posix-cpu-timers.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Implement CPU time clocks for the POSIX clock interface.
  4. */
  5. #include <linux/sched/signal.h>
  6. #include <linux/sched/cputime.h>
  7. #include <linux/posix-timers.h>
  8. #include <linux/errno.h>
  9. #include <linux/math64.h>
  10. #include <linux/uaccess.h>
  11. #include <linux/kernel_stat.h>
  12. #include <trace/events/timer.h>
  13. #include <linux/tick.h>
  14. #include <linux/workqueue.h>
  15. #include <linux/compat.h>
  16. #include "posix-timers.h"
  17. static void posix_cpu_timer_rearm(struct k_itimer *timer);
  18. /*
  19. * Called after updating RLIMIT_CPU to run cpu timer and update
  20. * tsk->signal->cputime_expires expiration cache if necessary. Needs
  21. * siglock protection since other code may update expiration cache as
  22. * well.
  23. */
  24. void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
  25. {
  26. u64 nsecs = rlim_new * NSEC_PER_SEC;
  27. spin_lock_irq(&task->sighand->siglock);
  28. set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
  29. spin_unlock_irq(&task->sighand->siglock);
  30. }
  31. static int check_clock(const clockid_t which_clock)
  32. {
  33. int error = 0;
  34. struct task_struct *p;
  35. const pid_t pid = CPUCLOCK_PID(which_clock);
  36. if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
  37. return -EINVAL;
  38. if (pid == 0)
  39. return 0;
  40. rcu_read_lock();
  41. p = find_task_by_vpid(pid);
  42. if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
  43. same_thread_group(p, current) : has_group_leader_pid(p))) {
  44. error = -EINVAL;
  45. }
  46. rcu_read_unlock();
  47. return error;
  48. }
  49. /*
  50. * Update expiry time from increment, and increase overrun count,
  51. * given the current clock sample.
  52. */
  53. static void bump_cpu_timer(struct k_itimer *timer, u64 now)
  54. {
  55. int i;
  56. u64 delta, incr;
  57. if (timer->it.cpu.incr == 0)
  58. return;
  59. if (now < timer->it.cpu.expires)
  60. return;
  61. incr = timer->it.cpu.incr;
  62. delta = now + incr - timer->it.cpu.expires;
  63. /* Don't use (incr*2 < delta), incr*2 might overflow. */
  64. for (i = 0; incr < delta - incr; i++)
  65. incr = incr << 1;
  66. for (; i >= 0; incr >>= 1, i--) {
  67. if (delta < incr)
  68. continue;
  69. timer->it.cpu.expires += incr;
  70. timer->it_overrun += 1LL << i;
  71. delta -= incr;
  72. }
  73. }
  74. /**
  75. * task_cputime_zero - Check a task_cputime struct for all zero fields.
  76. *
  77. * @cputime: The struct to compare.
  78. *
  79. * Checks @cputime to see if all fields are zero. Returns true if all fields
  80. * are zero, false if any field is nonzero.
  81. */
  82. static inline int task_cputime_zero(const struct task_cputime *cputime)
  83. {
  84. if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
  85. return 1;
  86. return 0;
  87. }
  88. static inline u64 prof_ticks(struct task_struct *p)
  89. {
  90. u64 utime, stime;
  91. task_cputime(p, &utime, &stime);
  92. return utime + stime;
  93. }
  94. static inline u64 virt_ticks(struct task_struct *p)
  95. {
  96. u64 utime, stime;
  97. task_cputime(p, &utime, &stime);
  98. return utime;
  99. }
  100. static int
  101. posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
  102. {
  103. int error = check_clock(which_clock);
  104. if (!error) {
  105. tp->tv_sec = 0;
  106. tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
  107. if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  108. /*
  109. * If sched_clock is using a cycle counter, we
  110. * don't have any idea of its true resolution
  111. * exported, but it is much more than 1s/HZ.
  112. */
  113. tp->tv_nsec = 1;
  114. }
  115. }
  116. return error;
  117. }
  118. static int
  119. posix_cpu_clock_set(const clockid_t which_clock, const struct timespec64 *tp)
  120. {
  121. /*
  122. * You can never reset a CPU clock, but we check for other errors
  123. * in the call before failing with EPERM.
  124. */
  125. int error = check_clock(which_clock);
  126. if (error == 0) {
  127. error = -EPERM;
  128. }
  129. return error;
  130. }
  131. /*
  132. * Sample a per-thread clock for the given task.
  133. */
  134. static int cpu_clock_sample(const clockid_t which_clock,
  135. struct task_struct *p, u64 *sample)
  136. {
  137. switch (CPUCLOCK_WHICH(which_clock)) {
  138. default:
  139. return -EINVAL;
  140. case CPUCLOCK_PROF:
  141. *sample = prof_ticks(p);
  142. break;
  143. case CPUCLOCK_VIRT:
  144. *sample = virt_ticks(p);
  145. break;
  146. case CPUCLOCK_SCHED:
  147. *sample = task_sched_runtime(p);
  148. break;
  149. }
  150. return 0;
  151. }
  152. /*
  153. * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
  154. * to avoid race conditions with concurrent updates to cputime.
  155. */
  156. static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
  157. {
  158. u64 curr_cputime;
  159. retry:
  160. curr_cputime = atomic64_read(cputime);
  161. if (sum_cputime > curr_cputime) {
  162. if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
  163. goto retry;
  164. }
  165. }
  166. static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
  167. {
  168. __update_gt_cputime(&cputime_atomic->utime, sum->utime);
  169. __update_gt_cputime(&cputime_atomic->stime, sum->stime);
  170. __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
  171. }
  172. /* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
  173. static inline void sample_cputime_atomic(struct task_cputime *times,
  174. struct task_cputime_atomic *atomic_times)
  175. {
  176. times->utime = atomic64_read(&atomic_times->utime);
  177. times->stime = atomic64_read(&atomic_times->stime);
  178. times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
  179. }
  180. void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
  181. {
  182. struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
  183. struct task_cputime sum;
  184. /* Check if cputimer isn't running. This is accessed without locking. */
  185. if (!READ_ONCE(cputimer->running)) {
  186. /*
  187. * The POSIX timer interface allows for absolute time expiry
  188. * values through the TIMER_ABSTIME flag, therefore we have
  189. * to synchronize the timer to the clock every time we start it.
  190. */
  191. thread_group_cputime(tsk, &sum);
  192. update_gt_cputime(&cputimer->cputime_atomic, &sum);
  193. /*
  194. * We're setting cputimer->running without a lock. Ensure
  195. * this only gets written to in one operation. We set
  196. * running after update_gt_cputime() as a small optimization,
  197. * but barriers are not required because update_gt_cputime()
  198. * can handle concurrent updates.
  199. */
  200. WRITE_ONCE(cputimer->running, true);
  201. }
  202. sample_cputime_atomic(times, &cputimer->cputime_atomic);
  203. }
  204. /*
  205. * Sample a process (thread group) clock for the given group_leader task.
  206. * Must be called with task sighand lock held for safe while_each_thread()
  207. * traversal.
  208. */
  209. static int cpu_clock_sample_group(const clockid_t which_clock,
  210. struct task_struct *p,
  211. u64 *sample)
  212. {
  213. struct task_cputime cputime;
  214. switch (CPUCLOCK_WHICH(which_clock)) {
  215. default:
  216. return -EINVAL;
  217. case CPUCLOCK_PROF:
  218. thread_group_cputime(p, &cputime);
  219. *sample = cputime.utime + cputime.stime;
  220. break;
  221. case CPUCLOCK_VIRT:
  222. thread_group_cputime(p, &cputime);
  223. *sample = cputime.utime;
  224. break;
  225. case CPUCLOCK_SCHED:
  226. thread_group_cputime(p, &cputime);
  227. *sample = cputime.sum_exec_runtime;
  228. break;
  229. }
  230. return 0;
  231. }
  232. static int posix_cpu_clock_get_task(struct task_struct *tsk,
  233. const clockid_t which_clock,
  234. struct timespec64 *tp)
  235. {
  236. int err = -EINVAL;
  237. u64 rtn;
  238. if (CPUCLOCK_PERTHREAD(which_clock)) {
  239. if (same_thread_group(tsk, current))
  240. err = cpu_clock_sample(which_clock, tsk, &rtn);
  241. } else {
  242. if (tsk == current || thread_group_leader(tsk))
  243. err = cpu_clock_sample_group(which_clock, tsk, &rtn);
  244. }
  245. if (!err)
  246. *tp = ns_to_timespec64(rtn);
  247. return err;
  248. }
  249. static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec64 *tp)
  250. {
  251. const pid_t pid = CPUCLOCK_PID(which_clock);
  252. int err = -EINVAL;
  253. if (pid == 0) {
  254. /*
  255. * Special case constant value for our own clocks.
  256. * We don't have to do any lookup to find ourselves.
  257. */
  258. err = posix_cpu_clock_get_task(current, which_clock, tp);
  259. } else {
  260. /*
  261. * Find the given PID, and validate that the caller
  262. * should be able to see it.
  263. */
  264. struct task_struct *p;
  265. rcu_read_lock();
  266. p = find_task_by_vpid(pid);
  267. if (p)
  268. err = posix_cpu_clock_get_task(p, which_clock, tp);
  269. rcu_read_unlock();
  270. }
  271. return err;
  272. }
  273. /*
  274. * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
  275. * This is called from sys_timer_create() and do_cpu_nanosleep() with the
  276. * new timer already all-zeros initialized.
  277. */
  278. static int posix_cpu_timer_create(struct k_itimer *new_timer)
  279. {
  280. int ret = 0;
  281. const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
  282. struct task_struct *p;
  283. if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
  284. return -EINVAL;
  285. new_timer->kclock = &clock_posix_cpu;
  286. INIT_LIST_HEAD(&new_timer->it.cpu.entry);
  287. rcu_read_lock();
  288. if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
  289. if (pid == 0) {
  290. p = current;
  291. } else {
  292. p = find_task_by_vpid(pid);
  293. if (p && !same_thread_group(p, current))
  294. p = NULL;
  295. }
  296. } else {
  297. if (pid == 0) {
  298. p = current->group_leader;
  299. } else {
  300. p = find_task_by_vpid(pid);
  301. if (p && !has_group_leader_pid(p))
  302. p = NULL;
  303. }
  304. }
  305. new_timer->it.cpu.task = p;
  306. if (p) {
  307. get_task_struct(p);
  308. } else {
  309. ret = -EINVAL;
  310. }
  311. rcu_read_unlock();
  312. return ret;
  313. }
  314. /*
  315. * Clean up a CPU-clock timer that is about to be destroyed.
  316. * This is called from timer deletion with the timer already locked.
  317. * If we return TIMER_RETRY, it's necessary to release the timer's lock
  318. * and try again. (This happens when the timer is in the middle of firing.)
  319. */
  320. static int posix_cpu_timer_del(struct k_itimer *timer)
  321. {
  322. int ret = 0;
  323. unsigned long flags;
  324. struct sighand_struct *sighand;
  325. struct task_struct *p = timer->it.cpu.task;
  326. WARN_ON_ONCE(p == NULL);
  327. /*
  328. * Protect against sighand release/switch in exit/exec and process/
  329. * thread timer list entry concurrent read/writes.
  330. */
  331. sighand = lock_task_sighand(p, &flags);
  332. if (unlikely(sighand == NULL)) {
  333. /*
  334. * We raced with the reaping of the task.
  335. * The deletion should have cleared us off the list.
  336. */
  337. WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
  338. } else {
  339. if (timer->it.cpu.firing)
  340. ret = TIMER_RETRY;
  341. else
  342. list_del(&timer->it.cpu.entry);
  343. unlock_task_sighand(p, &flags);
  344. }
  345. if (!ret)
  346. put_task_struct(p);
  347. return ret;
  348. }
  349. static void cleanup_timers_list(struct list_head *head)
  350. {
  351. struct cpu_timer_list *timer, *next;
  352. list_for_each_entry_safe(timer, next, head, entry)
  353. list_del_init(&timer->entry);
  354. }
  355. /*
  356. * Clean out CPU timers still ticking when a thread exited. The task
  357. * pointer is cleared, and the expiry time is replaced with the residual
  358. * time for later timer_gettime calls to return.
  359. * This must be called with the siglock held.
  360. */
  361. static void cleanup_timers(struct list_head *head)
  362. {
  363. cleanup_timers_list(head);
  364. cleanup_timers_list(++head);
  365. cleanup_timers_list(++head);
  366. }
  367. /*
  368. * These are both called with the siglock held, when the current thread
  369. * is being reaped. When the final (leader) thread in the group is reaped,
  370. * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
  371. */
  372. void posix_cpu_timers_exit(struct task_struct *tsk)
  373. {
  374. cleanup_timers(tsk->cpu_timers);
  375. }
  376. void posix_cpu_timers_exit_group(struct task_struct *tsk)
  377. {
  378. cleanup_timers(tsk->signal->cpu_timers);
  379. }
  380. static inline int expires_gt(u64 expires, u64 new_exp)
  381. {
  382. return expires == 0 || expires > new_exp;
  383. }
  384. /*
  385. * Insert the timer on the appropriate list before any timers that
  386. * expire later. This must be called with the sighand lock held.
  387. */
  388. static void arm_timer(struct k_itimer *timer)
  389. {
  390. struct task_struct *p = timer->it.cpu.task;
  391. struct list_head *head, *listpos;
  392. struct task_cputime *cputime_expires;
  393. struct cpu_timer_list *const nt = &timer->it.cpu;
  394. struct cpu_timer_list *next;
  395. if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
  396. head = p->cpu_timers;
  397. cputime_expires = &p->cputime_expires;
  398. } else {
  399. head = p->signal->cpu_timers;
  400. cputime_expires = &p->signal->cputime_expires;
  401. }
  402. head += CPUCLOCK_WHICH(timer->it_clock);
  403. listpos = head;
  404. list_for_each_entry(next, head, entry) {
  405. if (nt->expires < next->expires)
  406. break;
  407. listpos = &next->entry;
  408. }
  409. list_add(&nt->entry, listpos);
  410. if (listpos == head) {
  411. u64 exp = nt->expires;
  412. /*
  413. * We are the new earliest-expiring POSIX 1.b timer, hence
  414. * need to update expiration cache. Take into account that
  415. * for process timers we share expiration cache with itimers
  416. * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
  417. */
  418. switch (CPUCLOCK_WHICH(timer->it_clock)) {
  419. case CPUCLOCK_PROF:
  420. if (expires_gt(cputime_expires->prof_exp, exp))
  421. cputime_expires->prof_exp = exp;
  422. break;
  423. case CPUCLOCK_VIRT:
  424. if (expires_gt(cputime_expires->virt_exp, exp))
  425. cputime_expires->virt_exp = exp;
  426. break;
  427. case CPUCLOCK_SCHED:
  428. if (expires_gt(cputime_expires->sched_exp, exp))
  429. cputime_expires->sched_exp = exp;
  430. break;
  431. }
  432. if (CPUCLOCK_PERTHREAD(timer->it_clock))
  433. tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
  434. else
  435. tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
  436. }
  437. }
  438. /*
  439. * The timer is locked, fire it and arrange for its reload.
  440. */
  441. static void cpu_timer_fire(struct k_itimer *timer)
  442. {
  443. if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
  444. /*
  445. * User don't want any signal.
  446. */
  447. timer->it.cpu.expires = 0;
  448. } else if (unlikely(timer->sigq == NULL)) {
  449. /*
  450. * This a special case for clock_nanosleep,
  451. * not a normal timer from sys_timer_create.
  452. */
  453. wake_up_process(timer->it_process);
  454. timer->it.cpu.expires = 0;
  455. } else if (timer->it.cpu.incr == 0) {
  456. /*
  457. * One-shot timer. Clear it as soon as it's fired.
  458. */
  459. posix_timer_event(timer, 0);
  460. timer->it.cpu.expires = 0;
  461. } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
  462. /*
  463. * The signal did not get queued because the signal
  464. * was ignored, so we won't get any callback to
  465. * reload the timer. But we need to keep it
  466. * ticking in case the signal is deliverable next time.
  467. */
  468. posix_cpu_timer_rearm(timer);
  469. ++timer->it_requeue_pending;
  470. }
  471. }
  472. /*
  473. * Sample a process (thread group) timer for the given group_leader task.
  474. * Must be called with task sighand lock held for safe while_each_thread()
  475. * traversal.
  476. */
  477. static int cpu_timer_sample_group(const clockid_t which_clock,
  478. struct task_struct *p, u64 *sample)
  479. {
  480. struct task_cputime cputime;
  481. thread_group_cputimer(p, &cputime);
  482. switch (CPUCLOCK_WHICH(which_clock)) {
  483. default:
  484. return -EINVAL;
  485. case CPUCLOCK_PROF:
  486. *sample = cputime.utime + cputime.stime;
  487. break;
  488. case CPUCLOCK_VIRT:
  489. *sample = cputime.utime;
  490. break;
  491. case CPUCLOCK_SCHED:
  492. *sample = cputime.sum_exec_runtime;
  493. break;
  494. }
  495. return 0;
  496. }
  497. /*
  498. * Guts of sys_timer_settime for CPU timers.
  499. * This is called with the timer locked and interrupts disabled.
  500. * If we return TIMER_RETRY, it's necessary to release the timer's lock
  501. * and try again. (This happens when the timer is in the middle of firing.)
  502. */
  503. static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
  504. struct itimerspec64 *new, struct itimerspec64 *old)
  505. {
  506. unsigned long flags;
  507. struct sighand_struct *sighand;
  508. struct task_struct *p = timer->it.cpu.task;
  509. u64 old_expires, new_expires, old_incr, val;
  510. int ret;
  511. WARN_ON_ONCE(p == NULL);
  512. /*
  513. * Use the to_ktime conversion because that clamps the maximum
  514. * value to KTIME_MAX and avoid multiplication overflows.
  515. */
  516. new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
  517. /*
  518. * Protect against sighand release/switch in exit/exec and p->cpu_timers
  519. * and p->signal->cpu_timers read/write in arm_timer()
  520. */
  521. sighand = lock_task_sighand(p, &flags);
  522. /*
  523. * If p has just been reaped, we can no
  524. * longer get any information about it at all.
  525. */
  526. if (unlikely(sighand == NULL)) {
  527. return -ESRCH;
  528. }
  529. /*
  530. * Disarm any old timer after extracting its expiry time.
  531. */
  532. WARN_ON_ONCE(!irqs_disabled());
  533. ret = 0;
  534. old_incr = timer->it.cpu.incr;
  535. old_expires = timer->it.cpu.expires;
  536. if (unlikely(timer->it.cpu.firing)) {
  537. timer->it.cpu.firing = -1;
  538. ret = TIMER_RETRY;
  539. } else
  540. list_del_init(&timer->it.cpu.entry);
  541. /*
  542. * We need to sample the current value to convert the new
  543. * value from to relative and absolute, and to convert the
  544. * old value from absolute to relative. To set a process
  545. * timer, we need a sample to balance the thread expiry
  546. * times (in arm_timer). With an absolute time, we must
  547. * check if it's already passed. In short, we need a sample.
  548. */
  549. if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
  550. cpu_clock_sample(timer->it_clock, p, &val);
  551. } else {
  552. cpu_timer_sample_group(timer->it_clock, p, &val);
  553. }
  554. if (old) {
  555. if (old_expires == 0) {
  556. old->it_value.tv_sec = 0;
  557. old->it_value.tv_nsec = 0;
  558. } else {
  559. /*
  560. * Update the timer in case it has
  561. * overrun already. If it has,
  562. * we'll report it as having overrun
  563. * and with the next reloaded timer
  564. * already ticking, though we are
  565. * swallowing that pending
  566. * notification here to install the
  567. * new setting.
  568. */
  569. bump_cpu_timer(timer, val);
  570. if (val < timer->it.cpu.expires) {
  571. old_expires = timer->it.cpu.expires - val;
  572. old->it_value = ns_to_timespec64(old_expires);
  573. } else {
  574. old->it_value.tv_nsec = 1;
  575. old->it_value.tv_sec = 0;
  576. }
  577. }
  578. }
  579. if (unlikely(ret)) {
  580. /*
  581. * We are colliding with the timer actually firing.
  582. * Punt after filling in the timer's old value, and
  583. * disable this firing since we are already reporting
  584. * it as an overrun (thanks to bump_cpu_timer above).
  585. */
  586. unlock_task_sighand(p, &flags);
  587. goto out;
  588. }
  589. if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
  590. new_expires += val;
  591. }
  592. /*
  593. * Install the new expiry time (or zero).
  594. * For a timer with no notification action, we don't actually
  595. * arm the timer (we'll just fake it for timer_gettime).
  596. */
  597. timer->it.cpu.expires = new_expires;
  598. if (new_expires != 0 && val < new_expires) {
  599. arm_timer(timer);
  600. }
  601. unlock_task_sighand(p, &flags);
  602. /*
  603. * Install the new reload setting, and
  604. * set up the signal and overrun bookkeeping.
  605. */
  606. timer->it.cpu.incr = timespec64_to_ns(&new->it_interval);
  607. timer->it_interval = ns_to_ktime(timer->it.cpu.incr);
  608. /*
  609. * This acts as a modification timestamp for the timer,
  610. * so any automatic reload attempt will punt on seeing
  611. * that we have reset the timer manually.
  612. */
  613. timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
  614. ~REQUEUE_PENDING;
  615. timer->it_overrun_last = 0;
  616. timer->it_overrun = -1;
  617. if (new_expires != 0 && !(val < new_expires)) {
  618. /*
  619. * The designated time already passed, so we notify
  620. * immediately, even if the thread never runs to
  621. * accumulate more time on this clock.
  622. */
  623. cpu_timer_fire(timer);
  624. }
  625. ret = 0;
  626. out:
  627. if (old)
  628. old->it_interval = ns_to_timespec64(old_incr);
  629. return ret;
  630. }
  631. static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
  632. {
  633. u64 now;
  634. struct task_struct *p = timer->it.cpu.task;
  635. WARN_ON_ONCE(p == NULL);
  636. /*
  637. * Easy part: convert the reload time.
  638. */
  639. itp->it_interval = ns_to_timespec64(timer->it.cpu.incr);
  640. if (!timer->it.cpu.expires)
  641. return;
  642. /*
  643. * Sample the clock to take the difference with the expiry time.
  644. */
  645. if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
  646. cpu_clock_sample(timer->it_clock, p, &now);
  647. } else {
  648. struct sighand_struct *sighand;
  649. unsigned long flags;
  650. /*
  651. * Protect against sighand release/switch in exit/exec and
  652. * also make timer sampling safe if it ends up calling
  653. * thread_group_cputime().
  654. */
  655. sighand = lock_task_sighand(p, &flags);
  656. if (unlikely(sighand == NULL)) {
  657. /*
  658. * The process has been reaped.
  659. * We can't even collect a sample any more.
  660. * Call the timer disarmed, nothing else to do.
  661. */
  662. timer->it.cpu.expires = 0;
  663. return;
  664. } else {
  665. cpu_timer_sample_group(timer->it_clock, p, &now);
  666. unlock_task_sighand(p, &flags);
  667. }
  668. }
  669. if (now < timer->it.cpu.expires) {
  670. itp->it_value = ns_to_timespec64(timer->it.cpu.expires - now);
  671. } else {
  672. /*
  673. * The timer should have expired already, but the firing
  674. * hasn't taken place yet. Say it's just about to expire.
  675. */
  676. itp->it_value.tv_nsec = 1;
  677. itp->it_value.tv_sec = 0;
  678. }
  679. }
  680. static unsigned long long
  681. check_timers_list(struct list_head *timers,
  682. struct list_head *firing,
  683. unsigned long long curr)
  684. {
  685. int maxfire = 20;
  686. while (!list_empty(timers)) {
  687. struct cpu_timer_list *t;
  688. t = list_first_entry(timers, struct cpu_timer_list, entry);
  689. if (!--maxfire || curr < t->expires)
  690. return t->expires;
  691. t->firing = 1;
  692. list_move_tail(&t->entry, firing);
  693. }
  694. return 0;
  695. }
  696. /*
  697. * Check for any per-thread CPU timers that have fired and move them off
  698. * the tsk->cpu_timers[N] list onto the firing list. Here we update the
  699. * tsk->it_*_expires values to reflect the remaining thread CPU timers.
  700. */
  701. static void check_thread_timers(struct task_struct *tsk,
  702. struct list_head *firing)
  703. {
  704. struct list_head *timers = tsk->cpu_timers;
  705. struct task_cputime *tsk_expires = &tsk->cputime_expires;
  706. u64 expires;
  707. unsigned long soft;
  708. /*
  709. * If cputime_expires is zero, then there are no active
  710. * per thread CPU timers.
  711. */
  712. if (task_cputime_zero(&tsk->cputime_expires))
  713. return;
  714. expires = check_timers_list(timers, firing, prof_ticks(tsk));
  715. tsk_expires->prof_exp = expires;
  716. expires = check_timers_list(++timers, firing, virt_ticks(tsk));
  717. tsk_expires->virt_exp = expires;
  718. tsk_expires->sched_exp = check_timers_list(++timers, firing,
  719. tsk->se.sum_exec_runtime);
  720. /*
  721. * Check for the special case thread timers.
  722. */
  723. soft = task_rlimit(tsk, RLIMIT_RTTIME);
  724. if (soft != RLIM_INFINITY) {
  725. unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
  726. if (hard != RLIM_INFINITY &&
  727. tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
  728. /*
  729. * At the hard limit, we just die.
  730. * No need to calculate anything else now.
  731. */
  732. if (print_fatal_signals) {
  733. pr_info("CPU Watchdog Timeout (hard): %s[%d]\n",
  734. tsk->comm, task_pid_nr(tsk));
  735. }
  736. __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
  737. return;
  738. }
  739. if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
  740. /*
  741. * At the soft limit, send a SIGXCPU every second.
  742. */
  743. if (soft < hard) {
  744. soft += USEC_PER_SEC;
  745. tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur =
  746. soft;
  747. }
  748. if (print_fatal_signals) {
  749. pr_info("RT Watchdog Timeout (soft): %s[%d]\n",
  750. tsk->comm, task_pid_nr(tsk));
  751. }
  752. __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
  753. }
  754. }
  755. if (task_cputime_zero(tsk_expires))
  756. tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
  757. }
  758. static inline void stop_process_timers(struct signal_struct *sig)
  759. {
  760. struct thread_group_cputimer *cputimer = &sig->cputimer;
  761. /* Turn off cputimer->running. This is done without locking. */
  762. WRITE_ONCE(cputimer->running, false);
  763. tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
  764. }
  765. static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
  766. u64 *expires, u64 cur_time, int signo)
  767. {
  768. if (!it->expires)
  769. return;
  770. if (cur_time >= it->expires) {
  771. if (it->incr)
  772. it->expires += it->incr;
  773. else
  774. it->expires = 0;
  775. trace_itimer_expire(signo == SIGPROF ?
  776. ITIMER_PROF : ITIMER_VIRTUAL,
  777. tsk->signal->leader_pid, cur_time);
  778. __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
  779. }
  780. if (it->expires && (!*expires || it->expires < *expires))
  781. *expires = it->expires;
  782. }
  783. /*
  784. * Check for any per-thread CPU timers that have fired and move them
  785. * off the tsk->*_timers list onto the firing list. Per-thread timers
  786. * have already been taken off.
  787. */
  788. static void check_process_timers(struct task_struct *tsk,
  789. struct list_head *firing)
  790. {
  791. struct signal_struct *const sig = tsk->signal;
  792. u64 utime, ptime, virt_expires, prof_expires;
  793. u64 sum_sched_runtime, sched_expires;
  794. struct list_head *timers = sig->cpu_timers;
  795. struct task_cputime cputime;
  796. unsigned long soft;
  797. /*
  798. * If cputimer is not running, then there are no active
  799. * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
  800. */
  801. if (!READ_ONCE(tsk->signal->cputimer.running))
  802. return;
  803. /*
  804. * Signify that a thread is checking for process timers.
  805. * Write access to this field is protected by the sighand lock.
  806. */
  807. sig->cputimer.checking_timer = true;
  808. /*
  809. * Collect the current process totals.
  810. */
  811. thread_group_cputimer(tsk, &cputime);
  812. utime = cputime.utime;
  813. ptime = utime + cputime.stime;
  814. sum_sched_runtime = cputime.sum_exec_runtime;
  815. prof_expires = check_timers_list(timers, firing, ptime);
  816. virt_expires = check_timers_list(++timers, firing, utime);
  817. sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
  818. /*
  819. * Check for the special case process timers.
  820. */
  821. check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
  822. SIGPROF);
  823. check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
  824. SIGVTALRM);
  825. soft = task_rlimit(tsk, RLIMIT_CPU);
  826. if (soft != RLIM_INFINITY) {
  827. unsigned long psecs = div_u64(ptime, NSEC_PER_SEC);
  828. unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
  829. u64 x;
  830. if (psecs >= hard) {
  831. /*
  832. * At the hard limit, we just die.
  833. * No need to calculate anything else now.
  834. */
  835. if (print_fatal_signals) {
  836. pr_info("RT Watchdog Timeout (hard): %s[%d]\n",
  837. tsk->comm, task_pid_nr(tsk));
  838. }
  839. __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
  840. return;
  841. }
  842. if (psecs >= soft) {
  843. /*
  844. * At the soft limit, send a SIGXCPU every second.
  845. */
  846. if (print_fatal_signals) {
  847. pr_info("CPU Watchdog Timeout (soft): %s[%d]\n",
  848. tsk->comm, task_pid_nr(tsk));
  849. }
  850. __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
  851. if (soft < hard) {
  852. soft++;
  853. sig->rlim[RLIMIT_CPU].rlim_cur = soft;
  854. }
  855. }
  856. x = soft * NSEC_PER_SEC;
  857. if (!prof_expires || x < prof_expires)
  858. prof_expires = x;
  859. }
  860. sig->cputime_expires.prof_exp = prof_expires;
  861. sig->cputime_expires.virt_exp = virt_expires;
  862. sig->cputime_expires.sched_exp = sched_expires;
  863. if (task_cputime_zero(&sig->cputime_expires))
  864. stop_process_timers(sig);
  865. sig->cputimer.checking_timer = false;
  866. }
  867. /*
  868. * This is called from the signal code (via posixtimer_rearm)
  869. * when the last timer signal was delivered and we have to reload the timer.
  870. */
  871. static void posix_cpu_timer_rearm(struct k_itimer *timer)
  872. {
  873. struct sighand_struct *sighand;
  874. unsigned long flags;
  875. struct task_struct *p = timer->it.cpu.task;
  876. u64 now;
  877. WARN_ON_ONCE(p == NULL);
  878. /*
  879. * Fetch the current sample and update the timer's expiry time.
  880. */
  881. if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
  882. cpu_clock_sample(timer->it_clock, p, &now);
  883. bump_cpu_timer(timer, now);
  884. if (unlikely(p->exit_state))
  885. return;
  886. /* Protect timer list r/w in arm_timer() */
  887. sighand = lock_task_sighand(p, &flags);
  888. if (!sighand)
  889. return;
  890. } else {
  891. /*
  892. * Protect arm_timer() and timer sampling in case of call to
  893. * thread_group_cputime().
  894. */
  895. sighand = lock_task_sighand(p, &flags);
  896. if (unlikely(sighand == NULL)) {
  897. /*
  898. * The process has been reaped.
  899. * We can't even collect a sample any more.
  900. */
  901. timer->it.cpu.expires = 0;
  902. return;
  903. } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
  904. /* If the process is dying, no need to rearm */
  905. goto unlock;
  906. }
  907. cpu_timer_sample_group(timer->it_clock, p, &now);
  908. bump_cpu_timer(timer, now);
  909. /* Leave the sighand locked for the call below. */
  910. }
  911. /*
  912. * Now re-arm for the new expiry time.
  913. */
  914. WARN_ON_ONCE(!irqs_disabled());
  915. arm_timer(timer);
  916. unlock:
  917. unlock_task_sighand(p, &flags);
  918. }
  919. /**
  920. * task_cputime_expired - Compare two task_cputime entities.
  921. *
  922. * @sample: The task_cputime structure to be checked for expiration.
  923. * @expires: Expiration times, against which @sample will be checked.
  924. *
  925. * Checks @sample against @expires to see if any field of @sample has expired.
  926. * Returns true if any field of the former is greater than the corresponding
  927. * field of the latter if the latter field is set. Otherwise returns false.
  928. */
  929. static inline int task_cputime_expired(const struct task_cputime *sample,
  930. const struct task_cputime *expires)
  931. {
  932. if (expires->utime && sample->utime >= expires->utime)
  933. return 1;
  934. if (expires->stime && sample->utime + sample->stime >= expires->stime)
  935. return 1;
  936. if (expires->sum_exec_runtime != 0 &&
  937. sample->sum_exec_runtime >= expires->sum_exec_runtime)
  938. return 1;
  939. return 0;
  940. }
  941. /**
  942. * fastpath_timer_check - POSIX CPU timers fast path.
  943. *
  944. * @tsk: The task (thread) being checked.
  945. *
  946. * Check the task and thread group timers. If both are zero (there are no
  947. * timers set) return false. Otherwise snapshot the task and thread group
  948. * timers and compare them with the corresponding expiration times. Return
  949. * true if a timer has expired, else return false.
  950. */
  951. static inline int fastpath_timer_check(struct task_struct *tsk)
  952. {
  953. struct signal_struct *sig;
  954. if (!task_cputime_zero(&tsk->cputime_expires)) {
  955. struct task_cputime task_sample;
  956. task_cputime(tsk, &task_sample.utime, &task_sample.stime);
  957. task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
  958. if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
  959. return 1;
  960. }
  961. sig = tsk->signal;
  962. /*
  963. * Check if thread group timers expired when the cputimer is
  964. * running and no other thread in the group is already checking
  965. * for thread group cputimers. These fields are read without the
  966. * sighand lock. However, this is fine because this is meant to
  967. * be a fastpath heuristic to determine whether we should try to
  968. * acquire the sighand lock to check/handle timers.
  969. *
  970. * In the worst case scenario, if 'running' or 'checking_timer' gets
  971. * set but the current thread doesn't see the change yet, we'll wait
  972. * until the next thread in the group gets a scheduler interrupt to
  973. * handle the timer. This isn't an issue in practice because these
  974. * types of delays with signals actually getting sent are expected.
  975. */
  976. if (READ_ONCE(sig->cputimer.running) &&
  977. !READ_ONCE(sig->cputimer.checking_timer)) {
  978. struct task_cputime group_sample;
  979. sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
  980. if (task_cputime_expired(&group_sample, &sig->cputime_expires))
  981. return 1;
  982. }
  983. return 0;
  984. }
  985. /*
  986. * This is called from the timer interrupt handler. The irq handler has
  987. * already updated our counts. We need to check if any timers fire now.
  988. * Interrupts are disabled.
  989. */
  990. void run_posix_cpu_timers(struct task_struct *tsk)
  991. {
  992. LIST_HEAD(firing);
  993. struct k_itimer *timer, *next;
  994. unsigned long flags;
  995. WARN_ON_ONCE(!irqs_disabled());
  996. /*
  997. * The fast path checks that there are no expired thread or thread
  998. * group timers. If that's so, just return.
  999. */
  1000. if (!fastpath_timer_check(tsk))
  1001. return;
  1002. if (!lock_task_sighand(tsk, &flags))
  1003. return;
  1004. /*
  1005. * Here we take off tsk->signal->cpu_timers[N] and
  1006. * tsk->cpu_timers[N] all the timers that are firing, and
  1007. * put them on the firing list.
  1008. */
  1009. check_thread_timers(tsk, &firing);
  1010. check_process_timers(tsk, &firing);
  1011. /*
  1012. * We must release these locks before taking any timer's lock.
  1013. * There is a potential race with timer deletion here, as the
  1014. * siglock now protects our private firing list. We have set
  1015. * the firing flag in each timer, so that a deletion attempt
  1016. * that gets the timer lock before we do will give it up and
  1017. * spin until we've taken care of that timer below.
  1018. */
  1019. unlock_task_sighand(tsk, &flags);
  1020. /*
  1021. * Now that all the timers on our list have the firing flag,
  1022. * no one will touch their list entries but us. We'll take
  1023. * each timer's lock before clearing its firing flag, so no
  1024. * timer call will interfere.
  1025. */
  1026. list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
  1027. int cpu_firing;
  1028. spin_lock(&timer->it_lock);
  1029. list_del_init(&timer->it.cpu.entry);
  1030. cpu_firing = timer->it.cpu.firing;
  1031. timer->it.cpu.firing = 0;
  1032. /*
  1033. * The firing flag is -1 if we collided with a reset
  1034. * of the timer, which already reported this
  1035. * almost-firing as an overrun. So don't generate an event.
  1036. */
  1037. if (likely(cpu_firing >= 0))
  1038. cpu_timer_fire(timer);
  1039. spin_unlock(&timer->it_lock);
  1040. }
  1041. }
  1042. /*
  1043. * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
  1044. * The tsk->sighand->siglock must be held by the caller.
  1045. */
  1046. void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
  1047. u64 *newval, u64 *oldval)
  1048. {
  1049. u64 now;
  1050. WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
  1051. cpu_timer_sample_group(clock_idx, tsk, &now);
  1052. if (oldval) {
  1053. /*
  1054. * We are setting itimer. The *oldval is absolute and we update
  1055. * it to be relative, *newval argument is relative and we update
  1056. * it to be absolute.
  1057. */
  1058. if (*oldval) {
  1059. if (*oldval <= now) {
  1060. /* Just about to fire. */
  1061. *oldval = TICK_NSEC;
  1062. } else {
  1063. *oldval -= now;
  1064. }
  1065. }
  1066. if (!*newval)
  1067. return;
  1068. *newval += now;
  1069. }
  1070. /*
  1071. * Update expiration cache if we are the earliest timer, or eventually
  1072. * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
  1073. */
  1074. switch (clock_idx) {
  1075. case CPUCLOCK_PROF:
  1076. if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
  1077. tsk->signal->cputime_expires.prof_exp = *newval;
  1078. break;
  1079. case CPUCLOCK_VIRT:
  1080. if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
  1081. tsk->signal->cputime_expires.virt_exp = *newval;
  1082. break;
  1083. }
  1084. tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
  1085. }
  1086. static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
  1087. const struct timespec64 *rqtp)
  1088. {
  1089. struct itimerspec64 it;
  1090. struct k_itimer timer;
  1091. u64 expires;
  1092. int error;
  1093. /*
  1094. * Set up a temporary timer and then wait for it to go off.
  1095. */
  1096. memset(&timer, 0, sizeof timer);
  1097. spin_lock_init(&timer.it_lock);
  1098. timer.it_clock = which_clock;
  1099. timer.it_overrun = -1;
  1100. error = posix_cpu_timer_create(&timer);
  1101. timer.it_process = current;
  1102. if (!error) {
  1103. static struct itimerspec64 zero_it;
  1104. struct restart_block *restart;
  1105. memset(&it, 0, sizeof(it));
  1106. it.it_value = *rqtp;
  1107. spin_lock_irq(&timer.it_lock);
  1108. error = posix_cpu_timer_set(&timer, flags, &it, NULL);
  1109. if (error) {
  1110. spin_unlock_irq(&timer.it_lock);
  1111. return error;
  1112. }
  1113. while (!signal_pending(current)) {
  1114. if (timer.it.cpu.expires == 0) {
  1115. /*
  1116. * Our timer fired and was reset, below
  1117. * deletion can not fail.
  1118. */
  1119. posix_cpu_timer_del(&timer);
  1120. spin_unlock_irq(&timer.it_lock);
  1121. return 0;
  1122. }
  1123. /*
  1124. * Block until cpu_timer_fire (or a signal) wakes us.
  1125. */
  1126. __set_current_state(TASK_INTERRUPTIBLE);
  1127. spin_unlock_irq(&timer.it_lock);
  1128. schedule();
  1129. spin_lock_irq(&timer.it_lock);
  1130. }
  1131. /*
  1132. * We were interrupted by a signal.
  1133. */
  1134. expires = timer.it.cpu.expires;
  1135. error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
  1136. if (!error) {
  1137. /*
  1138. * Timer is now unarmed, deletion can not fail.
  1139. */
  1140. posix_cpu_timer_del(&timer);
  1141. }
  1142. spin_unlock_irq(&timer.it_lock);
  1143. while (error == TIMER_RETRY) {
  1144. /*
  1145. * We need to handle case when timer was or is in the
  1146. * middle of firing. In other cases we already freed
  1147. * resources.
  1148. */
  1149. spin_lock_irq(&timer.it_lock);
  1150. error = posix_cpu_timer_del(&timer);
  1151. spin_unlock_irq(&timer.it_lock);
  1152. }
  1153. if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
  1154. /*
  1155. * It actually did fire already.
  1156. */
  1157. return 0;
  1158. }
  1159. error = -ERESTART_RESTARTBLOCK;
  1160. /*
  1161. * Report back to the user the time still remaining.
  1162. */
  1163. restart = &current->restart_block;
  1164. restart->nanosleep.expires = expires;
  1165. if (restart->nanosleep.type != TT_NONE)
  1166. error = nanosleep_copyout(restart, &it.it_value);
  1167. }
  1168. return error;
  1169. }
  1170. static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
  1171. static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
  1172. const struct timespec64 *rqtp)
  1173. {
  1174. struct restart_block *restart_block = &current->restart_block;
  1175. int error;
  1176. /*
  1177. * Diagnose required errors first.
  1178. */
  1179. if (CPUCLOCK_PERTHREAD(which_clock) &&
  1180. (CPUCLOCK_PID(which_clock) == 0 ||
  1181. CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
  1182. return -EINVAL;
  1183. error = do_cpu_nanosleep(which_clock, flags, rqtp);
  1184. if (error == -ERESTART_RESTARTBLOCK) {
  1185. if (flags & TIMER_ABSTIME)
  1186. return -ERESTARTNOHAND;
  1187. restart_block->nanosleep.clockid = which_clock;
  1188. set_restart_fn(restart_block, posix_cpu_nsleep_restart);
  1189. }
  1190. return error;
  1191. }
  1192. static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
  1193. {
  1194. clockid_t which_clock = restart_block->nanosleep.clockid;
  1195. struct timespec64 t;
  1196. t = ns_to_timespec64(restart_block->nanosleep.expires);
  1197. return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
  1198. }
  1199. #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
  1200. #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
  1201. static int process_cpu_clock_getres(const clockid_t which_clock,
  1202. struct timespec64 *tp)
  1203. {
  1204. return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
  1205. }
  1206. static int process_cpu_clock_get(const clockid_t which_clock,
  1207. struct timespec64 *tp)
  1208. {
  1209. return posix_cpu_clock_get(PROCESS_CLOCK, tp);
  1210. }
  1211. static int process_cpu_timer_create(struct k_itimer *timer)
  1212. {
  1213. timer->it_clock = PROCESS_CLOCK;
  1214. return posix_cpu_timer_create(timer);
  1215. }
  1216. static int process_cpu_nsleep(const clockid_t which_clock, int flags,
  1217. const struct timespec64 *rqtp)
  1218. {
  1219. return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
  1220. }
  1221. static int thread_cpu_clock_getres(const clockid_t which_clock,
  1222. struct timespec64 *tp)
  1223. {
  1224. return posix_cpu_clock_getres(THREAD_CLOCK, tp);
  1225. }
  1226. static int thread_cpu_clock_get(const clockid_t which_clock,
  1227. struct timespec64 *tp)
  1228. {
  1229. return posix_cpu_clock_get(THREAD_CLOCK, tp);
  1230. }
  1231. static int thread_cpu_timer_create(struct k_itimer *timer)
  1232. {
  1233. timer->it_clock = THREAD_CLOCK;
  1234. return posix_cpu_timer_create(timer);
  1235. }
  1236. const struct k_clock clock_posix_cpu = {
  1237. .clock_getres = posix_cpu_clock_getres,
  1238. .clock_set = posix_cpu_clock_set,
  1239. .clock_get = posix_cpu_clock_get,
  1240. .timer_create = posix_cpu_timer_create,
  1241. .nsleep = posix_cpu_nsleep,
  1242. .timer_set = posix_cpu_timer_set,
  1243. .timer_del = posix_cpu_timer_del,
  1244. .timer_get = posix_cpu_timer_get,
  1245. .timer_rearm = posix_cpu_timer_rearm,
  1246. };
  1247. const struct k_clock clock_process = {
  1248. .clock_getres = process_cpu_clock_getres,
  1249. .clock_get = process_cpu_clock_get,
  1250. .timer_create = process_cpu_timer_create,
  1251. .nsleep = process_cpu_nsleep,
  1252. };
  1253. const struct k_clock clock_thread = {
  1254. .clock_getres = thread_cpu_clock_getres,
  1255. .clock_get = thread_cpu_clock_get,
  1256. .timer_create = thread_cpu_timer_create,
  1257. };