time.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951
  1. /*
  2. * linux/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. *
  6. * This file contains the interface functions for the various
  7. * time related system calls: time, stime, gettimeofday, settimeofday,
  8. * adjtime
  9. */
  10. /*
  11. * Modification history kernel/time.c
  12. *
  13. * 1993-09-02 Philip Gladstone
  14. * Created file with time related functions from sched/core.c and adjtimex()
  15. * 1993-10-08 Torsten Duwe
  16. * adjtime interface update and CMOS clock write code
  17. * 1995-08-13 Torsten Duwe
  18. * kernel PLL updated to 1994-12-13 specs (rfc-1589)
  19. * 1999-01-16 Ulrich Windl
  20. * Introduced error checking for many cases in adjtimex().
  21. * Updated NTP code according to technical memorandum Jan '96
  22. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  23. * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
  24. * (Even though the technical memorandum forbids it)
  25. * 2004-07-14 Christoph Lameter
  26. * Added getnstimeofday to allow the posix timer functions to return
  27. * with nanosecond accuracy
  28. */
  29. #include <linux/export.h>
  30. #include <linux/timex.h>
  31. #include <linux/capability.h>
  32. #include <linux/timekeeper_internal.h>
  33. #include <linux/errno.h>
  34. #include <linux/syscalls.h>
  35. #include <linux/security.h>
  36. #include <linux/fs.h>
  37. #include <linux/math64.h>
  38. #include <linux/ptrace.h>
  39. #include <linux/uaccess.h>
  40. #include <linux/compat.h>
  41. #include <asm/unistd.h>
  42. #include <generated/timeconst.h>
  43. #include "timekeeping.h"
  44. /*
  45. * The timezone where the local system is located. Used as a default by some
  46. * programs who obtain this value by using gettimeofday.
  47. */
  48. struct timezone sys_tz;
  49. EXPORT_SYMBOL(sys_tz);
  50. #ifdef __ARCH_WANT_SYS_TIME
  51. /*
  52. * sys_time() can be implemented in user-level using
  53. * sys_gettimeofday(). Is this for backwards compatibility? If so,
  54. * why not move it into the appropriate arch directory (for those
  55. * architectures that need it).
  56. */
  57. SYSCALL_DEFINE1(time, time_t __user *, tloc)
  58. {
  59. time_t i = get_seconds();
  60. if (tloc) {
  61. if (put_user(i,tloc))
  62. return -EFAULT;
  63. }
  64. force_successful_syscall_return();
  65. return i;
  66. }
  67. /*
  68. * sys_stime() can be implemented in user-level using
  69. * sys_settimeofday(). Is this for backwards compatibility? If so,
  70. * why not move it into the appropriate arch directory (for those
  71. * architectures that need it).
  72. */
  73. SYSCALL_DEFINE1(stime, time_t __user *, tptr)
  74. {
  75. struct timespec tv;
  76. int err;
  77. if (get_user(tv.tv_sec, tptr))
  78. return -EFAULT;
  79. tv.tv_nsec = 0;
  80. err = security_settime(&tv, NULL);
  81. if (err)
  82. return err;
  83. do_settimeofday(&tv);
  84. return 0;
  85. }
  86. #endif /* __ARCH_WANT_SYS_TIME */
  87. #ifdef CONFIG_COMPAT
  88. #ifdef __ARCH_WANT_COMPAT_SYS_TIME
  89. /* compat_time_t is a 32 bit "long" and needs to get converted. */
  90. COMPAT_SYSCALL_DEFINE1(time, compat_time_t __user *, tloc)
  91. {
  92. struct timeval tv;
  93. compat_time_t i;
  94. do_gettimeofday(&tv);
  95. i = tv.tv_sec;
  96. if (tloc) {
  97. if (put_user(i,tloc))
  98. return -EFAULT;
  99. }
  100. force_successful_syscall_return();
  101. return i;
  102. }
  103. COMPAT_SYSCALL_DEFINE1(stime, compat_time_t __user *, tptr)
  104. {
  105. struct timespec tv;
  106. int err;
  107. if (get_user(tv.tv_sec, tptr))
  108. return -EFAULT;
  109. tv.tv_nsec = 0;
  110. err = security_settime(&tv, NULL);
  111. if (err)
  112. return err;
  113. do_settimeofday(&tv);
  114. return 0;
  115. }
  116. #endif /* __ARCH_WANT_COMPAT_SYS_TIME */
  117. #endif
  118. SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
  119. struct timezone __user *, tz)
  120. {
  121. if (likely(tv != NULL)) {
  122. struct timeval ktv;
  123. do_gettimeofday(&ktv);
  124. if (copy_to_user(tv, &ktv, sizeof(ktv)))
  125. return -EFAULT;
  126. }
  127. if (unlikely(tz != NULL)) {
  128. if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
  129. return -EFAULT;
  130. }
  131. return 0;
  132. }
  133. /*
  134. * Indicates if there is an offset between the system clock and the hardware
  135. * clock/persistent clock/rtc.
  136. */
  137. int persistent_clock_is_local;
  138. /*
  139. * Adjust the time obtained from the CMOS to be UTC time instead of
  140. * local time.
  141. *
  142. * This is ugly, but preferable to the alternatives. Otherwise we
  143. * would either need to write a program to do it in /etc/rc (and risk
  144. * confusion if the program gets run more than once; it would also be
  145. * hard to make the program warp the clock precisely n hours) or
  146. * compile in the timezone information into the kernel. Bad, bad....
  147. *
  148. * - TYT, 1992-01-01
  149. *
  150. * The best thing to do is to keep the CMOS clock in universal time (UTC)
  151. * as real UNIX machines always do it. This avoids all headaches about
  152. * daylight saving times and warping kernel clocks.
  153. */
  154. static inline void warp_clock(void)
  155. {
  156. if (sys_tz.tz_minuteswest != 0) {
  157. struct timespec adjust;
  158. persistent_clock_is_local = 1;
  159. adjust.tv_sec = sys_tz.tz_minuteswest * 60;
  160. adjust.tv_nsec = 0;
  161. timekeeping_inject_offset(&adjust);
  162. }
  163. }
  164. /*
  165. * In case for some reason the CMOS clock has not already been running
  166. * in UTC, but in some local time: The first time we set the timezone,
  167. * we will warp the clock so that it is ticking UTC time instead of
  168. * local time. Presumably, if someone is setting the timezone then we
  169. * are running in an environment where the programs understand about
  170. * timezones. This should be done at boot time in the /etc/rc script,
  171. * as soon as possible, so that the clock can be set right. Otherwise,
  172. * various programs will get confused when the clock gets warped.
  173. */
  174. int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
  175. {
  176. static int firsttime = 1;
  177. int error = 0;
  178. if (tv && !timespec64_valid(tv))
  179. return -EINVAL;
  180. error = security_settime64(tv, tz);
  181. if (error)
  182. return error;
  183. if (tz) {
  184. /* Verify we're witin the +-15 hrs range */
  185. if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
  186. return -EINVAL;
  187. sys_tz = *tz;
  188. update_vsyscall_tz();
  189. if (firsttime) {
  190. firsttime = 0;
  191. if (!tv)
  192. warp_clock();
  193. }
  194. }
  195. if (tv)
  196. return do_settimeofday64(tv);
  197. return 0;
  198. }
  199. SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
  200. struct timezone __user *, tz)
  201. {
  202. struct timespec64 new_ts;
  203. struct timeval user_tv;
  204. struct timezone new_tz;
  205. if (tv) {
  206. if (copy_from_user(&user_tv, tv, sizeof(*tv)))
  207. return -EFAULT;
  208. if (!timeval_valid(&user_tv))
  209. return -EINVAL;
  210. new_ts.tv_sec = user_tv.tv_sec;
  211. new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
  212. }
  213. if (tz) {
  214. if (copy_from_user(&new_tz, tz, sizeof(*tz)))
  215. return -EFAULT;
  216. }
  217. return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
  218. }
  219. #ifdef CONFIG_COMPAT
  220. COMPAT_SYSCALL_DEFINE2(gettimeofday, struct compat_timeval __user *, tv,
  221. struct timezone __user *, tz)
  222. {
  223. if (tv) {
  224. struct timeval ktv;
  225. do_gettimeofday(&ktv);
  226. if (compat_put_timeval(&ktv, tv))
  227. return -EFAULT;
  228. }
  229. if (tz) {
  230. if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
  231. return -EFAULT;
  232. }
  233. return 0;
  234. }
  235. COMPAT_SYSCALL_DEFINE2(settimeofday, struct compat_timeval __user *, tv,
  236. struct timezone __user *, tz)
  237. {
  238. struct timespec64 new_ts;
  239. struct timeval user_tv;
  240. struct timezone new_tz;
  241. if (tv) {
  242. if (compat_get_timeval(&user_tv, tv))
  243. return -EFAULT;
  244. new_ts.tv_sec = user_tv.tv_sec;
  245. new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
  246. }
  247. if (tz) {
  248. if (copy_from_user(&new_tz, tz, sizeof(*tz)))
  249. return -EFAULT;
  250. }
  251. return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
  252. }
  253. #endif
  254. SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
  255. {
  256. struct timex txc; /* Local copy of parameter */
  257. int ret;
  258. /* Copy the user data space into the kernel copy
  259. * structure. But bear in mind that the structures
  260. * may change
  261. */
  262. if (copy_from_user(&txc, txc_p, sizeof(struct timex)))
  263. return -EFAULT;
  264. ret = do_adjtimex(&txc);
  265. return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
  266. }
  267. #ifdef CONFIG_COMPAT
  268. COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp)
  269. {
  270. struct timex txc;
  271. int err, ret;
  272. err = compat_get_timex(&txc, utp);
  273. if (err)
  274. return err;
  275. ret = do_adjtimex(&txc);
  276. err = compat_put_timex(utp, &txc);
  277. if (err)
  278. return err;
  279. return ret;
  280. }
  281. #endif
  282. /*
  283. * Convert jiffies to milliseconds and back.
  284. *
  285. * Avoid unnecessary multiplications/divisions in the
  286. * two most common HZ cases:
  287. */
  288. unsigned int jiffies_to_msecs(const unsigned long j)
  289. {
  290. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  291. return (MSEC_PER_SEC / HZ) * j;
  292. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  293. return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
  294. #else
  295. # if BITS_PER_LONG == 32
  296. return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
  297. # else
  298. return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
  299. # endif
  300. #endif
  301. }
  302. EXPORT_SYMBOL(jiffies_to_msecs);
  303. unsigned int jiffies_to_usecs(const unsigned long j)
  304. {
  305. /*
  306. * Hz usually doesn't go much further MSEC_PER_SEC.
  307. * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
  308. */
  309. BUILD_BUG_ON(HZ > USEC_PER_SEC);
  310. #if !(USEC_PER_SEC % HZ)
  311. return (USEC_PER_SEC / HZ) * j;
  312. #else
  313. # if BITS_PER_LONG == 32
  314. return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
  315. # else
  316. return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
  317. # endif
  318. #endif
  319. }
  320. EXPORT_SYMBOL(jiffies_to_usecs);
  321. /**
  322. * timespec_trunc - Truncate timespec to a granularity
  323. * @t: Timespec
  324. * @gran: Granularity in ns.
  325. *
  326. * Truncate a timespec to a granularity. Always rounds down. gran must
  327. * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
  328. */
  329. struct timespec timespec_trunc(struct timespec t, unsigned gran)
  330. {
  331. /* Avoid division in the common cases 1 ns and 1 s. */
  332. if (gran == 1) {
  333. /* nothing */
  334. } else if (gran == NSEC_PER_SEC) {
  335. t.tv_nsec = 0;
  336. } else if (gran > 1 && gran < NSEC_PER_SEC) {
  337. t.tv_nsec -= t.tv_nsec % gran;
  338. } else {
  339. WARN(1, "illegal file time granularity: %u", gran);
  340. }
  341. return t;
  342. }
  343. EXPORT_SYMBOL(timespec_trunc);
  344. /*
  345. * mktime64 - Converts date to seconds.
  346. * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
  347. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
  348. * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
  349. *
  350. * [For the Julian calendar (which was used in Russia before 1917,
  351. * Britain & colonies before 1752, anywhere else before 1582,
  352. * and is still in use by some communities) leave out the
  353. * -year/100+year/400 terms, and add 10.]
  354. *
  355. * This algorithm was first published by Gauss (I think).
  356. *
  357. * A leap second can be indicated by calling this function with sec as
  358. * 60 (allowable under ISO 8601). The leap second is treated the same
  359. * as the following second since they don't exist in UNIX time.
  360. *
  361. * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
  362. * tomorrow - (allowable under ISO 8601) is supported.
  363. */
  364. time64_t mktime64(const unsigned int year0, const unsigned int mon0,
  365. const unsigned int day, const unsigned int hour,
  366. const unsigned int min, const unsigned int sec)
  367. {
  368. unsigned int mon = mon0, year = year0;
  369. /* 1..12 -> 11,12,1..10 */
  370. if (0 >= (int) (mon -= 2)) {
  371. mon += 12; /* Puts Feb last since it has leap day */
  372. year -= 1;
  373. }
  374. return ((((time64_t)
  375. (year/4 - year/100 + year/400 + 367*mon/12 + day) +
  376. year*365 - 719499
  377. )*24 + hour /* now have hours - midnight tomorrow handled here */
  378. )*60 + min /* now have minutes */
  379. )*60 + sec; /* finally seconds */
  380. }
  381. EXPORT_SYMBOL(mktime64);
  382. /**
  383. * set_normalized_timespec - set timespec sec and nsec parts and normalize
  384. *
  385. * @ts: pointer to timespec variable to be set
  386. * @sec: seconds to set
  387. * @nsec: nanoseconds to set
  388. *
  389. * Set seconds and nanoseconds field of a timespec variable and
  390. * normalize to the timespec storage format
  391. *
  392. * Note: The tv_nsec part is always in the range of
  393. * 0 <= tv_nsec < NSEC_PER_SEC
  394. * For negative values only the tv_sec field is negative !
  395. */
  396. void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
  397. {
  398. while (nsec >= NSEC_PER_SEC) {
  399. /*
  400. * The following asm() prevents the compiler from
  401. * optimising this loop into a modulo operation. See
  402. * also __iter_div_u64_rem() in include/linux/time.h
  403. */
  404. asm("" : "+rm"(nsec));
  405. nsec -= NSEC_PER_SEC;
  406. ++sec;
  407. }
  408. while (nsec < 0) {
  409. asm("" : "+rm"(nsec));
  410. nsec += NSEC_PER_SEC;
  411. --sec;
  412. }
  413. ts->tv_sec = sec;
  414. ts->tv_nsec = nsec;
  415. }
  416. EXPORT_SYMBOL(set_normalized_timespec);
  417. /**
  418. * ns_to_timespec - Convert nanoseconds to timespec
  419. * @nsec: the nanoseconds value to be converted
  420. *
  421. * Returns the timespec representation of the nsec parameter.
  422. */
  423. struct timespec ns_to_timespec(const s64 nsec)
  424. {
  425. struct timespec ts;
  426. s32 rem;
  427. if (!nsec)
  428. return (struct timespec) {0, 0};
  429. ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
  430. if (unlikely(rem < 0)) {
  431. ts.tv_sec--;
  432. rem += NSEC_PER_SEC;
  433. }
  434. ts.tv_nsec = rem;
  435. return ts;
  436. }
  437. EXPORT_SYMBOL(ns_to_timespec);
  438. /**
  439. * ns_to_timeval - Convert nanoseconds to timeval
  440. * @nsec: the nanoseconds value to be converted
  441. *
  442. * Returns the timeval representation of the nsec parameter.
  443. */
  444. struct timeval ns_to_timeval(const s64 nsec)
  445. {
  446. struct timespec ts = ns_to_timespec(nsec);
  447. struct timeval tv;
  448. tv.tv_sec = ts.tv_sec;
  449. tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
  450. return tv;
  451. }
  452. EXPORT_SYMBOL(ns_to_timeval);
  453. #if BITS_PER_LONG == 32
  454. /**
  455. * set_normalized_timespec - set timespec sec and nsec parts and normalize
  456. *
  457. * @ts: pointer to timespec variable to be set
  458. * @sec: seconds to set
  459. * @nsec: nanoseconds to set
  460. *
  461. * Set seconds and nanoseconds field of a timespec variable and
  462. * normalize to the timespec storage format
  463. *
  464. * Note: The tv_nsec part is always in the range of
  465. * 0 <= tv_nsec < NSEC_PER_SEC
  466. * For negative values only the tv_sec field is negative !
  467. */
  468. void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
  469. {
  470. while (nsec >= NSEC_PER_SEC) {
  471. /*
  472. * The following asm() prevents the compiler from
  473. * optimising this loop into a modulo operation. See
  474. * also __iter_div_u64_rem() in include/linux/time.h
  475. */
  476. asm("" : "+rm"(nsec));
  477. nsec -= NSEC_PER_SEC;
  478. ++sec;
  479. }
  480. while (nsec < 0) {
  481. asm("" : "+rm"(nsec));
  482. nsec += NSEC_PER_SEC;
  483. --sec;
  484. }
  485. ts->tv_sec = sec;
  486. ts->tv_nsec = nsec;
  487. }
  488. EXPORT_SYMBOL(set_normalized_timespec64);
  489. /**
  490. * ns_to_timespec64 - Convert nanoseconds to timespec64
  491. * @nsec: the nanoseconds value to be converted
  492. *
  493. * Returns the timespec64 representation of the nsec parameter.
  494. */
  495. struct timespec64 ns_to_timespec64(const s64 nsec)
  496. {
  497. struct timespec64 ts;
  498. s32 rem;
  499. if (!nsec)
  500. return (struct timespec64) {0, 0};
  501. ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
  502. if (unlikely(rem < 0)) {
  503. ts.tv_sec--;
  504. rem += NSEC_PER_SEC;
  505. }
  506. ts.tv_nsec = rem;
  507. return ts;
  508. }
  509. EXPORT_SYMBOL(ns_to_timespec64);
  510. #endif
  511. /**
  512. * msecs_to_jiffies: - convert milliseconds to jiffies
  513. * @m: time in milliseconds
  514. *
  515. * conversion is done as follows:
  516. *
  517. * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
  518. *
  519. * - 'too large' values [that would result in larger than
  520. * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
  521. *
  522. * - all other values are converted to jiffies by either multiplying
  523. * the input value by a factor or dividing it with a factor and
  524. * handling any 32-bit overflows.
  525. * for the details see __msecs_to_jiffies()
  526. *
  527. * msecs_to_jiffies() checks for the passed in value being a constant
  528. * via __builtin_constant_p() allowing gcc to eliminate most of the
  529. * code, __msecs_to_jiffies() is called if the value passed does not
  530. * allow constant folding and the actual conversion must be done at
  531. * runtime.
  532. * the _msecs_to_jiffies helpers are the HZ dependent conversion
  533. * routines found in include/linux/jiffies.h
  534. */
  535. unsigned long __msecs_to_jiffies(const unsigned int m)
  536. {
  537. /*
  538. * Negative value, means infinite timeout:
  539. */
  540. if ((int)m < 0)
  541. return MAX_JIFFY_OFFSET;
  542. return _msecs_to_jiffies(m);
  543. }
  544. EXPORT_SYMBOL(__msecs_to_jiffies);
  545. unsigned long __usecs_to_jiffies(const unsigned int u)
  546. {
  547. if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
  548. return MAX_JIFFY_OFFSET;
  549. return _usecs_to_jiffies(u);
  550. }
  551. EXPORT_SYMBOL(__usecs_to_jiffies);
  552. /*
  553. * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
  554. * that a remainder subtract here would not do the right thing as the
  555. * resolution values don't fall on second boundries. I.e. the line:
  556. * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
  557. * Note that due to the small error in the multiplier here, this
  558. * rounding is incorrect for sufficiently large values of tv_nsec, but
  559. * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
  560. * OK.
  561. *
  562. * Rather, we just shift the bits off the right.
  563. *
  564. * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
  565. * value to a scaled second value.
  566. */
  567. static unsigned long
  568. __timespec64_to_jiffies(u64 sec, long nsec)
  569. {
  570. nsec = nsec + TICK_NSEC - 1;
  571. if (sec >= MAX_SEC_IN_JIFFIES){
  572. sec = MAX_SEC_IN_JIFFIES;
  573. nsec = 0;
  574. }
  575. return ((sec * SEC_CONVERSION) +
  576. (((u64)nsec * NSEC_CONVERSION) >>
  577. (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  578. }
  579. static unsigned long
  580. __timespec_to_jiffies(unsigned long sec, long nsec)
  581. {
  582. return __timespec64_to_jiffies((u64)sec, nsec);
  583. }
  584. unsigned long
  585. timespec64_to_jiffies(const struct timespec64 *value)
  586. {
  587. return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
  588. }
  589. EXPORT_SYMBOL(timespec64_to_jiffies);
  590. void
  591. jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
  592. {
  593. /*
  594. * Convert jiffies to nanoseconds and separate with
  595. * one divide.
  596. */
  597. u32 rem;
  598. value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
  599. NSEC_PER_SEC, &rem);
  600. value->tv_nsec = rem;
  601. }
  602. EXPORT_SYMBOL(jiffies_to_timespec64);
  603. /*
  604. * We could use a similar algorithm to timespec_to_jiffies (with a
  605. * different multiplier for usec instead of nsec). But this has a
  606. * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
  607. * usec value, since it's not necessarily integral.
  608. *
  609. * We could instead round in the intermediate scaled representation
  610. * (i.e. in units of 1/2^(large scale) jiffies) but that's also
  611. * perilous: the scaling introduces a small positive error, which
  612. * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
  613. * units to the intermediate before shifting) leads to accidental
  614. * overflow and overestimates.
  615. *
  616. * At the cost of one additional multiplication by a constant, just
  617. * use the timespec implementation.
  618. */
  619. unsigned long
  620. timeval_to_jiffies(const struct timeval *value)
  621. {
  622. return __timespec_to_jiffies(value->tv_sec,
  623. value->tv_usec * NSEC_PER_USEC);
  624. }
  625. EXPORT_SYMBOL(timeval_to_jiffies);
  626. void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
  627. {
  628. /*
  629. * Convert jiffies to nanoseconds and separate with
  630. * one divide.
  631. */
  632. u32 rem;
  633. value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
  634. NSEC_PER_SEC, &rem);
  635. value->tv_usec = rem / NSEC_PER_USEC;
  636. }
  637. EXPORT_SYMBOL(jiffies_to_timeval);
  638. /*
  639. * Convert jiffies/jiffies_64 to clock_t and back.
  640. */
  641. clock_t jiffies_to_clock_t(unsigned long x)
  642. {
  643. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  644. # if HZ < USER_HZ
  645. return x * (USER_HZ / HZ);
  646. # else
  647. return x / (HZ / USER_HZ);
  648. # endif
  649. #else
  650. return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
  651. #endif
  652. }
  653. EXPORT_SYMBOL(jiffies_to_clock_t);
  654. unsigned long clock_t_to_jiffies(unsigned long x)
  655. {
  656. #if (HZ % USER_HZ)==0
  657. if (x >= ~0UL / (HZ / USER_HZ))
  658. return ~0UL;
  659. return x * (HZ / USER_HZ);
  660. #else
  661. /* Don't worry about loss of precision here .. */
  662. if (x >= ~0UL / HZ * USER_HZ)
  663. return ~0UL;
  664. /* .. but do try to contain it here */
  665. return div_u64((u64)x * HZ, USER_HZ);
  666. #endif
  667. }
  668. EXPORT_SYMBOL(clock_t_to_jiffies);
  669. u64 jiffies_64_to_clock_t(u64 x)
  670. {
  671. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  672. # if HZ < USER_HZ
  673. x = div_u64(x * USER_HZ, HZ);
  674. # elif HZ > USER_HZ
  675. x = div_u64(x, HZ / USER_HZ);
  676. # else
  677. /* Nothing to do */
  678. # endif
  679. #else
  680. /*
  681. * There are better ways that don't overflow early,
  682. * but even this doesn't overflow in hundreds of years
  683. * in 64 bits, so..
  684. */
  685. x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
  686. #endif
  687. return x;
  688. }
  689. EXPORT_SYMBOL(jiffies_64_to_clock_t);
  690. u64 nsec_to_clock_t(u64 x)
  691. {
  692. #if (NSEC_PER_SEC % USER_HZ) == 0
  693. return div_u64(x, NSEC_PER_SEC / USER_HZ);
  694. #elif (USER_HZ % 512) == 0
  695. return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
  696. #else
  697. /*
  698. * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
  699. * overflow after 64.99 years.
  700. * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
  701. */
  702. return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
  703. #endif
  704. }
  705. u64 jiffies64_to_nsecs(u64 j)
  706. {
  707. #if !(NSEC_PER_SEC % HZ)
  708. return (NSEC_PER_SEC / HZ) * j;
  709. # else
  710. return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
  711. #endif
  712. }
  713. EXPORT_SYMBOL(jiffies64_to_nsecs);
  714. /**
  715. * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
  716. *
  717. * @n: nsecs in u64
  718. *
  719. * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
  720. * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
  721. * for scheduler, not for use in device drivers to calculate timeout value.
  722. *
  723. * note:
  724. * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
  725. * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
  726. */
  727. u64 nsecs_to_jiffies64(u64 n)
  728. {
  729. #if (NSEC_PER_SEC % HZ) == 0
  730. /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
  731. return div_u64(n, NSEC_PER_SEC / HZ);
  732. #elif (HZ % 512) == 0
  733. /* overflow after 292 years if HZ = 1024 */
  734. return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
  735. #else
  736. /*
  737. * Generic case - optimized for cases where HZ is a multiple of 3.
  738. * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
  739. */
  740. return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
  741. #endif
  742. }
  743. EXPORT_SYMBOL(nsecs_to_jiffies64);
  744. /**
  745. * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
  746. *
  747. * @n: nsecs in u64
  748. *
  749. * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
  750. * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
  751. * for scheduler, not for use in device drivers to calculate timeout value.
  752. *
  753. * note:
  754. * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
  755. * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
  756. */
  757. unsigned long nsecs_to_jiffies(u64 n)
  758. {
  759. return (unsigned long)nsecs_to_jiffies64(n);
  760. }
  761. EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
  762. /*
  763. * Add two timespec values and do a safety check for overflow.
  764. * It's assumed that both values are valid (>= 0)
  765. */
  766. struct timespec timespec_add_safe(const struct timespec lhs,
  767. const struct timespec rhs)
  768. {
  769. struct timespec res;
  770. set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
  771. lhs.tv_nsec + rhs.tv_nsec);
  772. if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
  773. res.tv_sec = TIME_T_MAX;
  774. return res;
  775. }
  776. /*
  777. * Add two timespec64 values and do a safety check for overflow.
  778. * It's assumed that both values are valid (>= 0).
  779. * And, each timespec64 is in normalized form.
  780. */
  781. struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
  782. const struct timespec64 rhs)
  783. {
  784. struct timespec64 res;
  785. set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
  786. lhs.tv_nsec + rhs.tv_nsec);
  787. if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
  788. res.tv_sec = TIME64_MAX;
  789. res.tv_nsec = 0;
  790. }
  791. return res;
  792. }
  793. int get_timespec64(struct timespec64 *ts,
  794. const struct timespec __user *uts)
  795. {
  796. struct timespec kts;
  797. int ret;
  798. ret = copy_from_user(&kts, uts, sizeof(kts));
  799. if (ret)
  800. return -EFAULT;
  801. ts->tv_sec = kts.tv_sec;
  802. ts->tv_nsec = kts.tv_nsec;
  803. return 0;
  804. }
  805. EXPORT_SYMBOL_GPL(get_timespec64);
  806. int put_timespec64(const struct timespec64 *ts,
  807. struct timespec __user *uts)
  808. {
  809. struct timespec kts = {
  810. .tv_sec = ts->tv_sec,
  811. .tv_nsec = ts->tv_nsec
  812. };
  813. return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
  814. }
  815. EXPORT_SYMBOL_GPL(put_timespec64);
  816. int get_itimerspec64(struct itimerspec64 *it,
  817. const struct itimerspec __user *uit)
  818. {
  819. int ret;
  820. ret = get_timespec64(&it->it_interval, &uit->it_interval);
  821. if (ret)
  822. return ret;
  823. ret = get_timespec64(&it->it_value, &uit->it_value);
  824. return ret;
  825. }
  826. EXPORT_SYMBOL_GPL(get_itimerspec64);
  827. int put_itimerspec64(const struct itimerspec64 *it,
  828. struct itimerspec __user *uit)
  829. {
  830. int ret;
  831. ret = put_timespec64(&it->it_interval, &uit->it_interval);
  832. if (ret)
  833. return ret;
  834. ret = put_timespec64(&it->it_value, &uit->it_value);
  835. return ret;
  836. }
  837. EXPORT_SYMBOL_GPL(put_itimerspec64);