
  152. #define RME32_RCR_BITPOS_F2 29
  153. /* Input types */
  154. #define RME32_INPUT_OPTICAL 0
  155. #define RME32_INPUT_COAXIAL 1
  156. #define RME32_INPUT_INTERNAL 2
  157. #define RME32_INPUT_XLR 3
  158. /* Clock modes */
  159. #define RME32_CLOCKMODE_SLAVE 0
  160. #define RME32_CLOCKMODE_MASTER_32 1
  161. #define RME32_CLOCKMODE_MASTER_44 2
  162. #define RME32_CLOCKMODE_MASTER_48 3
  163. /* Block sizes in bytes */
  164. #define RME32_BLOCK_SIZE 8192
  165. /* Software intermediate buffer (max) size */
  166. #define RME32_MID_BUFFER_SIZE (1024*1024)
  167. /* Hardware revisions */
  168. #define RME32_32_REVISION 192
  169. #define RME32_328_REVISION_OLD 100
  170. #define RME32_328_REVISION_NEW 101
  171. #define RME32_PRO_REVISION_WITH_8412 192
  172. #define RME32_PRO_REVISION_WITH_8414 150
  173. struct rme32 {
  174. spinlock_t lock;
  175. int irq;
  176. unsigned long port;
  177. void __iomem *iobase;
  178. u32 wcreg; /* cached write control register value */
  179. u32 wcreg_spdif; /* S/PDIF setup */
  180. u32 wcreg_spdif_stream; /* S/PDIF setup (temporary) */
  181. u32 rcreg; /* cached read control register value */
  182. u8 rev; /* card revision number */
  183. struct snd_pcm_substream *playback_substream;
  184. struct snd_pcm_substream *capture_substream;
  185. int playback_frlog; /* log2 of framesize */
  186. int capture_frlog;
  187. size_t playback_periodsize; /* in bytes, zero if not used */
  188. size_t capture_periodsize; /* in bytes, zero if not used */
  189. unsigned int fullduplex_mode;
  190. int running;
  191. struct snd_pcm_indirect playback_pcm;
  192. struct snd_pcm_indirect capture_pcm;
  193. struct snd_card *card;
  194. struct snd_pcm *spdif_pcm;
  195. struct snd_pcm *adat_pcm;
  196. struct pci_dev *pci;
  197. struct snd_kcontrol *spdif_ctl;
  198. };
  199. static const struct pci_device_id snd_rme32_ids[] = {
  200. {PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32), 0,},
  201. {PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_8), 0,},
  202. {PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_PRO), 0,},
  203. {0,}
  204. };
  205. MODULE_DEVICE_TABLE(pci, snd_rme32_ids);
  206. #define RME32_ISWORKING(rme32) ((rme32)->wcreg & RME32_WCR_START)
  207. #define RME32_PRO_WITH_8414(rme32) ((rme32)->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO && (rme32)->rev == RME32_PRO_REVISION_WITH_8414)
  208. static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream);
  209. static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream);
  210. static int snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd);
  211. static void snd_rme32_proc_init(struct rme32 * rme32);
  212. static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32);
  213. static inline unsigned int snd_rme32_pcm_byteptr(struct rme32 * rme32)
  214. {
  215. return (readl(rme32->iobase + RME32_IO_GET_POS)
  216. & RME32_RCR_AUDIO_ADDR_MASK);
  217. }
  218. /* silence callback for halfduplex mode */
  219. static int snd_rme32_playback_silence(struct snd_pcm_substream *substream,
  220. int channel, unsigned long pos,
  221. unsigned long count)
  222. {
  223. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  224. memset_io(rme32->iobase + RME32_IO_DATA_BUFFER + pos, 0, count);
  225. return 0;
  226. }
  227. /* copy callback for halfduplex mode */
  228. static int snd_rme32_playback_copy(struct snd_pcm_substream *substream,
  229. int channel, unsigned long pos,
  230. void __user *src, unsigned long count)
  231. {
  232. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  233. if (copy_from_user_toio(rme32->iobase + RME32_IO_DATA_BUFFER + pos,
  234. src, count))
  235. return -EFAULT;
  236. return 0;
  237. }
  238. static int snd_rme32_playback_copy_kernel(struct snd_pcm_substream *substream,
  239. int channel, unsigned long pos,
  240. void *src, unsigned long count)
  241. {
  242. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  243. memcpy_toio(rme32->iobase + RME32_IO_DATA_BUFFER + pos, src, count);
  244. return 0;
  245. }
  246. /* copy callback for halfduplex mode */
  247. static int snd_rme32_capture_copy(struct snd_pcm_substream *substream,
  248. int channel, unsigned long pos,
  249. void __user *dst, unsigned long count)
  250. {
  251. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  252. if (copy_to_user_fromio(dst,
  253. rme32->iobase + RME32_IO_DATA_BUFFER + pos,
  254. count))
  255. return -EFAULT;
  256. return 0;
  257. }
  258. static int snd_rme32_capture_copy_kernel(struct snd_pcm_substream *substream,
  259. int channel, unsigned long pos,
  260. void *dst, unsigned long count)
  261. {
  262. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  263. memcpy_fromio(dst, rme32->iobase + RME32_IO_DATA_BUFFER + pos, count);
  264. return 0;
  265. }
  266. /*
  267. * SPDIF I/O capabilities (half-duplex mode)
  268. */
  269. static const struct snd_pcm_hardware snd_rme32_spdif_info = {
  270. .info = (SNDRV_PCM_INFO_MMAP_IOMEM |
  271. SNDRV_PCM_INFO_MMAP_VALID |
  272. SNDRV_PCM_INFO_INTERLEAVED |
  273. SNDRV_PCM_INFO_PAUSE |
  274. SNDRV_PCM_INFO_SYNC_START),
  275. .formats = (SNDRV_PCM_FMTBIT_S16_LE |
  276. SNDRV_PCM_FMTBIT_S32_LE),
  277. .rates = (SNDRV_PCM_RATE_32000 |
  278. SNDRV_PCM_RATE_44100 |
  279. SNDRV_PCM_RATE_48000),
  280. .rate_min = 32000,
  281. .rate_max = 48000,
  282. .channels_min = 2,
  283. .channels_max = 2,
  284. .buffer_bytes_max = RME32_BUFFER_SIZE,
  285. .period_bytes_min = RME32_BLOCK_SIZE,
  286. .period_bytes_max = RME32_BLOCK_SIZE,
  287. .periods_min = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
  288. .periods_max = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
  289. .fifo_size = 0,
  290. };
  291. /*
  292. * ADAT I/O capabilities (half-duplex mode)
  293. */
  294. static const struct snd_pcm_hardware snd_rme32_adat_info =
  295. {
  296. .info = (SNDRV_PCM_INFO_MMAP_IOMEM |
  297. SNDRV_PCM_INFO_MMAP_VALID |
  298. SNDRV_PCM_INFO_INTERLEAVED |
  299. SNDRV_PCM_INFO_PAUSE |
  300. SNDRV_PCM_INFO_SYNC_START),
  301. .formats= SNDRV_PCM_FMTBIT_S16_LE,
  302. .rates = (SNDRV_PCM_RATE_44100 |
  303. SNDRV_PCM_RATE_48000),
  304. .rate_min = 44100,
  305. .rate_max = 48000,
  306. .channels_min = 8,
  307. .channels_max = 8,
  308. .buffer_bytes_max = RME32_BUFFER_SIZE,
  309. .period_bytes_min = RME32_BLOCK_SIZE,
  310. .period_bytes_max = RME32_BLOCK_SIZE,
  311. .periods_min = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
  312. .periods_max = RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
  313. .fifo_size = 0,
  314. };
  315. /*
  316. * SPDIF I/O capabilities (full-duplex mode)
  317. */
  318. static const struct snd_pcm_hardware snd_rme32_spdif_fd_info = {
  319. .info = (SNDRV_PCM_INFO_MMAP |
  320. SNDRV_PCM_INFO_MMAP_VALID |
  321. SNDRV_PCM_INFO_INTERLEAVED |
  322. SNDRV_PCM_INFO_PAUSE |
  323. SNDRV_PCM_INFO_SYNC_START),
  324. .formats = (SNDRV_PCM_FMTBIT_S16_LE |
  325. SNDRV_PCM_FMTBIT_S32_LE),
  326. .rates = (SNDRV_PCM_RATE_32000 |
  327. SNDRV_PCM_RATE_44100 |
  328. SNDRV_PCM_RATE_48000),
  329. .rate_min = 32000,
  330. .rate_max = 48000,
  331. .channels_min = 2,
  332. .channels_max = 2,
  333. .buffer_bytes_max = RME32_MID_BUFFER_SIZE,
  334. .period_bytes_min = RME32_BLOCK_SIZE,
  335. .period_bytes_max = RME32_BLOCK_SIZE,
  336. .periods_min = 2,
  337. .periods_max = RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE,
  338. .fifo_size = 0,
  339. };
  340. /*
  341. * ADAT I/O capabilities (full-duplex mode)
  342. */
  343. static const struct snd_pcm_hardware snd_rme32_adat_fd_info =
  344. {
  345. .info = (SNDRV_PCM_INFO_MMAP |
  346. SNDRV_PCM_INFO_MMAP_VALID |
  347. SNDRV_PCM_INFO_INTERLEAVED |
  348. SNDRV_PCM_INFO_PAUSE |
  349. SNDRV_PCM_INFO_SYNC_START),
  350. .formats= SNDRV_PCM_FMTBIT_S16_LE,
  351. .rates = (SNDRV_PCM_RATE_44100 |
  352. SNDRV_PCM_RATE_48000),
  353. .rate_min = 44100,
  354. .rate_max = 48000,
  355. .channels_min = 8,
  356. .channels_max = 8,
  357. .buffer_bytes_max = RME32_MID_BUFFER_SIZE,
  358. .period_bytes_min = RME32_BLOCK_SIZE,
  359. .period_bytes_max = RME32_BLOCK_SIZE,
  360. .periods_min = 2,
  361. .periods_max = RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE,
  362. .fifo_size = 0,
  363. };
  364. static void snd_rme32_reset_dac(struct rme32 *rme32)
  365. {
  366. writel(rme32->wcreg | RME32_WCR_PD,
  367. rme32->iobase + RME32_IO_CONTROL_REGISTER);
  368. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  369. }
  370. static int snd_rme32_playback_getrate(struct rme32 * rme32)
  371. {
  372. int rate;
  373. rate = ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) +
  374. (((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1);
  375. switch (rate) {
  376. case 1:
  377. rate = 32000;
  378. break;
  379. case 2:
  380. rate = 44100;
  381. break;
  382. case 3:
  383. rate = 48000;
  384. break;
  385. default:
  386. return -1;
  387. }
  388. return (rme32->wcreg & RME32_WCR_DS_BM) ? rate << 1 : rate;
  389. }
  390. static int snd_rme32_capture_getrate(struct rme32 * rme32, int *is_adat)
  391. {
  392. int n;
  393. *is_adat = 0;
  394. if (rme32->rcreg & RME32_RCR_LOCK) {
  395. /* ADAT rate */
  396. *is_adat = 1;
  397. }
  398. if (rme32->rcreg & RME32_RCR_ERF) {
  399. return -1;
  400. }
  401. /* S/PDIF rate */
  402. n = ((rme32->rcreg >> RME32_RCR_BITPOS_F0) & 1) +
  403. (((rme32->rcreg >> RME32_RCR_BITPOS_F1) & 1) << 1) +
  404. (((rme32->rcreg >> RME32_RCR_BITPOS_F2) & 1) << 2);
  405. if (RME32_PRO_WITH_8414(rme32))
  406. switch (n) { /* supporting the CS8414 */
  407. case 0:
  408. case 1:
  409. case 2:
  410. return -1;
  411. case 3:
  412. return 96000;
  413. case 4:
  414. return 88200;
  415. case 5:
  416. return 48000;
  417. case 6:
  418. return 44100;
  419. case 7:
  420. return 32000;
  421. default:
  422. return -1;
  423. break;
  424. }
  425. else
  426. switch (n) { /* supporting the CS8412 */
  427. case 0:
  428. return -1;
  429. case 1:
  430. return 48000;
  431. case 2:
  432. return 44100;
  433. case 3:
  434. return 32000;
  435. case 4:
  436. return 48000;
  437. case 5:
  438. return 44100;
  439. case 6:
  440. return 44056;
  441. case 7:
  442. return 32000;
  443. default:
  444. break;
  445. }
  446. return -1;
  447. }
  448. static int snd_rme32_playback_setrate(struct rme32 * rme32, int rate)
  449. {
  450. int ds;
  451. ds = rme32->wcreg & RME32_WCR_DS_BM;
  452. switch (rate) {
  453. case 32000:
  454. rme32->wcreg &= ~RME32_WCR_DS_BM;
  455. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
  456. ~RME32_WCR_FREQ_1;
  457. break;
  458. case 44100:
  459. rme32->wcreg &= ~RME32_WCR_DS_BM;
  460. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) &
  461. ~RME32_WCR_FREQ_0;
  462. break;
  463. case 48000:
  464. rme32->wcreg &= ~RME32_WCR_DS_BM;
  465. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
  466. RME32_WCR_FREQ_1;
  467. break;
  468. case 64000:
  469. if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
  470. return -EINVAL;
  471. rme32->wcreg |= RME32_WCR_DS_BM;
  472. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
  473. ~RME32_WCR_FREQ_1;
  474. break;
  475. case 88200:
  476. if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
  477. return -EINVAL;
  478. rme32->wcreg |= RME32_WCR_DS_BM;
  479. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) &
  480. ~RME32_WCR_FREQ_0;
  481. break;
  482. case 96000:
  483. if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
  484. return -EINVAL;
  485. rme32->wcreg |= RME32_WCR_DS_BM;
  486. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
  487. RME32_WCR_FREQ_1;
  488. break;
  489. default:
  490. return -EINVAL;
  491. }
  492. if ((!ds && rme32->wcreg & RME32_WCR_DS_BM) ||
  493. (ds && !(rme32->wcreg & RME32_WCR_DS_BM)))
  494. {
  495. /* change to/from double-speed: reset the DAC (if available) */
  496. snd_rme32_reset_dac(rme32);
  497. } else {
  498. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  499. }
  500. return 0;
  501. }
  502. static int snd_rme32_setclockmode(struct rme32 * rme32, int mode)
  503. {
  504. switch (mode) {
  505. case RME32_CLOCKMODE_SLAVE:
  506. /* AutoSync */
  507. rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) &
  508. ~RME32_WCR_FREQ_1;
  509. break;
  510. case RME32_CLOCKMODE_MASTER_32:
  511. /* Internal 32.0kHz */
  512. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
  513. ~RME32_WCR_FREQ_1;
  514. break;
  515. case RME32_CLOCKMODE_MASTER_44:
  516. /* Internal 44.1kHz */
  517. rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) |
  518. RME32_WCR_FREQ_1;
  519. break;
  520. case RME32_CLOCKMODE_MASTER_48:
  521. /* Internal 48.0kHz */
  522. rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
  523. RME32_WCR_FREQ_1;
  524. break;
  525. default:
  526. return -EINVAL;
  527. }
  528. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  529. return 0;
  530. }
  531. static int snd_rme32_getclockmode(struct rme32 * rme32)
  532. {
  533. return ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) +
  534. (((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1);
  535. }
  536. static int snd_rme32_setinputtype(struct rme32 * rme32, int type)
  537. {
  538. switch (type) {
  539. case RME32_INPUT_OPTICAL:
  540. rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) &
  541. ~RME32_WCR_INP_1;
  542. break;
  543. case RME32_INPUT_COAXIAL:
  544. rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) &
  545. ~RME32_WCR_INP_1;
  546. break;
  547. case RME32_INPUT_INTERNAL:
  548. rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) |
  549. RME32_WCR_INP_1;
  550. break;
  551. case RME32_INPUT_XLR:
  552. rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) |
  553. RME32_WCR_INP_1;
  554. break;
  555. default:
  556. return -EINVAL;
  557. }
  558. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  559. return 0;
  560. }
  561. static int snd_rme32_getinputtype(struct rme32 * rme32)
  562. {
  563. return ((rme32->wcreg >> RME32_WCR_BITPOS_INP_0) & 1) +
  564. (((rme32->wcreg >> RME32_WCR_BITPOS_INP_1) & 1) << 1);
  565. }
  566. static void
  567. snd_rme32_setframelog(struct rme32 * rme32, int n_channels, int is_playback)
  568. {
  569. int frlog;
  570. if (n_channels == 2) {
  571. frlog = 1;
  572. } else {
  573. /* assume 8 channels */
  574. frlog = 3;
  575. }
  576. if (is_playback) {
  577. frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1;
  578. rme32->playback_frlog = frlog;
  579. } else {
  580. frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1;
  581. rme32->capture_frlog = frlog;
  582. }
  583. }
  584. static int snd_rme32_setformat(struct rme32 *rme32, snd_pcm_format_t format)
  585. {
  586. switch (format) {
  587. case SNDRV_PCM_FORMAT_S16_LE:
  588. rme32->wcreg &= ~RME32_WCR_MODE24;
  589. break;
  590. case SNDRV_PCM_FORMAT_S32_LE:
  591. rme32->wcreg |= RME32_WCR_MODE24;
  592. break;
  593. default:
  594. return -EINVAL;
  595. }
  596. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  597. return 0;
  598. }
  599. static int
  600. snd_rme32_playback_hw_params(struct snd_pcm_substream *substream,
  601. struct snd_pcm_hw_params *params)
  602. {
  603. int err, rate, dummy;
  604. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  605. struct snd_pcm_runtime *runtime = substream->runtime;
  606. if (rme32->fullduplex_mode) {
  607. err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
  608. if (err < 0)
  609. return err;
  610. } else {
  611. runtime->dma_area = (void __force *)(rme32->iobase +
  612. RME32_IO_DATA_BUFFER);
  613. runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER;
  614. runtime->dma_bytes = RME32_BUFFER_SIZE;
  615. }
  616. spin_lock_irq(&rme32->lock);
  617. if ((rme32->rcreg & RME32_RCR_KMODE) &&
  618. (rate = snd_rme32_capture_getrate(rme32, &dummy)) > 0) {
  619. /* AutoSync */
  620. if ((int)params_rate(params) != rate) {
  621. spin_unlock_irq(&rme32->lock);
  622. return -EIO;
  623. }
  624. } else if ((err = snd_rme32_playback_setrate(rme32, params_rate(params))) < 0) {
  625. spin_unlock_irq(&rme32->lock);
  626. return err;
  627. }
  628. if ((err = snd_rme32_setformat(rme32, params_format(params))) < 0) {
  629. spin_unlock_irq(&rme32->lock);
  630. return err;
  631. }
  632. snd_rme32_setframelog(rme32, params_channels(params), 1);
  633. if (rme32->capture_periodsize != 0) {
  634. if (params_period_size(params) << rme32->playback_frlog != rme32->capture_periodsize) {
  635. spin_unlock_irq(&rme32->lock);
  636. return -EBUSY;
  637. }
  638. }
  639. rme32->playback_periodsize = params_period_size(params) << rme32->playback_frlog;
  640. /* S/PDIF setup */
  641. if ((rme32->wcreg & RME32_WCR_ADAT) == 0) {
  642. rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP);
  643. rme32->wcreg |= rme32->wcreg_spdif_stream;
  644. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  645. }
  646. spin_unlock_irq(&rme32->lock);
  647. return 0;
  648. }
  649. static int
  650. snd_rme32_capture_hw_params(struct snd_pcm_substream *substream,
  651. struct snd_pcm_hw_params *params)
  652. {
  653. int err, isadat, rate;
  654. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  655. struct snd_pcm_runtime *runtime = substream->runtime;
  656. if (rme32->fullduplex_mode) {
  657. err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
  658. if (err < 0)
  659. return err;
  660. } else {
  661. runtime->dma_area = (void __force *)rme32->iobase +
  662. RME32_IO_DATA_BUFFER;
  663. runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER;
  664. runtime->dma_bytes = RME32_BUFFER_SIZE;
  665. }
  666. spin_lock_irq(&rme32->lock);
  667. /* enable AutoSync for record-preparing */
  668. rme32->wcreg |= RME32_WCR_AUTOSYNC;
  669. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  670. if ((err = snd_rme32_setformat(rme32, params_format(params))) < 0) {
  671. spin_unlock_irq(&rme32->lock);
  672. return err;
  673. }
  674. if ((err = snd_rme32_playback_setrate(rme32, params_rate(params))) < 0) {
  675. spin_unlock_irq(&rme32->lock);
  676. return err;
  677. }
  678. if ((rate = snd_rme32_capture_getrate(rme32, &isadat)) > 0) {
  679. if ((int)params_rate(params) != rate) {
  680. spin_unlock_irq(&rme32->lock);
  681. return -EIO;
  682. }
  683. if ((isadat && runtime->hw.channels_min == 2) ||
  684. (!isadat && runtime->hw.channels_min == 8)) {
  685. spin_unlock_irq(&rme32->lock);
  686. return -EIO;
  687. }
  688. }
  689. /* AutoSync off for recording */
  690. rme32->wcreg &= ~RME32_WCR_AUTOSYNC;
  691. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  692. snd_rme32_setframelog(rme32, params_channels(params), 0);
  693. if (rme32->playback_periodsize != 0) {
  694. if (params_period_size(params) << rme32->capture_frlog !=
  695. rme32->playback_periodsize) {
  696. spin_unlock_irq(&rme32->lock);
  697. return -EBUSY;
  698. }
  699. }
  700. rme32->capture_periodsize =
  701. params_period_size(params) << rme32->capture_frlog;
  702. spin_unlock_irq(&rme32->lock);
  703. return 0;
  704. }
  705. static int snd_rme32_pcm_hw_free(struct snd_pcm_substream *substream)
  706. {
  707. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  708. if (! rme32->fullduplex_mode)
  709. return 0;
  710. return snd_pcm_lib_free_pages(substream);
  711. }
  712. static void snd_rme32_pcm_start(struct rme32 * rme32, int from_pause)
  713. {
  714. if (!from_pause) {
  715. writel(0, rme32->iobase + RME32_IO_RESET_POS);
  716. }
  717. rme32->wcreg |= RME32_WCR_START;
  718. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  719. }
  720. static void snd_rme32_pcm_stop(struct rme32 * rme32, int to_pause)
  721. {
  722. /*
  723. * Check if there is an unconfirmed IRQ, if so confirm it, or else
  724. * the hardware will not stop generating interrupts
  725. */
  726. rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
  727. if (rme32->rcreg & RME32_RCR_IRQ) {
  728. writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ);
  729. }
  730. rme32->wcreg &= ~RME32_WCR_START;
  731. if (rme32->wcreg & RME32_WCR_SEL)
  732. rme32->wcreg |= RME32_WCR_MUTE;
  733. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  734. if (! to_pause)
  735. writel(0, rme32->iobase + RME32_IO_RESET_POS);
  736. }
  737. static irqreturn_t snd_rme32_interrupt(int irq, void *dev_id)
  738. {
  739. struct rme32 *rme32 = (struct rme32 *) dev_id;
  740. rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
  741. if (!(rme32->rcreg & RME32_RCR_IRQ)) {
  742. return IRQ_NONE;
  743. } else {
  744. if (rme32->capture_substream) {
  745. snd_pcm_period_elapsed(rme32->capture_substream);
  746. }
  747. if (rme32->playback_substream) {
  748. snd_pcm_period_elapsed(rme32->playback_substream);
  749. }
  750. writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ);
  751. }
  752. return IRQ_HANDLED;
  753. }
  754. static const unsigned int period_bytes[] = { RME32_BLOCK_SIZE };
  755. static const struct snd_pcm_hw_constraint_list hw_constraints_period_bytes = {
  756. .count = ARRAY_SIZE(period_bytes),
  757. .list = period_bytes,
  758. .mask = 0
  759. };
  760. static void snd_rme32_set_buffer_constraint(struct rme32 *rme32, struct snd_pcm_runtime *runtime)
  761. {
  762. if (! rme32->fullduplex_mode) {
  763. snd_pcm_hw_constraint_single(runtime,
  764. SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
  765. RME32_BUFFER_SIZE);
  766. snd_pcm_hw_constraint_list(runtime, 0,
  767. SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
  768. &hw_constraints_period_bytes);
  769. }
  770. }
  771. static int snd_rme32_playback_spdif_open(struct snd_pcm_substream *substream)
  772. {
  773. int rate, dummy;
  774. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  775. struct snd_pcm_runtime *runtime = substream->runtime;
  776. snd_pcm_set_sync(substream);
  777. spin_lock_irq(&rme32->lock);
  778. if (rme32->playback_substream != NULL) {
  779. spin_unlock_irq(&rme32->lock);
  780. return -EBUSY;
  781. }
  782. rme32->wcreg &= ~RME32_WCR_ADAT;
  783. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  784. rme32->playback_substream = substream;
  785. spin_unlock_irq(&rme32->lock);
  786. if (rme32->fullduplex_mode)
  787. runtime->hw = snd_rme32_spdif_fd_info;
  788. else
  789. runtime->hw = snd_rme32_spdif_info;
  790. if (rme32->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO) {
  791. runtime->hw.rates |= SNDRV_PCM_RATE_64000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000;
  792. runtime->hw.rate_max = 96000;
  793. }
  794. if ((rme32->rcreg & RME32_RCR_KMODE) &&
  795. (rate = snd_rme32_capture_getrate(rme32, &dummy)) > 0) {
  796. /* AutoSync */
  797. runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
  798. runtime->hw.rate_min = rate;
  799. runtime->hw.rate_max = rate;
  800. }
  801. snd_rme32_set_buffer_constraint(rme32, runtime);
  802. rme32->wcreg_spdif_stream = rme32->wcreg_spdif;
  803. rme32->spdif_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
  804. snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE |
  805. SNDRV_CTL_EVENT_MASK_INFO, &rme32->spdif_ctl->id);
  806. return 0;
  807. }
  808. static int snd_rme32_capture_spdif_open(struct snd_pcm_substream *substream)
  809. {
  810. int isadat, rate;
  811. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  812. struct snd_pcm_runtime *runtime = substream->runtime;
  813. snd_pcm_set_sync(substream);
  814. spin_lock_irq(&rme32->lock);
  815. if (rme32->capture_substream != NULL) {
  816. spin_unlock_irq(&rme32->lock);
  817. return -EBUSY;
  818. }
  819. rme32->capture_substream = substream;
  820. spin_unlock_irq(&rme32->lock);
  821. if (rme32->fullduplex_mode)
  822. runtime->hw = snd_rme32_spdif_fd_info;
  823. else
  824. runtime->hw = snd_rme32_spdif_info;
  825. if (RME32_PRO_WITH_8414(rme32)) {
  826. runtime->hw.rates |= SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000;
  827. runtime->hw.rate_max = 96000;
  828. }
  829. if ((rate = snd_rme32_capture_getrate(rme32, &isadat)) > 0) {
  830. if (isadat) {
  831. return -EIO;
  832. }
  833. runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
  834. runtime->hw.rate_min = rate;
  835. runtime->hw.rate_max = rate;
  836. }
  837. snd_rme32_set_buffer_constraint(rme32, runtime);
  838. return 0;
  839. }
  840. static int
  841. snd_rme32_playback_adat_open(struct snd_pcm_substream *substream)
  842. {
  843. int rate, dummy;
  844. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  845. struct snd_pcm_runtime *runtime = substream->runtime;
  846. snd_pcm_set_sync(substream);
  847. spin_lock_irq(&rme32->lock);
  848. if (rme32->playback_substream != NULL) {
  849. spin_unlock_irq(&rme32->lock);
  850. return -EBUSY;
  851. }
  852. rme32->wcreg |= RME32_WCR_ADAT;
  853. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  854. rme32->playback_substream = substream;
  855. spin_unlock_irq(&rme32->lock);
  856. if (rme32->fullduplex_mode)
  857. runtime->hw = snd_rme32_adat_fd_info;
  858. else
  859. runtime->hw = snd_rme32_adat_info;
  860. if ((rme32->rcreg & RME32_RCR_KMODE) &&
  861. (rate = snd_rme32_capture_getrate(rme32, &dummy)) > 0) {
  862. /* AutoSync */
  863. runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
  864. runtime->hw.rate_min = rate;
  865. runtime->hw.rate_max = rate;
  866. }
  867. snd_rme32_set_buffer_constraint(rme32, runtime);
  868. return 0;
  869. }
  870. static int
  871. snd_rme32_capture_adat_open(struct snd_pcm_substream *substream)
  872. {
  873. int isadat, rate;
  874. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  875. struct snd_pcm_runtime *runtime = substream->runtime;
  876. if (rme32->fullduplex_mode)
  877. runtime->hw = snd_rme32_adat_fd_info;
  878. else
  879. runtime->hw = snd_rme32_adat_info;
  880. if ((rate = snd_rme32_capture_getrate(rme32, &isadat)) > 0) {
  881. if (!isadat) {
  882. return -EIO;
  883. }
  884. runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
  885. runtime->hw.rate_min = rate;
  886. runtime->hw.rate_max = rate;
  887. }
  888. snd_pcm_set_sync(substream);
  889. spin_lock_irq(&rme32->lock);
  890. if (rme32->capture_substream != NULL) {
  891. spin_unlock_irq(&rme32->lock);
  892. return -EBUSY;
  893. }
  894. rme32->capture_substream = substream;
  895. spin_unlock_irq(&rme32->lock);
  896. snd_rme32_set_buffer_constraint(rme32, runtime);
  897. return 0;
  898. }
  899. static int snd_rme32_playback_close(struct snd_pcm_substream *substream)
  900. {
  901. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  902. int spdif = 0;
  903. spin_lock_irq(&rme32->lock);
  904. rme32->playback_substream = NULL;
  905. rme32->playback_periodsize = 0;
  906. spdif = (rme32->wcreg & RME32_WCR_ADAT) == 0;
  907. spin_unlock_irq(&rme32->lock);
  908. if (spdif) {
  909. rme32->spdif_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
  910. snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE |
  911. SNDRV_CTL_EVENT_MASK_INFO,
  912. &rme32->spdif_ctl->id);
  913. }
  914. return 0;
  915. }
  916. static int snd_rme32_capture_close(struct snd_pcm_substream *substream)
  917. {
  918. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  919. spin_lock_irq(&rme32->lock);
  920. rme32->capture_substream = NULL;
  921. rme32->capture_periodsize = 0;
  922. spin_unlock_irq(&rme32->lock);
  923. return 0;
  924. }
  925. static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream)
  926. {
  927. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  928. spin_lock_irq(&rme32->lock);
  929. if (rme32->fullduplex_mode) {
  930. memset(&rme32->playback_pcm, 0, sizeof(rme32->playback_pcm));
  931. rme32->playback_pcm.hw_buffer_size = RME32_BUFFER_SIZE;
  932. rme32->playback_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
  933. } else {
  934. writel(0, rme32->iobase + RME32_IO_RESET_POS);
  935. }
  936. if (rme32->wcreg & RME32_WCR_SEL)
  937. rme32->wcreg &= ~RME32_WCR_MUTE;
  938. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  939. spin_unlock_irq(&rme32->lock);
  940. return 0;
  941. }
  942. static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream)
  943. {
  944. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  945. spin_lock_irq(&rme32->lock);
  946. if (rme32->fullduplex_mode) {
  947. memset(&rme32->capture_pcm, 0, sizeof(rme32->capture_pcm));
  948. rme32->capture_pcm.hw_buffer_size = RME32_BUFFER_SIZE;
  949. rme32->capture_pcm.hw_queue_size = RME32_BUFFER_SIZE / 2;
  950. rme32->capture_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
  951. } else {
  952. writel(0, rme32->iobase + RME32_IO_RESET_POS);
  953. }
  954. spin_unlock_irq(&rme32->lock);
  955. return 0;
  956. }
  957. static int
  958. snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
  959. {
  960. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  961. struct snd_pcm_substream *s;
  962. spin_lock(&rme32->lock);
  963. snd_pcm_group_for_each_entry(s, substream) {
  964. if (s != rme32->playback_substream &&
  965. s != rme32->capture_substream)
  966. continue;
  967. switch (cmd) {
  968. case SNDRV_PCM_TRIGGER_START:
  969. rme32->running |= (1 << s->stream);
  970. if (rme32->fullduplex_mode) {
  971. /* remember the current DMA position */
  972. if (s == rme32->playback_substream) {
  973. rme32->playback_pcm.hw_io =
  974. rme32->playback_pcm.hw_data = snd_rme32_pcm_byteptr(rme32);
  975. } else {
  976. rme32->capture_pcm.hw_io =
  977. rme32->capture_pcm.hw_data = snd_rme32_pcm_byteptr(rme32);
  978. }
  979. }
  980. break;
  981. case SNDRV_PCM_TRIGGER_STOP:
  982. rme32->running &= ~(1 << s->stream);
  983. break;
  984. }
  985. snd_pcm_trigger_done(s, substream);
  986. }
  987. /* prefill playback buffer */
  988. if (cmd == SNDRV_PCM_TRIGGER_START && rme32->fullduplex_mode) {
  989. snd_pcm_group_for_each_entry(s, substream) {
  990. if (s == rme32->playback_substream) {
  991. s->ops->ack(s);
  992. break;
  993. }
  994. }
  995. }
  996. switch (cmd) {
  997. case SNDRV_PCM_TRIGGER_START:
  998. if (rme32->running && ! RME32_ISWORKING(rme32))
  999. snd_rme32_pcm_start(rme32, 0);
  1000. break;
  1001. case SNDRV_PCM_TRIGGER_STOP:
  1002. if (! rme32->running && RME32_ISWORKING(rme32))
  1003. snd_rme32_pcm_stop(rme32, 0);
  1004. break;
  1005. case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
  1006. if (rme32->running && RME32_ISWORKING(rme32))
  1007. snd_rme32_pcm_stop(rme32, 1);
  1008. break;
  1009. case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
  1010. if (rme32->running && ! RME32_ISWORKING(rme32))
  1011. snd_rme32_pcm_start(rme32, 1);
  1012. break;
  1013. }
  1014. spin_unlock(&rme32->lock);
  1015. return 0;
  1016. }
  1017. /* pointer callback for halfduplex mode */
  1018. static snd_pcm_uframes_t
  1019. snd_rme32_playback_pointer(struct snd_pcm_substream *substream)
  1020. {
  1021. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1022. return snd_rme32_pcm_byteptr(rme32) >> rme32->playback_frlog;
  1023. }
  1024. static snd_pcm_uframes_t
  1025. snd_rme32_capture_pointer(struct snd_pcm_substream *substream)
  1026. {
  1027. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1028. return snd_rme32_pcm_byteptr(rme32) >> rme32->capture_frlog;
  1029. }
  1030. /* ack and pointer callbacks for fullduplex mode */
  1031. static void snd_rme32_pb_trans_copy(struct snd_pcm_substream *substream,
  1032. struct snd_pcm_indirect *rec, size_t bytes)
  1033. {
  1034. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1035. memcpy_toio(rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data,
  1036. substream->runtime->dma_area + rec->sw_data, bytes);
  1037. }
  1038. static int snd_rme32_playback_fd_ack(struct snd_pcm_substream *substream)
  1039. {
  1040. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1041. struct snd_pcm_indirect *rec, *cprec;
  1042. rec = &rme32->playback_pcm;
  1043. cprec = &rme32->capture_pcm;
  1044. spin_lock(&rme32->lock);
  1045. rec->hw_queue_size = RME32_BUFFER_SIZE;
  1046. if (rme32->running & (1 << SNDRV_PCM_STREAM_CAPTURE))
  1047. rec->hw_queue_size -= cprec->hw_ready;
  1048. spin_unlock(&rme32->lock);
  1049. return snd_pcm_indirect_playback_transfer(substream, rec,
  1050. snd_rme32_pb_trans_copy);
  1051. }
  1052. static void snd_rme32_cp_trans_copy(struct snd_pcm_substream *substream,
  1053. struct snd_pcm_indirect *rec, size_t bytes)
  1054. {
  1055. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1056. memcpy_fromio(substream->runtime->dma_area + rec->sw_data,
  1057. rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data,
  1058. bytes);
  1059. }
  1060. static int snd_rme32_capture_fd_ack(struct snd_pcm_substream *substream)
  1061. {
  1062. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1063. return snd_pcm_indirect_capture_transfer(substream, &rme32->capture_pcm,
  1064. snd_rme32_cp_trans_copy);
  1065. }
  1066. static snd_pcm_uframes_t
  1067. snd_rme32_playback_fd_pointer(struct snd_pcm_substream *substream)
  1068. {
  1069. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1070. return snd_pcm_indirect_playback_pointer(substream, &rme32->playback_pcm,
  1071. snd_rme32_pcm_byteptr(rme32));
  1072. }
  1073. static snd_pcm_uframes_t
  1074. snd_rme32_capture_fd_pointer(struct snd_pcm_substream *substream)
  1075. {
  1076. struct rme32 *rme32 = snd_pcm_substream_chip(substream);
  1077. return snd_pcm_indirect_capture_pointer(substream, &rme32->capture_pcm,
  1078. snd_rme32_pcm_byteptr(rme32));
  1079. }
  1080. /* for halfduplex mode */
  1081. static const struct snd_pcm_ops snd_rme32_playback_spdif_ops = {
  1082. .open = snd_rme32_playback_spdif_open,
  1083. .close = snd_rme32_playback_close,
  1084. .ioctl = snd_pcm_lib_ioctl,
  1085. .hw_params = snd_rme32_playback_hw_params,
  1086. .hw_free = snd_rme32_pcm_hw_free,
  1087. .prepare = snd_rme32_playback_prepare,
  1088. .trigger = snd_rme32_pcm_trigger,
  1089. .pointer = snd_rme32_playback_pointer,
  1090. .copy_user = snd_rme32_playback_copy,
  1091. .copy_kernel = snd_rme32_playback_copy_kernel,
  1092. .fill_silence = snd_rme32_playback_silence,
  1093. .mmap = snd_pcm_lib_mmap_iomem,
  1094. };
  1095. static const struct snd_pcm_ops snd_rme32_capture_spdif_ops = {
  1096. .open = snd_rme32_capture_spdif_open,
  1097. .close = snd_rme32_capture_close,
  1098. .ioctl = snd_pcm_lib_ioctl,
  1099. .hw_params = snd_rme32_capture_hw_params,
  1100. .hw_free = snd_rme32_pcm_hw_free,
  1101. .prepare = snd_rme32_capture_prepare,
  1102. .trigger = snd_rme32_pcm_trigger,
  1103. .pointer = snd_rme32_capture_pointer,
  1104. .copy_user = snd_rme32_capture_copy,
  1105. .copy_kernel = snd_rme32_capture_copy_kernel,
  1106. .mmap = snd_pcm_lib_mmap_iomem,
  1107. };
  1108. static const struct snd_pcm_ops snd_rme32_playback_adat_ops = {
  1109. .open = snd_rme32_playback_adat_open,
  1110. .close = snd_rme32_playback_close,
  1111. .ioctl = snd_pcm_lib_ioctl,
  1112. .hw_params = snd_rme32_playback_hw_params,
  1113. .prepare = snd_rme32_playback_prepare,
  1114. .trigger = snd_rme32_pcm_trigger,
  1115. .pointer = snd_rme32_playback_pointer,
  1116. .copy_user = snd_rme32_playback_copy,
  1117. .copy_kernel = snd_rme32_playback_copy_kernel,
  1118. .fill_silence = snd_rme32_playback_silence,
  1119. .mmap = snd_pcm_lib_mmap_iomem,
  1120. };
  1121. static const struct snd_pcm_ops snd_rme32_capture_adat_ops = {
  1122. .open = snd_rme32_capture_adat_open,
  1123. .close = snd_rme32_capture_close,
  1124. .ioctl = snd_pcm_lib_ioctl,
  1125. .hw_params = snd_rme32_capture_hw_params,
  1126. .prepare = snd_rme32_capture_prepare,
  1127. .trigger = snd_rme32_pcm_trigger,
  1128. .pointer = snd_rme32_capture_pointer,
  1129. .copy_user = snd_rme32_capture_copy,
  1130. .copy_kernel = snd_rme32_capture_copy_kernel,
  1131. .mmap = snd_pcm_lib_mmap_iomem,
  1132. };
  1133. /* for fullduplex mode */
  1134. static const struct snd_pcm_ops snd_rme32_playback_spdif_fd_ops = {
  1135. .open = snd_rme32_playback_spdif_open,
  1136. .close = snd_rme32_playback_close,
  1137. .ioctl = snd_pcm_lib_ioctl,
  1138. .hw_params = snd_rme32_playback_hw_params,
  1139. .hw_free = snd_rme32_pcm_hw_free,
  1140. .prepare = snd_rme32_playback_prepare,
  1141. .trigger = snd_rme32_pcm_trigger,
  1142. .pointer = snd_rme32_playback_fd_pointer,
  1143. .ack = snd_rme32_playback_fd_ack,
  1144. };
  1145. static const struct snd_pcm_ops snd_rme32_capture_spdif_fd_ops = {
  1146. .open = snd_rme32_capture_spdif_open,
  1147. .close = snd_rme32_capture_close,
  1148. .ioctl = snd_pcm_lib_ioctl,
  1149. .hw_params = snd_rme32_capture_hw_params,
  1150. .hw_free = snd_rme32_pcm_hw_free,
  1151. .prepare = snd_rme32_capture_prepare,
  1152. .trigger = snd_rme32_pcm_trigger,
  1153. .pointer = snd_rme32_capture_fd_pointer,
  1154. .ack = snd_rme32_capture_fd_ack,
  1155. };
  1156. static const struct snd_pcm_ops snd_rme32_playback_adat_fd_ops = {
  1157. .open = snd_rme32_playback_adat_open,
  1158. .close = snd_rme32_playback_close,
  1159. .ioctl = snd_pcm_lib_ioctl,
  1160. .hw_params = snd_rme32_playback_hw_params,
  1161. .prepare = snd_rme32_playback_prepare,
  1162. .trigger = snd_rme32_pcm_trigger,
  1163. .pointer = snd_rme32_playback_fd_pointer,
  1164. .ack = snd_rme32_playback_fd_ack,
  1165. };
  1166. static const struct snd_pcm_ops snd_rme32_capture_adat_fd_ops = {
  1167. .open = snd_rme32_capture_adat_open,
  1168. .close = snd_rme32_capture_close,
  1169. .ioctl = snd_pcm_lib_ioctl,
  1170. .hw_params = snd_rme32_capture_hw_params,
  1171. .prepare = snd_rme32_capture_prepare,
  1172. .trigger = snd_rme32_pcm_trigger,
  1173. .pointer = snd_rme32_capture_fd_pointer,
  1174. .ack = snd_rme32_capture_fd_ack,
  1175. };
  1176. static void snd_rme32_free(void *private_data)
  1177. {
  1178. struct rme32 *rme32 = (struct rme32 *) private_data;
  1179. if (rme32 == NULL) {
  1180. return;
  1181. }
  1182. if (rme32->irq >= 0) {
  1183. snd_rme32_pcm_stop(rme32, 0);
  1184. free_irq(rme32->irq, (void *) rme32);
  1185. rme32->irq = -1;
  1186. }
  1187. if (rme32->iobase) {
  1188. iounmap(rme32->iobase);
  1189. rme32->iobase = NULL;
  1190. }
  1191. if (rme32->port) {
  1192. pci_release_regions(rme32->pci);
  1193. rme32->port = 0;
  1194. }
  1195. pci_disable_device(rme32->pci);
  1196. }
  1197. static void snd_rme32_free_spdif_pcm(struct snd_pcm *pcm)
  1198. {
  1199. struct rme32 *rme32 = (struct rme32 *) pcm->private_data;
  1200. rme32->spdif_pcm = NULL;
  1201. }
  1202. static void
  1203. snd_rme32_free_adat_pcm(struct snd_pcm *pcm)
  1204. {
  1205. struct rme32 *rme32 = (struct rme32 *) pcm->private_data;
  1206. rme32->adat_pcm = NULL;
  1207. }
  1208. static int snd_rme32_create(struct rme32 *rme32)
  1209. {
  1210. struct pci_dev *pci = rme32->pci;
  1211. int err;
  1212. rme32->irq = -1;
  1213. spin_lock_init(&rme32->lock);
  1214. if ((err = pci_enable_device(pci)) < 0)
  1215. return err;
  1216. if ((err = pci_request_regions(pci, "RME32")) < 0)
  1217. return err;
  1218. rme32->port = pci_resource_start(rme32->pci, 0);
  1219. rme32->iobase = ioremap_nocache(rme32->port, RME32_IO_SIZE);
  1220. if (!rme32->iobase) {
  1221. dev_err(rme32->card->dev,
  1222. "unable to remap memory region 0x%lx-0x%lx\n",
  1223. rme32->port, rme32->port + RME32_IO_SIZE - 1);
  1224. return -ENOMEM;
  1225. }
  1226. if (request_irq(pci->irq, snd_rme32_interrupt, IRQF_SHARED,
  1227. KBUILD_MODNAME, rme32)) {
  1228. dev_err(rme32->card->dev, "unable to grab IRQ %d\n", pci->irq);
  1229. return -EBUSY;
  1230. }
  1231. rme32->irq = pci->irq;
  1232. /* read the card's revision number */
  1233. pci_read_config_byte(pci, 8, &rme32->rev);
  1234. /* set up ALSA pcm device for S/PDIF */
  1235. if ((err = snd_pcm_new(rme32->card, "Digi32 IEC958", 0, 1, 1, &rme32->spdif_pcm)) < 0) {
  1236. return err;
  1237. }
  1238. rme32->spdif_pcm->private_data = rme32;
  1239. rme32->spdif_pcm->private_free = snd_rme32_free_spdif_pcm;
  1240. strcpy(rme32->spdif_pcm->name, "Digi32 IEC958");
  1241. if (rme32->fullduplex_mode) {
  1242. snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK,
  1243. &snd_rme32_playback_spdif_fd_ops);
  1244. snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE,
  1245. &snd_rme32_capture_spdif_fd_ops);
  1246. snd_pcm_lib_preallocate_pages_for_all(rme32->spdif_pcm, SNDRV_DMA_TYPE_CONTINUOUS,
  1247. snd_dma_continuous_data(GFP_KERNEL),
  1248. 0, RME32_MID_BUFFER_SIZE);
  1249. rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
  1250. } else {
  1251. snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK,
  1252. &snd_rme32_playback_spdif_ops);
  1253. snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE,
  1254. &snd_rme32_capture_spdif_ops);
  1255. rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
  1256. }
  1257. /* set up ALSA pcm device for ADAT */
  1258. if ((pci->device == PCI_DEVICE_ID_RME_DIGI32) ||
  1259. (pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO)) {
  1260. /* ADAT is not available on DIGI32 and DIGI32 Pro */
  1261. rme32->adat_pcm = NULL;
  1262. }
  1263. else {
  1264. if ((err = snd_pcm_new(rme32->card, "Digi32 ADAT", 1,
  1265. 1, 1, &rme32->adat_pcm)) < 0)
  1266. {
  1267. return err;
  1268. }
  1269. rme32->adat_pcm->private_data = rme32;
  1270. rme32->adat_pcm->private_free = snd_rme32_free_adat_pcm;
  1271. strcpy(rme32->adat_pcm->name, "Digi32 ADAT");
  1272. if (rme32->fullduplex_mode) {
  1273. snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK,
  1274. &snd_rme32_playback_adat_fd_ops);
  1275. snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE,
  1276. &snd_rme32_capture_adat_fd_ops);
  1277. snd_pcm_lib_preallocate_pages_for_all(rme32->adat_pcm, SNDRV_DMA_TYPE_CONTINUOUS,
  1278. snd_dma_continuous_data(GFP_KERNEL),
  1279. 0, RME32_MID_BUFFER_SIZE);
  1280. rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
  1281. } else {
  1282. snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK,
  1283. &snd_rme32_playback_adat_ops);
  1284. snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE,
  1285. &snd_rme32_capture_adat_ops);
  1286. rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
  1287. }
  1288. }
  1289. rme32->playback_periodsize = 0;
  1290. rme32->capture_periodsize = 0;
  1291. /* make sure playback/capture is stopped, if by some reason active */
  1292. snd_rme32_pcm_stop(rme32, 0);
  1293. /* reset DAC */
  1294. snd_rme32_reset_dac(rme32);
  1295. /* reset buffer pointer */
  1296. writel(0, rme32->iobase + RME32_IO_RESET_POS);
  1297. /* set default values in registers */
  1298. rme32->wcreg = RME32_WCR_SEL | /* normal playback */
  1299. RME32_WCR_INP_0 | /* input select */
  1300. RME32_WCR_MUTE; /* muting on */
  1301. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  1302. /* init switch interface */
  1303. if ((err = snd_rme32_create_switches(rme32->card, rme32)) < 0) {
  1304. return err;
  1305. }
  1306. /* init proc interface */
  1307. snd_rme32_proc_init(rme32);
  1308. rme32->capture_substream = NULL;
  1309. rme32->playback_substream = NULL;
  1310. return 0;
  1311. }
  1312. /*
  1313. * proc interface
  1314. */
  1315. static void
  1316. snd_rme32_proc_read(struct snd_info_entry * entry, struct snd_info_buffer *buffer)
  1317. {
  1318. int n;
  1319. struct rme32 *rme32 = (struct rme32 *) entry->private_data;
  1320. rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
  1321. snd_iprintf(buffer, rme32->card->longname);
  1322. snd_iprintf(buffer, " (index #%d)\n", rme32->card->number + 1);
  1323. snd_iprintf(buffer, "\nGeneral settings\n");
  1324. if (rme32->fullduplex_mode)
  1325. snd_iprintf(buffer, " Full-duplex mode\n");
  1326. else
  1327. snd_iprintf(buffer, " Half-duplex mode\n");
  1328. if (RME32_PRO_WITH_8414(rme32)) {
  1329. snd_iprintf(buffer, " receiver: CS8414\n");
  1330. } else {
  1331. snd_iprintf(buffer, " receiver: CS8412\n");
  1332. }
  1333. if (rme32->wcreg & RME32_WCR_MODE24) {
  1334. snd_iprintf(buffer, " format: 24 bit");
  1335. } else {
  1336. snd_iprintf(buffer, " format: 16 bit");
  1337. }
  1338. if (rme32->wcreg & RME32_WCR_MONO) {
  1339. snd_iprintf(buffer, ", Mono\n");
  1340. } else {
  1341. snd_iprintf(buffer, ", Stereo\n");
  1342. }
  1343. snd_iprintf(buffer, "\nInput settings\n");
  1344. switch (snd_rme32_getinputtype(rme32)) {
  1345. case RME32_INPUT_OPTICAL:
  1346. snd_iprintf(buffer, " input: optical");
  1347. break;
  1348. case RME32_INPUT_COAXIAL:
  1349. snd_iprintf(buffer, " input: coaxial");
  1350. break;
  1351. case RME32_INPUT_INTERNAL:
  1352. snd_iprintf(buffer, " input: internal");
  1353. break;
  1354. case RME32_INPUT_XLR:
  1355. snd_iprintf(buffer, " input: XLR");
  1356. break;
  1357. }
  1358. if (snd_rme32_capture_getrate(rme32, &n) < 0) {
  1359. snd_iprintf(buffer, "\n sample rate: no valid signal\n");
  1360. } else {
  1361. if (n) {
  1362. snd_iprintf(buffer, " (8 channels)\n");
  1363. } else {
  1364. snd_iprintf(buffer, " (2 channels)\n");
  1365. }
  1366. snd_iprintf(buffer, " sample rate: %d Hz\n",
  1367. snd_rme32_capture_getrate(rme32, &n));
  1368. }
  1369. snd_iprintf(buffer, "\nOutput settings\n");
  1370. if (rme32->wcreg & RME32_WCR_SEL) {
  1371. snd_iprintf(buffer, " output signal: normal playback");
  1372. } else {
  1373. snd_iprintf(buffer, " output signal: same as input");
  1374. }
  1375. if (rme32->wcreg & RME32_WCR_MUTE) {
  1376. snd_iprintf(buffer, " (muted)\n");
  1377. } else {
  1378. snd_iprintf(buffer, "\n");
  1379. }
  1380. /* master output frequency */
  1381. if (!
  1382. ((!(rme32->wcreg & RME32_WCR_FREQ_0))
  1383. && (!(rme32->wcreg & RME32_WCR_FREQ_1)))) {
  1384. snd_iprintf(buffer, " sample rate: %d Hz\n",
  1385. snd_rme32_playback_getrate(rme32));
  1386. }
  1387. if (rme32->rcreg & RME32_RCR_KMODE) {
  1388. snd_iprintf(buffer, " sample clock source: AutoSync\n");
  1389. } else {
  1390. snd_iprintf(buffer, " sample clock source: Internal\n");
  1391. }
  1392. if (rme32->wcreg & RME32_WCR_PRO) {
  1393. snd_iprintf(buffer, " format: AES/EBU (professional)\n");
  1394. } else {
  1395. snd_iprintf(buffer, " format: IEC958 (consumer)\n");
  1396. }
  1397. if (rme32->wcreg & RME32_WCR_EMP) {
  1398. snd_iprintf(buffer, " emphasis: on\n");
  1399. } else {
  1400. snd_iprintf(buffer, " emphasis: off\n");
  1401. }
  1402. }
  1403. static void snd_rme32_proc_init(struct rme32 *rme32)
  1404. {
  1405. struct snd_info_entry *entry;
  1406. if (! snd_card_proc_new(rme32->card, "rme32", &entry))
  1407. snd_info_set_text_ops(entry, rme32, snd_rme32_proc_read);
  1408. }
  1409. /*
  1410. * control interface
  1411. */
  1412. #define snd_rme32_info_loopback_control snd_ctl_boolean_mono_info
  1413. static int
  1414. snd_rme32_get_loopback_control(struct snd_kcontrol *kcontrol,
  1415. struct snd_ctl_elem_value *ucontrol)
  1416. {
  1417. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1418. spin_lock_irq(&rme32->lock);
  1419. ucontrol->value.integer.value[0] =
  1420. rme32->wcreg & RME32_WCR_SEL ? 0 : 1;
  1421. spin_unlock_irq(&rme32->lock);
  1422. return 0;
  1423. }
  1424. static int
  1425. snd_rme32_put_loopback_control(struct snd_kcontrol *kcontrol,
  1426. struct snd_ctl_elem_value *ucontrol)
  1427. {
  1428. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1429. unsigned int val;
  1430. int change;
  1431. val = ucontrol->value.integer.value[0] ? 0 : RME32_WCR_SEL;
  1432. spin_lock_irq(&rme32->lock);
  1433. val = (rme32->wcreg & ~RME32_WCR_SEL) | val;
  1434. change = val != rme32->wcreg;
  1435. if (ucontrol->value.integer.value[0])
  1436. val &= ~RME32_WCR_MUTE;
  1437. else
  1438. val |= RME32_WCR_MUTE;
  1439. rme32->wcreg = val;
  1440. writel(val, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  1441. spin_unlock_irq(&rme32->lock);
  1442. return change;
  1443. }
  1444. static int
  1445. snd_rme32_info_inputtype_control(struct snd_kcontrol *kcontrol,
  1446. struct snd_ctl_elem_info *uinfo)
  1447. {
  1448. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1449. static const char * const texts[4] = {
  1450. "Optical", "Coaxial", "Internal", "XLR"
  1451. };
  1452. int num_items;
  1453. switch (rme32->pci->device) {
  1454. case PCI_DEVICE_ID_RME_DIGI32:
  1455. case PCI_DEVICE_ID_RME_DIGI32_8:
  1456. num_items = 3;
  1457. break;
  1458. case PCI_DEVICE_ID_RME_DIGI32_PRO:
  1459. num_items = 4;
  1460. break;
  1461. default:
  1462. snd_BUG();
  1463. return -EINVAL;
  1464. }
  1465. return snd_ctl_enum_info(uinfo, 1, num_items, texts);
  1466. }
  1467. static int
  1468. snd_rme32_get_inputtype_control(struct snd_kcontrol *kcontrol,
  1469. struct snd_ctl_elem_value *ucontrol)
  1470. {
  1471. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1472. unsigned int items = 3;
  1473. spin_lock_irq(&rme32->lock);
  1474. ucontrol->value.enumerated.item[0] = snd_rme32_getinputtype(rme32);
  1475. switch (rme32->pci->device) {
  1476. case PCI_DEVICE_ID_RME_DIGI32:
  1477. case PCI_DEVICE_ID_RME_DIGI32_8:
  1478. items = 3;
  1479. break;
  1480. case PCI_DEVICE_ID_RME_DIGI32_PRO:
  1481. items = 4;
  1482. break;
  1483. default:
  1484. snd_BUG();
  1485. break;
  1486. }
  1487. if (ucontrol->value.enumerated.item[0] >= items) {
  1488. ucontrol->value.enumerated.item[0] = items - 1;
  1489. }
  1490. spin_unlock_irq(&rme32->lock);
  1491. return 0;
  1492. }
  1493. static int
  1494. snd_rme32_put_inputtype_control(struct snd_kcontrol *kcontrol,
  1495. struct snd_ctl_elem_value *ucontrol)
  1496. {
  1497. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1498. unsigned int val;
  1499. int change, items = 3;
  1500. switch (rme32->pci->device) {
  1501. case PCI_DEVICE_ID_RME_DIGI32:
  1502. case PCI_DEVICE_ID_RME_DIGI32_8:
  1503. items = 3;
  1504. break;
  1505. case PCI_DEVICE_ID_RME_DIGI32_PRO:
  1506. items = 4;
  1507. break;
  1508. default:
  1509. snd_BUG();
  1510. break;
  1511. }
  1512. val = ucontrol->value.enumerated.item[0] % items;
  1513. spin_lock_irq(&rme32->lock);
  1514. change = val != (unsigned int)snd_rme32_getinputtype(rme32);
  1515. snd_rme32_setinputtype(rme32, val);
  1516. spin_unlock_irq(&rme32->lock);
  1517. return change;
  1518. }
  1519. static int
  1520. snd_rme32_info_clockmode_control(struct snd_kcontrol *kcontrol,
  1521. struct snd_ctl_elem_info *uinfo)
  1522. {
  1523. static const char * const texts[4] = { "AutoSync",
  1524. "Internal 32.0kHz",
  1525. "Internal 44.1kHz",
  1526. "Internal 48.0kHz" };
  1527. return snd_ctl_enum_info(uinfo, 1, 4, texts);
  1528. }
  1529. static int
  1530. snd_rme32_get_clockmode_control(struct snd_kcontrol *kcontrol,
  1531. struct snd_ctl_elem_value *ucontrol)
  1532. {
  1533. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1534. spin_lock_irq(&rme32->lock);
  1535. ucontrol->value.enumerated.item[0] = snd_rme32_getclockmode(rme32);
  1536. spin_unlock_irq(&rme32->lock);
  1537. return 0;
  1538. }
  1539. static int
  1540. snd_rme32_put_clockmode_control(struct snd_kcontrol *kcontrol,
  1541. struct snd_ctl_elem_value *ucontrol)
  1542. {
  1543. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1544. unsigned int val;
  1545. int change;
  1546. val = ucontrol->value.enumerated.item[0] % 3;
  1547. spin_lock_irq(&rme32->lock);
  1548. change = val != (unsigned int)snd_rme32_getclockmode(rme32);
  1549. snd_rme32_setclockmode(rme32, val);
  1550. spin_unlock_irq(&rme32->lock);
  1551. return change;
  1552. }
  1553. static u32 snd_rme32_convert_from_aes(struct snd_aes_iec958 * aes)
  1554. {
  1555. u32 val = 0;
  1556. val |= (aes->status[0] & IEC958_AES0_PROFESSIONAL) ? RME32_WCR_PRO : 0;
  1557. if (val & RME32_WCR_PRO)
  1558. val |= (aes->status[0] & IEC958_AES0_PRO_EMPHASIS_5015) ? RME32_WCR_EMP : 0;
  1559. else
  1560. val |= (aes->status[0] & IEC958_AES0_CON_EMPHASIS_5015) ? RME32_WCR_EMP : 0;
  1561. return val;
  1562. }
  1563. static void snd_rme32_convert_to_aes(struct snd_aes_iec958 * aes, u32 val)
  1564. {
  1565. aes->status[0] = ((val & RME32_WCR_PRO) ? IEC958_AES0_PROFESSIONAL : 0);
  1566. if (val & RME32_WCR_PRO)
  1567. aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_PRO_EMPHASIS_5015 : 0;
  1568. else
  1569. aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_CON_EMPHASIS_5015 : 0;
  1570. }
  1571. static int snd_rme32_control_spdif_info(struct snd_kcontrol *kcontrol,
  1572. struct snd_ctl_elem_info *uinfo)
  1573. {
  1574. uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
  1575. uinfo->count = 1;
  1576. return 0;
  1577. }
  1578. static int snd_rme32_control_spdif_get(struct snd_kcontrol *kcontrol,
  1579. struct snd_ctl_elem_value *ucontrol)
  1580. {
  1581. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1582. snd_rme32_convert_to_aes(&ucontrol->value.iec958,
  1583. rme32->wcreg_spdif);
  1584. return 0;
  1585. }
  1586. static int snd_rme32_control_spdif_put(struct snd_kcontrol *kcontrol,
  1587. struct snd_ctl_elem_value *ucontrol)
  1588. {
  1589. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1590. int change;
  1591. u32 val;
  1592. val = snd_rme32_convert_from_aes(&ucontrol->value.iec958);
  1593. spin_lock_irq(&rme32->lock);
  1594. change = val != rme32->wcreg_spdif;
  1595. rme32->wcreg_spdif = val;
  1596. spin_unlock_irq(&rme32->lock);
  1597. return change;
  1598. }
  1599. static int snd_rme32_control_spdif_stream_info(struct snd_kcontrol *kcontrol,
  1600. struct snd_ctl_elem_info *uinfo)
  1601. {
  1602. uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
  1603. uinfo->count = 1;
  1604. return 0;
  1605. }
  1606. static int snd_rme32_control_spdif_stream_get(struct snd_kcontrol *kcontrol,
  1607. struct snd_ctl_elem_value *
  1608. ucontrol)
  1609. {
  1610. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1611. snd_rme32_convert_to_aes(&ucontrol->value.iec958,
  1612. rme32->wcreg_spdif_stream);
  1613. return 0;
  1614. }
  1615. static int snd_rme32_control_spdif_stream_put(struct snd_kcontrol *kcontrol,
  1616. struct snd_ctl_elem_value *
  1617. ucontrol)
  1618. {
  1619. struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
  1620. int change;
  1621. u32 val;
  1622. val = snd_rme32_convert_from_aes(&ucontrol->value.iec958);
  1623. spin_lock_irq(&rme32->lock);
  1624. change = val != rme32->wcreg_spdif_stream;
  1625. rme32->wcreg_spdif_stream = val;
  1626. rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP);
  1627. rme32->wcreg |= val;
  1628. writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
  1629. spin_unlock_irq(&rme32->lock);
  1630. return change;
  1631. }
  1632. static int snd_rme32_control_spdif_mask_info(struct snd_kcontrol *kcontrol,
  1633. struct snd_ctl_elem_info *uinfo)
  1634. {
  1635. uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
  1636. uinfo->count = 1;
  1637. return 0;
  1638. }
  1639. static int snd_rme32_control_spdif_mask_get(struct snd_kcontrol *kcontrol,
  1640. struct snd_ctl_elem_value *
  1641. ucontrol)
  1642. {
  1643. ucontrol->value.iec958.status[0] = kcontrol->private_value;
  1644. return 0;
  1645. }
  1646. static struct snd_kcontrol_new snd_rme32_controls[] = {
  1647. {
  1648. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  1649. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
  1650. .info = snd_rme32_control_spdif_info,
  1651. .get = snd_rme32_control_spdif_get,
  1652. .put = snd_rme32_control_spdif_put
  1653. },
  1654. {
  1655. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
  1656. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  1657. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
  1658. .info = snd_rme32_control_spdif_stream_info,
  1659. .get = snd_rme32_control_spdif_stream_get,
  1660. .put = snd_rme32_control_spdif_stream_put
  1661. },
  1662. {
  1663. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  1664. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  1665. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK),
  1666. .info = snd_rme32_control_spdif_mask_info,
  1667. .get = snd_rme32_control_spdif_mask_get,
  1668. .private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_CON_EMPHASIS
  1669. },
  1670. {
  1671. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  1672. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  1673. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PRO_MASK),
  1674. .info = snd_rme32_control_spdif_mask_info,
  1675. .get = snd_rme32_control_spdif_mask_get,
  1676. .private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_PRO_EMPHASIS
  1677. },
  1678. {
  1679. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  1680. .name = "Input Connector",
  1681. .info = snd_rme32_info_inputtype_control,
  1682. .get = snd_rme32_get_inputtype_control,
  1683. .put = snd_rme32_put_inputtype_control
  1684. },
  1685. {
  1686. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  1687. .name = "Loopback Input",
  1688. .info = snd_rme32_info_loopback_control,
  1689. .get = snd_rme32_get_loopback_control,
  1690. .put = snd_rme32_put_loopback_control
  1691. },
  1692. {
  1693. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  1694. .name = "Sample Clock Source",
  1695. .info = snd_rme32_info_clockmode_control,
  1696. .get = snd_rme32_get_clockmode_control,
  1697. .put = snd_rme32_put_clockmode_control
  1698. }
  1699. };
  1700. static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32)
  1701. {
  1702. int idx, err;
  1703. struct snd_kcontrol *kctl;
  1704. for (idx = 0; idx < (int)ARRAY_SIZE(snd_rme32_controls); idx++) {
  1705. if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_rme32_controls[idx], rme32))) < 0)
  1706. return err;
  1707. if (idx == 1) /* IEC958 (S/PDIF) Stream */
  1708. rme32->spdif_ctl = kctl;
  1709. }
  1710. return 0;
  1711. }
  1712. /*
  1713. * Card initialisation
  1714. */
  1715. static void snd_rme32_card_free(struct snd_card *card)
  1716. {
  1717. snd_rme32_free(card->private_data);
  1718. }
  1719. static int
  1720. snd_rme32_probe(struct pci_dev *pci, const struct pci_device_id *pci_id)
  1721. {
  1722. static int dev;
  1723. struct rme32 *rme32;
  1724. struct snd_card *card;
  1725. int err;
  1726. if (dev >= SNDRV_CARDS) {
  1727. return -ENODEV;
  1728. }
  1729. if (!enable[dev]) {
  1730. dev++;
  1731. return -ENOENT;
  1732. }
  1733. err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
  1734. sizeof(struct rme32), &card);
  1735. if (err < 0)
  1736. return err;
  1737. card->private_free = snd_rme32_card_free;
  1738. rme32 = (struct rme32 *) card->private_data;
  1739. rme32->card = card;
  1740. rme32->pci = pci;
  1741. if (fullduplex[dev])
  1742. rme32->fullduplex_mode = 1;
  1743. if ((err = snd_rme32_create(rme32)) < 0) {
  1744. snd_card_free(card);
  1745. return err;
  1746. }
  1747. strcpy(card->driver, "Digi32");
  1748. switch (rme32->pci->device) {
  1749. case PCI_DEVICE_ID_RME_DIGI32:
  1750. strcpy(card->shortname, "RME Digi32");
  1751. break;
  1752. case PCI_DEVICE_ID_RME_DIGI32_8:
  1753. strcpy(card->shortname, "RME Digi32/8");
  1754. break;
  1755. case PCI_DEVICE_ID_RME_DIGI32_PRO:
  1756. strcpy(card->shortname, "RME Digi32 PRO");
  1757. break;
  1758. }
  1759. sprintf(card->longname, "%s (Rev. %d) at 0x%lx, irq %d",
  1760. card->shortname, rme32->rev, rme32->port, rme32->irq);
  1761. if ((err = snd_card_register(card)) < 0) {
  1762. snd_card_free(card);
  1763. return err;
  1764. }
  1765. pci_set_drvdata(pci, card);
  1766. dev++;
  1767. return 0;
  1768. }
  1769. static void snd_rme32_remove(struct pci_dev *pci)
  1770. {
  1771. snd_card_free(pci_get_drvdata(pci));
  1772. }
  1773. static struct pci_driver rme32_driver = {
  1774. .name = KBUILD_MODNAME,
  1775. .id_table = snd_rme32_ids,
  1776. .probe = snd_rme32_probe,
  1777. .remove = snd_rme32_remove,
  1778. };
  1779. module_pci_driver(rme32_driver);