123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308 |
- /*
- * Pressure stall information for CPU, memory and IO
- *
- * Copyright (c) 2018 Facebook, Inc.
- * Author: Johannes Weiner <hannes@cmpxchg.org>
- *
- * Polling support by Suren Baghdasaryan <surenb@google.com>
- * Copyright (c) 2018 Google, Inc.
- *
- * When CPU, memory and IO are contended, tasks experience delays that
- * reduce throughput and introduce latencies into the workload. Memory
- * and IO contention, in addition, can cause a full loss of forward
- * progress in which the CPU goes idle.
- *
- * This code aggregates individual task delays into resource pressure
- * metrics that indicate problems with both workload health and
- * resource utilization.
- *
- * Model
- *
- * The time in which a task can execute on a CPU is our baseline for
- * productivity. Pressure expresses the amount of time in which this
- * potential cannot be realized due to resource contention.
- *
- * This concept of productivity has two components: the workload and
- * the CPU. To measure the impact of pressure on both, we define two
- * contention states for a resource: SOME and FULL.
- *
- * In the SOME state of a given resource, one or more tasks are
- * delayed on that resource. This affects the workload's ability to
- * perform work, but the CPU may still be executing other tasks.
- *
- * In the FULL state of a given resource, all non-idle tasks are
- * delayed on that resource such that nobody is advancing and the CPU
- * goes idle. This leaves both workload and CPU unproductive.
- *
- * (Naturally, the FULL state doesn't exist for the CPU resource.)
- *
- * SOME = nr_delayed_tasks != 0
- * FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0
- *
- * The percentage of wallclock time spent in those compound stall
- * states gives pressure numbers between 0 and 100 for each resource,
- * where the SOME percentage indicates workload slowdowns and the FULL
- * percentage indicates reduced CPU utilization:
- *
- * %SOME = time(SOME) / period
- * %FULL = time(FULL) / period
- *
- * Multiple CPUs
- *
- * The more tasks and available CPUs there are, the more work can be
- * performed concurrently. This means that the potential that can go
- * unrealized due to resource contention *also* scales with non-idle
- * tasks and CPUs.
- *
- * Consider a scenario where 257 number crunching tasks are trying to
- * run concurrently on 256 CPUs. If we simply aggregated the task
- * states, we would have to conclude a CPU SOME pressure number of
- * 100%, since *somebody* is waiting on a runqueue at all
- * times. However, that is clearly not the amount of contention the
- * workload is experiencing: only one out of 256 possible exceution
- * threads will be contended at any given time, or about 0.4%.
- *
- * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
- * given time *one* of the tasks is delayed due to a lack of memory.
- * Again, looking purely at the task state would yield a memory FULL
- * pressure number of 0%, since *somebody* is always making forward
- * progress. But again this wouldn't capture the amount of execution
- * potential lost, which is 1 out of 4 CPUs, or 25%.
- *
- * To calculate wasted potential (pressure) with multiple processors,
- * we have to base our calculation on the number of non-idle tasks in
- * conjunction with the number of available CPUs, which is the number
- * of potential execution threads. SOME becomes then the proportion of
- * delayed tasks to possibe threads, and FULL is the share of possible
- * threads that are unproductive due to delays:
- *
- * threads = min(nr_nonidle_tasks, nr_cpus)
- * SOME = min(nr_delayed_tasks / threads, 1)
- * FULL = (threads - min(nr_running_tasks, threads)) / threads
- *
- * For the 257 number crunchers on 256 CPUs, this yields:
- *
- * threads = min(257, 256)
- * SOME = min(1 / 256, 1) = 0.4%
- * FULL = (256 - min(257, 256)) / 256 = 0%
- *
- * For the 1 out of 4 memory-delayed tasks, this yields:
- *
- * threads = min(4, 4)
- * SOME = min(1 / 4, 1) = 25%
- * FULL = (4 - min(3, 4)) / 4 = 25%
- *
- * [ Substitute nr_cpus with 1, and you can see that it's a natural
- * extension of the single-CPU model. ]
- *
- * Implementation
- *
- * To assess the precise time spent in each such state, we would have
- * to freeze the system on task changes and start/stop the state
- * clocks accordingly. Obviously that doesn't scale in practice.
- *
- * Because the scheduler aims to distribute the compute load evenly
- * among the available CPUs, we can track task state locally to each
- * CPU and, at much lower frequency, extrapolate the global state for
- * the cumulative stall times and the running averages.
- *
- * For each runqueue, we track:
- *
- * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
- * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu])
- * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
- *
- * and then periodically aggregate:
- *
- * tNONIDLE = sum(tNONIDLE[i])
- *
- * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
- * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
- *
- * %SOME = tSOME / period
- * %FULL = tFULL / period
- *
- * This gives us an approximation of pressure that is practical
- * cost-wise, yet way more sensitive and accurate than periodic
- * sampling of the aggregate task states would be.
- */
- #include "../workqueue_internal.h"
- #include <uapi/linux/sched/types.h>
- #include <linux/sched/loadavg.h>
- #include <linux/seq_file.h>
- #include <linux/proc_fs.h>
- #include <linux/seqlock.h>
- #include <linux/uaccess.h>
- #include <linux/cgroup.h>
- #include <linux/module.h>
- #include <linux/sched.h>
- #include <linux/ctype.h>
- #include <linux/file.h>
- #include <linux/poll.h>
- #include <linux/psi.h>
- #include "sched.h"
- static int psi_bug __read_mostly;
- DEFINE_STATIC_KEY_FALSE(psi_disabled);
- #ifdef CONFIG_PSI_DEFAULT_DISABLED
- static bool psi_enable;
- #else
- static bool psi_enable = true;
- #endif
- static int __init setup_psi(char *str)
- {
- return kstrtobool(str, &psi_enable) == 0;
- }
- __setup("psi=", setup_psi);
- /* Running averages - we need to be higher-res than loadavg */
- #define PSI_FREQ (2*HZ+1) /* 2 sec intervals */
- #define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */
- #define EXP_60s 1981 /* 1/exp(2s/60s) */
- #define EXP_300s 2034 /* 1/exp(2s/300s) */
- /* PSI trigger definitions */
- #define WINDOW_MIN_US 500000 /* Min window size is 500ms */
- #define WINDOW_MAX_US 10000000 /* Max window size is 10s */
- #define UPDATES_PER_WINDOW 10 /* 10 updates per window */
- /* Sampling frequency in nanoseconds */
- static u64 psi_period __read_mostly;
- /* System-level pressure and stall tracking */
- static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
- static struct psi_group psi_system = {
- .pcpu = &system_group_pcpu,
- };
- static void psi_avgs_work(struct work_struct *work);
- static void group_init(struct psi_group *group)
- {
- int cpu;
- for_each_possible_cpu(cpu)
- seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
- group->avg_last_update = sched_clock();
- group->avg_next_update = group->avg_last_update + psi_period;
- INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
- mutex_init(&group->avgs_lock);
- /* Init trigger-related members */
- atomic_set(&group->poll_scheduled, 0);
- mutex_init(&group->trigger_lock);
- INIT_LIST_HEAD(&group->triggers);
- memset(group->nr_triggers, 0, sizeof(group->nr_triggers));
- group->poll_states = 0;
- group->poll_min_period = U32_MAX;
- memset(group->polling_total, 0, sizeof(group->polling_total));
- group->polling_next_update = ULLONG_MAX;
- group->polling_until = 0;
- rcu_assign_pointer(group->poll_kworker, NULL);
- }
- void __init psi_init(void)
- {
- if (!psi_enable) {
- static_branch_enable(&psi_disabled);
- return;
- }
- psi_period = jiffies_to_nsecs(PSI_FREQ);
- group_init(&psi_system);
- }
- static bool test_state(unsigned int *tasks, enum psi_states state)
- {
- switch (state) {
- case PSI_IO_SOME:
- return tasks[NR_IOWAIT];
- case PSI_IO_FULL:
- return tasks[NR_IOWAIT] && !tasks[NR_RUNNING];
- case PSI_MEM_SOME:
- return tasks[NR_MEMSTALL];
- case PSI_MEM_FULL:
- return tasks[NR_MEMSTALL] && !tasks[NR_RUNNING];
- case PSI_CPU_SOME:
- return tasks[NR_RUNNING] > 1;
- case PSI_NONIDLE:
- return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
- tasks[NR_RUNNING];
- default:
- return false;
- }
- }
- static void get_recent_times(struct psi_group *group, int cpu,
- enum psi_aggregators aggregator, u32 *times,
- u32 *pchanged_states)
- {
- struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
- u64 now, state_start;
- enum psi_states s;
- unsigned int seq;
- u32 state_mask;
- *pchanged_states = 0;
- /* Snapshot a coherent view of the CPU state */
- do {
- seq = read_seqcount_begin(&groupc->seq);
- now = cpu_clock(cpu);
- memcpy(times, groupc->times, sizeof(groupc->times));
- state_mask = groupc->state_mask;
- state_start = groupc->state_start;
- } while (read_seqcount_retry(&groupc->seq, seq));
- /* Calculate state time deltas against the previous snapshot */
- for (s = 0; s < NR_PSI_STATES; s++) {
- u32 delta;
- /*
- * In addition to already concluded states, we also
- * incorporate currently active states on the CPU,
- * since states may last for many sampling periods.
- *
- * This way we keep our delta sampling buckets small
- * (u32) and our reported pressure close to what's
- * actually happening.
- */
- if (state_mask & (1 << s))
- times[s] += now - state_start;
- delta = times[s] - groupc->times_prev[aggregator][s];
- groupc->times_prev[aggregator][s] = times[s];
- times[s] = delta;
- if (delta)
- *pchanged_states |= (1 << s);
- }
- }
- static void calc_avgs(unsigned long avg[3], int missed_periods,
- u64 time, u64 period)
- {
- unsigned long pct;
- /* Fill in zeroes for periods of no activity */
- if (missed_periods) {
- avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
- avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
- avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
- }
- /* Sample the most recent active period */
- pct = div_u64(time * 100, period);
- pct *= FIXED_1;
- avg[0] = calc_load(avg[0], EXP_10s, pct);
- avg[1] = calc_load(avg[1], EXP_60s, pct);
- avg[2] = calc_load(avg[2], EXP_300s, pct);
- }
- static void collect_percpu_times(struct psi_group *group,
- enum psi_aggregators aggregator,
- u32 *pchanged_states)
- {
- u64 deltas[NR_PSI_STATES - 1] = { 0, };
- unsigned long nonidle_total = 0;
- u32 changed_states = 0;
- int cpu;
- int s;
- /*
- * Collect the per-cpu time buckets and average them into a
- * single time sample that is normalized to wallclock time.
- *
- * For averaging, each CPU is weighted by its non-idle time in
- * the sampling period. This eliminates artifacts from uneven
- * loading, or even entirely idle CPUs.
- */
- for_each_possible_cpu(cpu) {
- u32 times[NR_PSI_STATES];
- u32 nonidle;
- u32 cpu_changed_states;
- get_recent_times(group, cpu, aggregator, times,
- &cpu_changed_states);
- changed_states |= cpu_changed_states;
- nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
- nonidle_total += nonidle;
- for (s = 0; s < PSI_NONIDLE; s++)
- deltas[s] += (u64)times[s] * nonidle;
- }
- /*
- * Integrate the sample into the running statistics that are
- * reported to userspace: the cumulative stall times and the
- * decaying averages.
- *
- * Pressure percentages are sampled at PSI_FREQ. We might be
- * called more often when the user polls more frequently than
- * that; we might be called less often when there is no task
- * activity, thus no data, and clock ticks are sporadic. The
- * below handles both.
- */
- /* total= */
- for (s = 0; s < NR_PSI_STATES - 1; s++)
- group->total[aggregator][s] +=
- div_u64(deltas[s], max(nonidle_total, 1UL));
- if (pchanged_states)
- *pchanged_states = changed_states;
- }
- static u64 update_averages(struct psi_group *group, u64 now)
- {
- unsigned long missed_periods = 0;
- u64 expires, period;
- u64 avg_next_update;
- int s;
- /* avgX= */
- expires = group->avg_next_update;
- if (now - expires >= psi_period)
- missed_periods = div_u64(now - expires, psi_period);
- /*
- * The periodic clock tick can get delayed for various
- * reasons, especially on loaded systems. To avoid clock
- * drift, we schedule the clock in fixed psi_period intervals.
- * But the deltas we sample out of the per-cpu buckets above
- * are based on the actual time elapsing between clock ticks.
- */
- avg_next_update = expires + ((1 + missed_periods) * psi_period);
- period = now - (group->avg_last_update + (missed_periods * psi_period));
- group->avg_last_update = now;
- for (s = 0; s < NR_PSI_STATES - 1; s++) {
- u32 sample;
- sample = group->total[PSI_AVGS][s] - group->avg_total[s];
- /*
- * Due to the lockless sampling of the time buckets,
- * recorded time deltas can slip into the next period,
- * which under full pressure can result in samples in
- * excess of the period length.
- *
- * We don't want to report non-sensical pressures in
- * excess of 100%, nor do we want to drop such events
- * on the floor. Instead we punt any overage into the
- * future until pressure subsides. By doing this we
- * don't underreport the occurring pressure curve, we
- * just report it delayed by one period length.
- *
- * The error isn't cumulative. As soon as another
- * delta slips from a period P to P+1, by definition
- * it frees up its time T in P.
- */
- if (sample > period)
- sample = period;
- group->avg_total[s] += sample;
- calc_avgs(group->avg[s], missed_periods, sample, period);
- }
- return avg_next_update;
- }
- static void psi_avgs_work(struct work_struct *work)
- {
- struct delayed_work *dwork;
- struct psi_group *group;
- u32 changed_states;
- bool nonidle;
- u64 now;
- dwork = to_delayed_work(work);
- group = container_of(dwork, struct psi_group, avgs_work);
- mutex_lock(&group->avgs_lock);
- now = sched_clock();
- collect_percpu_times(group, PSI_AVGS, &changed_states);
- nonidle = changed_states & (1 << PSI_NONIDLE);
- /*
- * If there is task activity, periodically fold the per-cpu
- * times and feed samples into the running averages. If things
- * are idle and there is no data to process, stop the clock.
- * Once restarted, we'll catch up the running averages in one
- * go - see calc_avgs() and missed_periods.
- */
- if (now >= group->avg_next_update)
- group->avg_next_update = update_averages(group, now);
- if (nonidle) {
- schedule_delayed_work(dwork, nsecs_to_jiffies(
- group->avg_next_update - now) + 1);
- }
- mutex_unlock(&group->avgs_lock);
- }
- /* Trigger tracking window manupulations */
- static void window_reset(struct psi_window *win, u64 now, u64 value,
- u64 prev_growth)
- {
- win->start_time = now;
- win->start_value = value;
- win->prev_growth = prev_growth;
- }
- /*
- * PSI growth tracking window update and growth calculation routine.
- *
- * This approximates a sliding tracking window by interpolating
- * partially elapsed windows using historical growth data from the
- * previous intervals. This minimizes memory requirements (by not storing
- * all the intermediate values in the previous window) and simplifies
- * the calculations. It works well because PSI signal changes only in
- * positive direction and over relatively small window sizes the growth
- * is close to linear.
- */
- static u64 window_update(struct psi_window *win, u64 now, u64 value)
- {
- u64 elapsed;
- u64 growth;
- elapsed = now - win->start_time;
- growth = value - win->start_value;
- /*
- * After each tracking window passes win->start_value and
- * win->start_time get reset and win->prev_growth stores
- * the average per-window growth of the previous window.
- * win->prev_growth is then used to interpolate additional
- * growth from the previous window assuming it was linear.
- */
- if (elapsed > win->size)
- window_reset(win, now, value, growth);
- else {
- u32 remaining;
- remaining = win->size - elapsed;
- growth += div64_u64(win->prev_growth * remaining, win->size);
- }
- return growth;
- }
- static void init_triggers(struct psi_group *group, u64 now)
- {
- struct psi_trigger *t;
- list_for_each_entry(t, &group->triggers, node)
- window_reset(&t->win, now,
- group->total[PSI_POLL][t->state], 0);
- memcpy(group->polling_total, group->total[PSI_POLL],
- sizeof(group->polling_total));
- group->polling_next_update = now + group->poll_min_period;
- }
- static u64 update_triggers(struct psi_group *group, u64 now)
- {
- struct psi_trigger *t;
- bool new_stall = false;
- u64 *total = group->total[PSI_POLL];
- /*
- * On subsequent updates, calculate growth deltas and let
- * watchers know when their specified thresholds are exceeded.
- */
- list_for_each_entry(t, &group->triggers, node) {
- u64 growth;
- /* Check for stall activity */
- if (group->polling_total[t->state] == total[t->state])
- continue;
- /*
- * Multiple triggers might be looking at the same state,
- * remember to update group->polling_total[] once we've
- * been through all of them. Also remember to extend the
- * polling time if we see new stall activity.
- */
- new_stall = true;
- /* Calculate growth since last update */
- growth = window_update(&t->win, now, total[t->state]);
- if (growth < t->threshold)
- continue;
- /* Limit event signaling to once per window */
- if (now < t->last_event_time + t->win.size)
- continue;
- /* Generate an event */
- if (cmpxchg(&t->event, 0, 1) == 0) {
- pr_info("%s: group:%p t:%p triggered!\n",
- __func__, group, t);
- wake_up_interruptible(&t->event_wait);
- }
- t->last_event_time = now;
- }
- if (new_stall)
- memcpy(group->polling_total, total,
- sizeof(group->polling_total));
- return now + group->poll_min_period;
- }
- /*
- * Schedule polling if it's not already scheduled. It's safe to call even from
- * hotpath because even though kthread_queue_delayed_work takes worker->lock
- * spinlock that spinlock is never contended due to poll_scheduled atomic
- * preventing such competition.
- */
- static void psi_schedule_poll_work(struct psi_group *group, unsigned long delay)
- {
- struct kthread_worker *kworker;
- /* Do not reschedule if already scheduled */
- if (atomic_cmpxchg(&group->poll_scheduled, 0, 1) != 0)
- return;
- rcu_read_lock();
- kworker = rcu_dereference(group->poll_kworker);
- /*
- * kworker might be NULL in case psi_trigger_destroy races with
- * psi_task_change (hotpath) which can't use locks
- */
- if (likely(kworker)) {
- lockdep_off();
- kthread_queue_delayed_work(kworker, &group->poll_work, delay);
- lockdep_on();
- }
- else
- atomic_set(&group->poll_scheduled, 0);
- rcu_read_unlock();
- }
- static void psi_poll_work(struct kthread_work *work)
- {
- struct kthread_delayed_work *dwork;
- struct psi_group *group;
- u32 changed_states;
- u64 now;
- dwork = container_of(work, struct kthread_delayed_work, work);
- group = container_of(dwork, struct psi_group, poll_work);
- atomic_set(&group->poll_scheduled, 0);
- mutex_lock(&group->trigger_lock);
- now = sched_clock();
- collect_percpu_times(group, PSI_POLL, &changed_states);
- if (changed_states & group->poll_states) {
- /* Initialize trigger windows when entering polling mode */
- if (now > group->polling_until)
- init_triggers(group, now);
- /*
- * Keep the monitor active for at least the duration of the
- * minimum tracking window as long as monitor states are
- * changing.
- */
- group->polling_until = now +
- group->poll_min_period * UPDATES_PER_WINDOW;
- }
- if (now > group->polling_until) {
- group->polling_next_update = ULLONG_MAX;
- goto out;
- }
- if (now >= group->polling_next_update)
- group->polling_next_update = update_triggers(group, now);
- psi_schedule_poll_work(group,
- nsecs_to_jiffies(group->polling_next_update - now) + 1);
- out:
- mutex_unlock(&group->trigger_lock);
- }
- static void record_times(struct psi_group_cpu *groupc, int cpu,
- bool memstall_tick)
- {
- u32 delta;
- u64 now;
- now = cpu_clock(cpu);
- delta = now - groupc->state_start;
- groupc->state_start = now;
- if (groupc->state_mask & (1 << PSI_IO_SOME)) {
- groupc->times[PSI_IO_SOME] += delta;
- if (groupc->state_mask & (1 << PSI_IO_FULL))
- groupc->times[PSI_IO_FULL] += delta;
- }
- if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
- groupc->times[PSI_MEM_SOME] += delta;
- if (groupc->state_mask & (1 << PSI_MEM_FULL))
- groupc->times[PSI_MEM_FULL] += delta;
- else if (memstall_tick) {
- u32 sample;
- /*
- * Since we care about lost potential, a
- * memstall is FULL when there are no other
- * working tasks, but also when the CPU is
- * actively reclaiming and nothing productive
- * could run even if it were runnable.
- *
- * When the timer tick sees a reclaiming CPU,
- * regardless of runnable tasks, sample a FULL
- * tick (or less if it hasn't been a full tick
- * since the last state change).
- */
- sample = min(delta, (u32)jiffies_to_nsecs(1));
- groupc->times[PSI_MEM_FULL] += sample;
- }
- }
- if (groupc->state_mask & (1 << PSI_CPU_SOME))
- groupc->times[PSI_CPU_SOME] += delta;
- if (groupc->state_mask & (1 << PSI_NONIDLE))
- groupc->times[PSI_NONIDLE] += delta;
- }
- static u32 psi_group_change(struct psi_group *group, int cpu,
- unsigned int clear, unsigned int set)
- {
- struct psi_group_cpu *groupc;
- unsigned int t, m;
- enum psi_states s;
- u32 state_mask = 0;
- groupc = per_cpu_ptr(group->pcpu, cpu);
- /*
- * First we assess the aggregate resource states this CPU's
- * tasks have been in since the last change, and account any
- * SOME and FULL time these may have resulted in.
- *
- * Then we update the task counts according to the state
- * change requested through the @clear and @set bits.
- */
- write_seqcount_begin(&groupc->seq);
- record_times(groupc, cpu, false);
- for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
- if (!(m & (1 << t)))
- continue;
- if (groupc->tasks[t] == 0 && !psi_bug) {
- printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u] clear=%x set=%x\n",
- cpu, t, groupc->tasks[0],
- groupc->tasks[1], groupc->tasks[2],
- clear, set);
- psi_bug = 1;
- }
- groupc->tasks[t]--;
- }
- for (t = 0; set; set &= ~(1 << t), t++)
- if (set & (1 << t))
- groupc->tasks[t]++;
- /* Calculate state mask representing active states */
- for (s = 0; s < NR_PSI_STATES; s++) {
- if (test_state(groupc->tasks, s))
- state_mask |= (1 << s);
- }
- groupc->state_mask = state_mask;
- write_seqcount_end(&groupc->seq);
- return state_mask;
- }
- static struct psi_group *iterate_groups(struct task_struct *task, void **iter)
- {
- #ifdef CONFIG_CGROUPS
- struct cgroup *cgroup = NULL;
- if (!*iter)
- cgroup = task->cgroups->dfl_cgrp;
- else if (*iter == &psi_system)
- return NULL;
- else
- cgroup = cgroup_parent(*iter);
- if (cgroup && cgroup_parent(cgroup)) {
- *iter = cgroup;
- return cgroup_psi(cgroup);
- }
- #else
- if (*iter)
- return NULL;
- #endif
- *iter = &psi_system;
- return &psi_system;
- }
- void psi_task_change(struct task_struct *task, int clear, int set)
- {
- int cpu = task_cpu(task);
- struct psi_group *group;
- bool wake_clock = true;
- void *iter = NULL;
- if (!task->pid)
- return;
- if (((task->psi_flags & set) ||
- (task->psi_flags & clear) != clear) &&
- !psi_bug) {
- printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
- task->pid, task->comm, cpu,
- task->psi_flags, clear, set);
- psi_bug = 1;
- }
- task->psi_flags &= ~clear;
- task->psi_flags |= set;
- /*
- * Periodic aggregation shuts off if there is a period of no
- * task changes, so we wake it back up if necessary. However,
- * don't do this if the task change is the aggregation worker
- * itself going to sleep, or we'll ping-pong forever.
- */
- if (unlikely((clear & TSK_RUNNING) &&
- (task->flags & PF_WQ_WORKER) &&
- wq_worker_last_func(task) == psi_avgs_work))
- wake_clock = false;
- while ((group = iterate_groups(task, &iter))) {
- u32 state_mask = psi_group_change(group, cpu, clear, set);
- if (state_mask & group->poll_states)
- psi_schedule_poll_work(group, 1);
- if (wake_clock && !delayed_work_pending(&group->avgs_work))
- schedule_delayed_work(&group->avgs_work, PSI_FREQ);
- }
- }
- void psi_memstall_tick(struct task_struct *task, int cpu)
- {
- struct psi_group *group;
- void *iter = NULL;
- while ((group = iterate_groups(task, &iter))) {
- struct psi_group_cpu *groupc;
- groupc = per_cpu_ptr(group->pcpu, cpu);
- write_seqcount_begin(&groupc->seq);
- record_times(groupc, cpu, true);
- write_seqcount_end(&groupc->seq);
- }
- }
- /**
- * psi_memstall_enter - mark the beginning of a memory stall section
- * @flags: flags to handle nested sections
- *
- * Marks the calling task as being stalled due to a lack of memory,
- * such as waiting for a refault or performing reclaim.
- */
- void psi_memstall_enter(unsigned long *flags)
- {
- struct rq_flags rf;
- struct rq *rq;
- if (static_branch_likely(&psi_disabled))
- return;
- *flags = current->flags & PF_MEMSTALL;
- if (*flags)
- return;
- /*
- * PF_MEMSTALL setting & accounting needs to be atomic wrt
- * changes to the task's scheduling state, otherwise we can
- * race with CPU migration.
- */
- rq = this_rq_lock_irq(&rf);
- current->flags |= PF_MEMSTALL;
- psi_task_change(current, 0, TSK_MEMSTALL);
- rq_unlock_irq(rq, &rf);
- }
- /**
- * psi_memstall_leave - mark the end of an memory stall section
- * @flags: flags to handle nested memdelay sections
- *
- * Marks the calling task as no longer stalled due to lack of memory.
- */
- void psi_memstall_leave(unsigned long *flags)
- {
- struct rq_flags rf;
- struct rq *rq;
- if (static_branch_likely(&psi_disabled))
- return;
- if (*flags)
- return;
- /*
- * PF_MEMSTALL clearing & accounting needs to be atomic wrt
- * changes to the task's scheduling state, otherwise we could
- * race with CPU migration.
- */
- rq = this_rq_lock_irq(&rf);
- current->flags &= ~PF_MEMSTALL;
- psi_task_change(current, TSK_MEMSTALL, 0);
- rq_unlock_irq(rq, &rf);
- }
- #ifdef CONFIG_CGROUPS
- int psi_cgroup_alloc(struct cgroup *cgroup)
- {
- if (static_branch_likely(&psi_disabled))
- return 0;
- cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu);
- if (!cgroup->psi.pcpu)
- return -ENOMEM;
- group_init(&cgroup->psi);
- return 0;
- }
- void psi_cgroup_free(struct cgroup *cgroup)
- {
- if (static_branch_likely(&psi_disabled))
- return;
- cancel_delayed_work_sync(&cgroup->psi.avgs_work);
- free_percpu(cgroup->psi.pcpu);
- /* All triggers must be removed by now */
- WARN_ONCE(cgroup->psi.poll_states, "psi: trigger leak\n");
- }
- /**
- * cgroup_move_task - move task to a different cgroup
- * @task: the task
- * @to: the target css_set
- *
- * Move task to a new cgroup and safely migrate its associated stall
- * state between the different groups.
- *
- * This function acquires the task's rq lock to lock out concurrent
- * changes to the task's scheduling state and - in case the task is
- * running - concurrent changes to its stall state.
- */
- void cgroup_move_task(struct task_struct *task, struct css_set *to)
- {
- unsigned int task_flags = 0;
- struct rq_flags rf;
- struct rq *rq;
- if (static_branch_likely(&psi_disabled)) {
- /*
- * Lame to do this here, but the scheduler cannot be locked
- * from the outside, so we move cgroups from inside sched/.
- */
- rcu_assign_pointer(task->cgroups, to);
- return;
- }
- rq = task_rq_lock(task, &rf);
- if (task_on_rq_queued(task))
- task_flags = TSK_RUNNING;
- else if (task->in_iowait)
- task_flags = TSK_IOWAIT;
- if (task->flags & PF_MEMSTALL)
- task_flags |= TSK_MEMSTALL;
- if (task_flags)
- psi_task_change(task, task_flags, 0);
- /* See comment above */
- rcu_assign_pointer(task->cgroups, to);
- if (task_flags)
- psi_task_change(task, 0, task_flags);
- task_rq_unlock(rq, task, &rf);
- }
- #endif /* CONFIG_CGROUPS */
- int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
- {
- int full;
- u64 now;
- if (static_branch_likely(&psi_disabled))
- return -EOPNOTSUPP;
- /* Update averages before reporting them */
- mutex_lock(&group->avgs_lock);
- now = sched_clock();
- collect_percpu_times(group, PSI_AVGS, NULL);
- if (now >= group->avg_next_update)
- group->avg_next_update = update_averages(group, now);
- mutex_unlock(&group->avgs_lock);
- for (full = 0; full < 2 - (res == PSI_CPU); full++) {
- unsigned long avg[3];
- u64 total;
- int w;
- for (w = 0; w < 3; w++)
- avg[w] = group->avg[res * 2 + full][w];
- total = div_u64(group->total[PSI_AVGS][res * 2 + full],
- NSEC_PER_USEC);
- seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
- full ? "full" : "some",
- LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
- LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
- LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
- total);
- }
- return 0;
- }
- static int psi_io_show(struct seq_file *m, void *v)
- {
- return psi_show(m, &psi_system, PSI_IO);
- }
- static int psi_memory_show(struct seq_file *m, void *v)
- {
- return psi_show(m, &psi_system, PSI_MEM);
- }
- static int psi_cpu_show(struct seq_file *m, void *v)
- {
- return psi_show(m, &psi_system, PSI_CPU);
- }
- static int psi_io_open(struct inode *inode, struct file *file)
- {
- return single_open(file, psi_io_show, NULL);
- }
- static int psi_memory_open(struct inode *inode, struct file *file)
- {
- return single_open(file, psi_memory_show, NULL);
- }
- static int psi_cpu_open(struct inode *inode, struct file *file)
- {
- return single_open(file, psi_cpu_show, NULL);
- }
- struct psi_trigger *psi_trigger_create(struct psi_group *group,
- char *buf, size_t nbytes, enum psi_res res)
- {
- struct psi_trigger *t;
- enum psi_states state;
- u32 threshold_us;
- u32 window_us;
- if (static_branch_likely(&psi_disabled))
- return ERR_PTR(-EOPNOTSUPP);
- if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
- state = PSI_IO_SOME + res * 2;
- else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
- state = PSI_IO_FULL + res * 2;
- else
- return ERR_PTR(-EINVAL);
- if (state >= PSI_NONIDLE)
- return ERR_PTR(-EINVAL);
- if (window_us < WINDOW_MIN_US ||
- window_us > WINDOW_MAX_US)
- return ERR_PTR(-EINVAL);
- /* Check threshold */
- if (threshold_us == 0 || threshold_us > window_us)
- return ERR_PTR(-EINVAL);
- t = kmalloc(sizeof(*t), GFP_KERNEL);
- if (!t)
- return ERR_PTR(-ENOMEM);
- t->group = group;
- t->state = state;
- t->threshold = threshold_us * NSEC_PER_USEC;
- t->win.size = window_us * NSEC_PER_USEC;
- window_reset(&t->win, 0, 0, 0);
- t->event = 0;
- t->last_event_time = 0;
- init_waitqueue_head(&t->event_wait);
- kref_init(&t->refcount);
- mutex_lock(&group->trigger_lock);
- if (!rcu_access_pointer(group->poll_kworker)) {
- struct sched_param param = {
- .sched_priority = 1,
- };
- struct kthread_worker *kworker;
- kworker = kthread_create_worker(0, "psimon");
- if (IS_ERR(kworker)) {
- kfree(t);
- mutex_unlock(&group->trigger_lock);
- return ERR_CAST(kworker);
- }
- sched_setscheduler_nocheck(kworker->task, SCHED_FIFO, ¶m);
- kthread_init_delayed_work(&group->poll_work,
- psi_poll_work);
- rcu_assign_pointer(group->poll_kworker, kworker);
- }
- list_add(&t->node, &group->triggers);
- group->poll_min_period = min(group->poll_min_period,
- div_u64(t->win.size, UPDATES_PER_WINDOW));
- group->nr_triggers[t->state]++;
- group->poll_states |= (1 << t->state);
- mutex_unlock(&group->trigger_lock);
- return t;
- }
- static void psi_trigger_destroy(struct kref *ref)
- {
- struct psi_trigger *t = container_of(ref, struct psi_trigger, refcount);
- struct psi_group *group = t->group;
- struct kthread_worker *kworker_to_destroy = NULL;
- if (static_branch_likely(&psi_disabled))
- return;
- /*
- * Wakeup waiters to stop polling. Can happen if cgroup is deleted
- * from under a polling process.
- */
- wake_up_interruptible(&t->event_wait);
- mutex_lock(&group->trigger_lock);
- if (!list_empty(&t->node)) {
- struct psi_trigger *tmp;
- u64 period = ULLONG_MAX;
- list_del(&t->node);
- group->nr_triggers[t->state]--;
- if (!group->nr_triggers[t->state])
- group->poll_states &= ~(1 << t->state);
- /* reset min update period for the remaining triggers */
- list_for_each_entry(tmp, &group->triggers, node)
- period = min(period, div_u64(tmp->win.size,
- UPDATES_PER_WINDOW));
- group->poll_min_period = period;
- /* Destroy poll_kworker when the last trigger is destroyed */
- if (group->poll_states == 0) {
- group->polling_until = 0;
- kworker_to_destroy = rcu_dereference_protected(
- group->poll_kworker,
- lockdep_is_held(&group->trigger_lock));
- rcu_assign_pointer(group->poll_kworker, NULL);
- }
- }
- mutex_unlock(&group->trigger_lock);
- /*
- * Wait for both *trigger_ptr from psi_trigger_replace and
- * poll_kworker RCUs to complete their read-side critical sections
- * before destroying the trigger and optionally the poll_kworker
- */
- synchronize_rcu();
- /*
- * Destroy the kworker after releasing trigger_lock to prevent a
- * deadlock while waiting for psi_poll_work to acquire trigger_lock
- */
- if (kworker_to_destroy) {
- /*
- * After the RCU grace period has expired, the worker
- * can no longer be found through group->poll_kworker.
- * But it might have been already scheduled before
- * that - deschedule it cleanly before destroying it.
- */
- kthread_cancel_delayed_work_sync(&group->poll_work);
- atomic_set(&group->poll_scheduled, 0);
- kthread_destroy_worker(kworker_to_destroy);
- }
- pr_info("update_trigger:%s, old:%p\n", __func__, t);
- kfree(t);
- }
- void psi_trigger_replace(void **trigger_ptr, struct psi_trigger *new)
- {
- struct psi_trigger *old = *trigger_ptr;
- if (static_branch_likely(&psi_disabled))
- return;
- rcu_assign_pointer(*trigger_ptr, new);
- if (old)
- kref_put(&old->refcount, psi_trigger_destroy);
- }
- unsigned int psi_trigger_poll(void **trigger_ptr, struct file *file,
- poll_table *wait)
- {
- unsigned int ret = DEFAULT_POLLMASK;
- struct psi_trigger *t;
- if (static_branch_likely(&psi_disabled))
- return DEFAULT_POLLMASK | POLLERR | POLLPRI;
- rcu_read_lock();
- t = rcu_dereference(*(void __rcu __force **)trigger_ptr);
- if (!t) {
- rcu_read_unlock();
- return DEFAULT_POLLMASK | POLLERR | POLLPRI;
- }
- kref_get(&t->refcount);
- rcu_read_unlock();
- poll_wait(file, &t->event_wait, wait);
- if (cmpxchg(&t->event, 1, 0) == 1) {
- pr_info("%s: t:%p triggered!\n",
- __func__, t);
- ret |= POLLPRI;
- }
- kref_put(&t->refcount, psi_trigger_destroy);
- return ret;
- }
- static ssize_t psi_write(struct file *file, const char __user *user_buf,
- size_t nbytes, enum psi_res res)
- {
- char buf[32];
- size_t buf_size;
- struct seq_file *seq;
- struct psi_trigger *new;
- if (static_branch_likely(&psi_disabled))
- return -EOPNOTSUPP;
- if (!nbytes)
- return -EINVAL;
- buf_size = min(nbytes, sizeof(buf));
- if (copy_from_user(buf, user_buf, buf_size))
- return -EFAULT;
- buf[buf_size - 1] = '\0';
- new = psi_trigger_create(&psi_system, buf, nbytes, res);
- if (IS_ERR(new))
- return PTR_ERR(new);
- seq = file->private_data;
- /* Take seq->lock to protect seq->private from concurrent writes */
- mutex_lock(&seq->lock);
- psi_trigger_replace(&seq->private, new);
- mutex_unlock(&seq->lock);
- pr_info("%s: new:%p\n", __func__, new);
- return nbytes;
- }
- static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
- size_t nbytes, loff_t *ppos)
- {
- return psi_write(file, user_buf, nbytes, PSI_IO);
- }
- static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
- size_t nbytes, loff_t *ppos)
- {
- return psi_write(file, user_buf, nbytes, PSI_MEM);
- }
- static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
- size_t nbytes, loff_t *ppos)
- {
- return psi_write(file, user_buf, nbytes, PSI_CPU);
- }
- static unsigned int psi_fop_poll(struct file *file, poll_table *wait)
- {
- struct seq_file *seq = file->private_data;
- return psi_trigger_poll(&seq->private, file, wait);
- }
- static int psi_fop_release(struct inode *inode, struct file *file)
- {
- struct seq_file *seq = file->private_data;
- psi_trigger_replace(&seq->private, NULL);
- return single_release(inode, file);
- }
- static const struct file_operations psi_io_fops = {
- .open = psi_io_open,
- .read = seq_read,
- .llseek = seq_lseek,
- .write = psi_io_write,
- .poll = psi_fop_poll,
- .release = psi_fop_release,
- };
- static const struct file_operations psi_memory_fops = {
- .open = psi_memory_open,
- .read = seq_read,
- .llseek = seq_lseek,
- .write = psi_memory_write,
- .poll = psi_fop_poll,
- .release = psi_fop_release,
- };
- static const struct file_operations psi_cpu_fops = {
- .open = psi_cpu_open,
- .read = seq_read,
- .llseek = seq_lseek,
- .write = psi_cpu_write,
- .poll = psi_fop_poll,
- .release = psi_fop_release,
- };
- static int __init psi_proc_init(void)
- {
- proc_mkdir("pressure", NULL);
- proc_create("pressure/io", 0, NULL, &psi_io_fops);
- proc_create("pressure/memory", 0, NULL, &psi_memory_fops);
- proc_create("pressure/cpu", 0, NULL, &psi_cpu_fops);
- return 0;
- }
- module_init(psi_proc_init);
|