123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471 |
- /*
- * sched_clock for unstable cpu clocks
- *
- * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
- *
- * Updates and enhancements:
- * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
- *
- * Based on code by:
- * Ingo Molnar <mingo@redhat.com>
- * Guillaume Chazarain <guichaz@gmail.com>
- *
- *
- * What:
- *
- * cpu_clock(i) provides a fast (execution time) high resolution
- * clock with bounded drift between CPUs. The value of cpu_clock(i)
- * is monotonic for constant i. The timestamp returned is in nanoseconds.
- *
- * ######################### BIG FAT WARNING ##########################
- * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
- * # go backwards !! #
- * ####################################################################
- *
- * There is no strict promise about the base, although it tends to start
- * at 0 on boot (but people really shouldn't rely on that).
- *
- * cpu_clock(i) -- can be used from any context, including NMI.
- * local_clock() -- is cpu_clock() on the current cpu.
- *
- * sched_clock_cpu(i)
- *
- * How:
- *
- * The implementation either uses sched_clock() when
- * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
- * sched_clock() is assumed to provide these properties (mostly it means
- * the architecture provides a globally synchronized highres time source).
- *
- * Otherwise it tries to create a semi stable clock from a mixture of other
- * clocks, including:
- *
- * - GTOD (clock monotomic)
- * - sched_clock()
- * - explicit idle events
- *
- * We use GTOD as base and use sched_clock() deltas to improve resolution. The
- * deltas are filtered to provide monotonicity and keeping it within an
- * expected window.
- *
- * Furthermore, explicit sleep and wakeup hooks allow us to account for time
- * that is otherwise invisible (TSC gets stopped).
- *
- */
- #include <linux/spinlock.h>
- #include <linux/hardirq.h>
- #include <linux/export.h>
- #include <linux/percpu.h>
- #include <linux/ktime.h>
- #include <linux/sched.h>
- #include <linux/nmi.h>
- #include <linux/sched/clock.h>
- #include <linux/static_key.h>
- #include <linux/workqueue.h>
- #include <linux/compiler.h>
- #include <linux/tick.h>
- #include <linux/init.h>
- /*
- * Scheduler clock - returns current time in nanosec units.
- * This is default implementation.
- * Architectures and sub-architectures can override this.
- */
- unsigned long long __weak sched_clock(void)
- {
- return (unsigned long long)(jiffies - INITIAL_JIFFIES)
- * (NSEC_PER_SEC / HZ);
- }
- EXPORT_SYMBOL_GPL(sched_clock);
- __read_mostly int sched_clock_running;
- void sched_clock_init(void)
- {
- sched_clock_running = 1;
- }
- #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
- /*
- * We must start with !__sched_clock_stable because the unstable -> stable
- * transition is accurate, while the stable -> unstable transition is not.
- *
- * Similarly we start with __sched_clock_stable_early, thereby assuming we
- * will become stable, such that there's only a single 1 -> 0 transition.
- */
- static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable);
- static int __sched_clock_stable_early = 1;
- /*
- * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset
- */
- __read_mostly u64 __sched_clock_offset;
- static __read_mostly u64 __gtod_offset;
- struct sched_clock_data {
- u64 tick_raw;
- u64 tick_gtod;
- u64 clock;
- };
- static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
- static inline struct sched_clock_data *this_scd(void)
- {
- return this_cpu_ptr(&sched_clock_data);
- }
- static inline struct sched_clock_data *cpu_sdc(int cpu)
- {
- return &per_cpu(sched_clock_data, cpu);
- }
- int sched_clock_stable(void)
- {
- return static_branch_likely(&__sched_clock_stable);
- }
- static void __scd_stamp(struct sched_clock_data *scd)
- {
- scd->tick_gtod = ktime_get_ns();
- scd->tick_raw = sched_clock();
- }
- static void __set_sched_clock_stable(void)
- {
- struct sched_clock_data *scd;
- /*
- * Since we're still unstable and the tick is already running, we have
- * to disable IRQs in order to get a consistent scd->tick* reading.
- */
- local_irq_disable();
- scd = this_scd();
- /*
- * Attempt to make the (initial) unstable->stable transition continuous.
- */
- __sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw);
- local_irq_enable();
- printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
- scd->tick_gtod, __gtod_offset,
- scd->tick_raw, __sched_clock_offset);
- static_branch_enable(&__sched_clock_stable);
- tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
- }
- /*
- * If we ever get here, we're screwed, because we found out -- typically after
- * the fact -- that TSC wasn't good. This means all our clocksources (including
- * ktime) could have reported wrong values.
- *
- * What we do here is an attempt to fix up and continue sort of where we left
- * off in a coherent manner.
- *
- * The only way to fully avoid random clock jumps is to boot with:
- * "tsc=unstable".
- */
- static void __sched_clock_work(struct work_struct *work)
- {
- struct sched_clock_data *scd;
- int cpu;
- /* take a current timestamp and set 'now' */
- preempt_disable();
- scd = this_scd();
- __scd_stamp(scd);
- scd->clock = scd->tick_gtod + __gtod_offset;
- preempt_enable();
- /* clone to all CPUs */
- for_each_possible_cpu(cpu)
- per_cpu(sched_clock_data, cpu) = *scd;
- printk(KERN_WARNING "TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n");
- printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
- scd->tick_gtod, __gtod_offset,
- scd->tick_raw, __sched_clock_offset);
- static_branch_disable(&__sched_clock_stable);
- }
- static DECLARE_WORK(sched_clock_work, __sched_clock_work);
- static void __clear_sched_clock_stable(void)
- {
- if (!sched_clock_stable())
- return;
- tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
- schedule_work(&sched_clock_work);
- }
- void clear_sched_clock_stable(void)
- {
- __sched_clock_stable_early = 0;
- smp_mb(); /* matches sched_clock_init_late() */
- if (sched_clock_running == 2)
- __clear_sched_clock_stable();
- }
- /*
- * We run this as late_initcall() such that it runs after all built-in drivers,
- * notably: acpi_processor and intel_idle, which can mark the TSC as unstable.
- */
- static int __init sched_clock_init_late(void)
- {
- sched_clock_running = 2;
- /*
- * Ensure that it is impossible to not do a static_key update.
- *
- * Either {set,clear}_sched_clock_stable() must see sched_clock_running
- * and do the update, or we must see their __sched_clock_stable_early
- * and do the update, or both.
- */
- smp_mb(); /* matches {set,clear}_sched_clock_stable() */
- if (__sched_clock_stable_early)
- __set_sched_clock_stable();
- return 0;
- }
- late_initcall(sched_clock_init_late);
- /*
- * min, max except they take wrapping into account
- */
- static inline u64 wrap_min(u64 x, u64 y)
- {
- return (s64)(x - y) < 0 ? x : y;
- }
- static inline u64 wrap_max(u64 x, u64 y)
- {
- return (s64)(x - y) > 0 ? x : y;
- }
- /*
- * update the percpu scd from the raw @now value
- *
- * - filter out backward motion
- * - use the GTOD tick value to create a window to filter crazy TSC values
- */
- static u64 sched_clock_local(struct sched_clock_data *scd)
- {
- u64 now, clock, old_clock, min_clock, max_clock, gtod;
- s64 delta;
- again:
- now = sched_clock();
- delta = now - scd->tick_raw;
- if (unlikely(delta < 0))
- delta = 0;
- old_clock = scd->clock;
- /*
- * scd->clock = clamp(scd->tick_gtod + delta,
- * max(scd->tick_gtod, scd->clock),
- * scd->tick_gtod + TICK_NSEC);
- */
- gtod = scd->tick_gtod + __gtod_offset;
- clock = gtod + delta;
- min_clock = wrap_max(gtod, old_clock);
- max_clock = wrap_max(old_clock, gtod + TICK_NSEC);
- clock = wrap_max(clock, min_clock);
- clock = wrap_min(clock, max_clock);
- if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
- goto again;
- return clock;
- }
- static u64 sched_clock_remote(struct sched_clock_data *scd)
- {
- struct sched_clock_data *my_scd = this_scd();
- u64 this_clock, remote_clock;
- u64 *ptr, old_val, val;
- #if BITS_PER_LONG != 64
- again:
- /*
- * Careful here: The local and the remote clock values need to
- * be read out atomic as we need to compare the values and
- * then update either the local or the remote side. So the
- * cmpxchg64 below only protects one readout.
- *
- * We must reread via sched_clock_local() in the retry case on
- * 32bit as an NMI could use sched_clock_local() via the
- * tracer and hit between the readout of
- * the low32bit and the high 32bit portion.
- */
- this_clock = sched_clock_local(my_scd);
- /*
- * We must enforce atomic readout on 32bit, otherwise the
- * update on the remote cpu can hit inbetween the readout of
- * the low32bit and the high 32bit portion.
- */
- remote_clock = cmpxchg64(&scd->clock, 0, 0);
- #else
- /*
- * On 64bit the read of [my]scd->clock is atomic versus the
- * update, so we can avoid the above 32bit dance.
- */
- sched_clock_local(my_scd);
- again:
- this_clock = my_scd->clock;
- remote_clock = scd->clock;
- #endif
- /*
- * Use the opportunity that we have both locks
- * taken to couple the two clocks: we take the
- * larger time as the latest time for both
- * runqueues. (this creates monotonic movement)
- */
- if (likely((s64)(remote_clock - this_clock) < 0)) {
- ptr = &scd->clock;
- old_val = remote_clock;
- val = this_clock;
- } else {
- /*
- * Should be rare, but possible:
- */
- ptr = &my_scd->clock;
- old_val = this_clock;
- val = remote_clock;
- }
- if (cmpxchg64(ptr, old_val, val) != old_val)
- goto again;
- return val;
- }
- /*
- * Similar to cpu_clock(), but requires local IRQs to be disabled.
- *
- * See cpu_clock().
- */
- u64 sched_clock_cpu(int cpu)
- {
- struct sched_clock_data *scd;
- u64 clock;
- if (sched_clock_stable())
- return sched_clock() + __sched_clock_offset;
- if (unlikely(!sched_clock_running))
- return 0ull;
- preempt_disable_notrace();
- scd = cpu_sdc(cpu);
- if (cpu != smp_processor_id())
- clock = sched_clock_remote(scd);
- else
- clock = sched_clock_local(scd);
- preempt_enable_notrace();
- return clock;
- }
- EXPORT_SYMBOL_GPL(sched_clock_cpu);
- void sched_clock_tick(void)
- {
- struct sched_clock_data *scd;
- if (sched_clock_stable())
- return;
- if (unlikely(!sched_clock_running))
- return;
- WARN_ON_ONCE(!irqs_disabled());
- scd = this_scd();
- __scd_stamp(scd);
- sched_clock_local(scd);
- }
- void sched_clock_tick_stable(void)
- {
- u64 gtod, clock;
- if (!sched_clock_stable())
- return;
- /*
- * Called under watchdog_lock.
- *
- * The watchdog just found this TSC to (still) be stable, so now is a
- * good moment to update our __gtod_offset. Because once we find the
- * TSC to be unstable, any computation will be computing crap.
- */
- local_irq_disable();
- gtod = ktime_get_ns();
- clock = sched_clock();
- __gtod_offset = (clock + __sched_clock_offset) - gtod;
- local_irq_enable();
- }
- /*
- * We are going deep-idle (irqs are disabled):
- */
- void sched_clock_idle_sleep_event(void)
- {
- sched_clock_cpu(smp_processor_id());
- }
- EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
- /*
- * We just idled; resync with ktime.
- */
- void sched_clock_idle_wakeup_event(void)
- {
- unsigned long flags;
- if (sched_clock_stable())
- return;
- if (unlikely(timekeeping_suspended))
- return;
- local_irq_save(flags);
- sched_clock_tick();
- local_irq_restore(flags);
- }
- EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
- #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
- u64 sched_clock_cpu(int cpu)
- {
- if (unlikely(!sched_clock_running))
- return 0;
- return sched_clock();
- }
- #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
- /*
- * Running clock - returns the time that has elapsed while a guest has been
- * running.
- * On a guest this value should be local_clock minus the time the guest was
- * suspended by the hypervisor (for any reason).
- * On bare metal this function should return the same as local_clock.
- * Architectures and sub-architectures can override this.
- */
- u64 __weak running_clock(void)
- {
- return local_clock();
- }
|