sparse-vmemmap.c 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Virtual Memory Map support
  4. *
  5. * (C) 2007 sgi. Christoph Lameter.
  6. *
  7. * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
  8. * virt_to_page, page_address() to be implemented as a base offset
  9. * calculation without memory access.
  10. *
  11. * However, virtual mappings need a page table and TLBs. Many Linux
  12. * architectures already map their physical space using 1-1 mappings
  13. * via TLBs. For those arches the virtual memory map is essentially
  14. * for free if we use the same page size as the 1-1 mappings. In that
  15. * case the overhead consists of a few additional pages that are
  16. * allocated to create a view of memory for vmemmap.
  17. *
  18. * The architecture is expected to provide a vmemmap_populate() function
  19. * to instantiate the mapping.
  20. */
  21. #include <linux/mm.h>
  22. #include <linux/mmzone.h>
  23. #include <linux/bootmem.h>
  24. #include <linux/memremap.h>
  25. #include <linux/highmem.h>
  26. #include <linux/slab.h>
  27. #include <linux/spinlock.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/sched.h>
  30. #include <asm/dma.h>
  31. #include <asm/pgalloc.h>
  32. #include <asm/pgtable.h>
  33. /*
  34. * Allocate a block of memory to be used to back the virtual memory map
  35. * or to back the page tables that are used to create the mapping.
  36. * Uses the main allocators if they are available, else bootmem.
  37. */
  38. static void * __ref __earlyonly_bootmem_alloc(int node,
  39. unsigned long size,
  40. unsigned long align,
  41. unsigned long goal)
  42. {
  43. return memblock_virt_alloc_try_nid(size, align, goal,
  44. BOOTMEM_ALLOC_ACCESSIBLE, node);
  45. }
  46. static void *vmemmap_buf;
  47. static void *vmemmap_buf_end;
  48. void * __meminit vmemmap_alloc_block(unsigned long size, int node)
  49. {
  50. /* If the main allocator is up use that, fallback to bootmem. */
  51. if (slab_is_available()) {
  52. struct page *page;
  53. page = alloc_pages_node(node,
  54. GFP_KERNEL | __GFP_ZERO | __GFP_RETRY_MAYFAIL,
  55. get_order(size));
  56. if (page)
  57. return page_address(page);
  58. return NULL;
  59. } else
  60. return __earlyonly_bootmem_alloc(node, size, size,
  61. __pa(MAX_DMA_ADDRESS));
  62. }
  63. /* need to make sure size is all the same during early stage */
  64. static void * __meminit alloc_block_buf(unsigned long size, int node)
  65. {
  66. void *ptr;
  67. if (!vmemmap_buf)
  68. return vmemmap_alloc_block(size, node);
  69. /* take the from buf */
  70. ptr = (void *)ALIGN((unsigned long)vmemmap_buf, size);
  71. if (ptr + size > vmemmap_buf_end)
  72. return vmemmap_alloc_block(size, node);
  73. vmemmap_buf = ptr + size;
  74. return ptr;
  75. }
  76. static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
  77. {
  78. return altmap->base_pfn + altmap->reserve + altmap->alloc
  79. + altmap->align;
  80. }
  81. static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
  82. {
  83. unsigned long allocated = altmap->alloc + altmap->align;
  84. if (altmap->free > allocated)
  85. return altmap->free - allocated;
  86. return 0;
  87. }
  88. /**
  89. * vmem_altmap_alloc - allocate pages from the vmem_altmap reservation
  90. * @altmap - reserved page pool for the allocation
  91. * @nr_pfns - size (in pages) of the allocation
  92. *
  93. * Allocations are aligned to the size of the request
  94. */
  95. static unsigned long __meminit vmem_altmap_alloc(struct vmem_altmap *altmap,
  96. unsigned long nr_pfns)
  97. {
  98. unsigned long pfn = vmem_altmap_next_pfn(altmap);
  99. unsigned long nr_align;
  100. nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
  101. nr_align = ALIGN(pfn, nr_align) - pfn;
  102. if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
  103. return ULONG_MAX;
  104. altmap->alloc += nr_pfns;
  105. altmap->align += nr_align;
  106. return pfn + nr_align;
  107. }
  108. static void * __meminit altmap_alloc_block_buf(unsigned long size,
  109. struct vmem_altmap *altmap)
  110. {
  111. unsigned long pfn, nr_pfns;
  112. void *ptr;
  113. if (size & ~PAGE_MASK) {
  114. pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
  115. __func__, size);
  116. return NULL;
  117. }
  118. nr_pfns = size >> PAGE_SHIFT;
  119. pfn = vmem_altmap_alloc(altmap, nr_pfns);
  120. if (pfn < ULONG_MAX)
  121. ptr = __va(__pfn_to_phys(pfn));
  122. else
  123. ptr = NULL;
  124. pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
  125. __func__, pfn, altmap->alloc, altmap->align, nr_pfns);
  126. return ptr;
  127. }
  128. /* need to make sure size is all the same during early stage */
  129. void * __meminit __vmemmap_alloc_block_buf(unsigned long size, int node,
  130. struct vmem_altmap *altmap)
  131. {
  132. if (altmap)
  133. return altmap_alloc_block_buf(size, altmap);
  134. return alloc_block_buf(size, node);
  135. }
  136. void __meminit vmemmap_verify(pte_t *pte, int node,
  137. unsigned long start, unsigned long end)
  138. {
  139. unsigned long pfn = pte_pfn(*pte);
  140. int actual_node = early_pfn_to_nid(pfn);
  141. if (node_distance(actual_node, node) > LOCAL_DISTANCE)
  142. pr_warn("[%lx-%lx] potential offnode page_structs\n",
  143. start, end - 1);
  144. }
  145. pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node)
  146. {
  147. pte_t *pte = pte_offset_kernel(pmd, addr);
  148. if (pte_none(*pte)) {
  149. pte_t entry;
  150. void *p = alloc_block_buf(PAGE_SIZE, node);
  151. if (!p)
  152. return NULL;
  153. entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
  154. set_pte_at(&init_mm, addr, pte, entry);
  155. }
  156. return pte;
  157. }
  158. pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
  159. {
  160. pmd_t *pmd = pmd_offset(pud, addr);
  161. if (pmd_none(*pmd)) {
  162. void *p = vmemmap_alloc_block(PAGE_SIZE, node);
  163. if (!p)
  164. return NULL;
  165. pmd_populate_kernel(&init_mm, pmd, p);
  166. }
  167. return pmd;
  168. }
  169. pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
  170. {
  171. pud_t *pud = pud_offset(p4d, addr);
  172. if (pud_none(*pud)) {
  173. void *p = vmemmap_alloc_block(PAGE_SIZE, node);
  174. if (!p)
  175. return NULL;
  176. pud_populate(&init_mm, pud, p);
  177. }
  178. return pud;
  179. }
  180. p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
  181. {
  182. p4d_t *p4d = p4d_offset(pgd, addr);
  183. if (p4d_none(*p4d)) {
  184. void *p = vmemmap_alloc_block(PAGE_SIZE, node);
  185. if (!p)
  186. return NULL;
  187. p4d_populate(&init_mm, p4d, p);
  188. }
  189. return p4d;
  190. }
  191. pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
  192. {
  193. pgd_t *pgd = pgd_offset_k(addr);
  194. if (pgd_none(*pgd)) {
  195. void *p = vmemmap_alloc_block(PAGE_SIZE, node);
  196. if (!p)
  197. return NULL;
  198. pgd_populate(&init_mm, pgd, p);
  199. }
  200. return pgd;
  201. }
  202. int __meminit vmemmap_populate_basepages(unsigned long start,
  203. unsigned long end, int node)
  204. {
  205. unsigned long addr = start;
  206. pgd_t *pgd;
  207. p4d_t *p4d;
  208. pud_t *pud;
  209. pmd_t *pmd;
  210. pte_t *pte;
  211. for (; addr < end; addr += PAGE_SIZE) {
  212. pgd = vmemmap_pgd_populate(addr, node);
  213. if (!pgd)
  214. return -ENOMEM;
  215. p4d = vmemmap_p4d_populate(pgd, addr, node);
  216. if (!p4d)
  217. return -ENOMEM;
  218. pud = vmemmap_pud_populate(p4d, addr, node);
  219. if (!pud)
  220. return -ENOMEM;
  221. pmd = vmemmap_pmd_populate(pud, addr, node);
  222. if (!pmd)
  223. return -ENOMEM;
  224. pte = vmemmap_pte_populate(pmd, addr, node);
  225. if (!pte)
  226. return -ENOMEM;
  227. vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
  228. }
  229. return 0;
  230. }
  231. struct page * __meminit sparse_mem_map_populate(unsigned long pnum, int nid)
  232. {
  233. unsigned long start;
  234. unsigned long end;
  235. struct page *map;
  236. map = pfn_to_page(pnum * PAGES_PER_SECTION);
  237. start = (unsigned long)map;
  238. end = (unsigned long)(map + PAGES_PER_SECTION);
  239. if (vmemmap_populate(start, end, nid))
  240. return NULL;
  241. return map;
  242. }
  243. void __init sparse_mem_maps_populate_node(struct page **map_map,
  244. unsigned long pnum_begin,
  245. unsigned long pnum_end,
  246. unsigned long map_count, int nodeid)
  247. {
  248. unsigned long pnum;
  249. unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
  250. void *vmemmap_buf_start;
  251. size = ALIGN(size, PMD_SIZE);
  252. vmemmap_buf_start = __earlyonly_bootmem_alloc(nodeid, size * map_count,
  253. PMD_SIZE, __pa(MAX_DMA_ADDRESS));
  254. if (vmemmap_buf_start) {
  255. vmemmap_buf = vmemmap_buf_start;
  256. vmemmap_buf_end = vmemmap_buf_start + size * map_count;
  257. }
  258. for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
  259. struct mem_section *ms;
  260. if (!present_section_nr(pnum))
  261. continue;
  262. map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
  263. if (map_map[pnum])
  264. continue;
  265. ms = __nr_to_section(pnum);
  266. pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
  267. __func__);
  268. ms->section_mem_map = 0;
  269. }
  270. if (vmemmap_buf_start) {
  271. /* need to free left buf */
  272. memblock_free_early(__pa(vmemmap_buf),
  273. vmemmap_buf_end - vmemmap_buf);
  274. vmemmap_buf = NULL;
  275. vmemmap_buf_end = NULL;
  276. }
  277. }