clock.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471
  1. /*
  2. * sched_clock for unstable cpu clocks
  3. *
  4. * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra
  5. *
  6. * Updates and enhancements:
  7. * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
  8. *
  9. * Based on code by:
  10. * Ingo Molnar <mingo@redhat.com>
  11. * Guillaume Chazarain <guichaz@gmail.com>
  12. *
  13. *
  14. * What:
  15. *
  16. * cpu_clock(i) provides a fast (execution time) high resolution
  17. * clock with bounded drift between CPUs. The value of cpu_clock(i)
  18. * is monotonic for constant i. The timestamp returned is in nanoseconds.
  19. *
  20. * ######################### BIG FAT WARNING ##########################
  21. * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
  22. * # go backwards !! #
  23. * ####################################################################
  24. *
  25. * There is no strict promise about the base, although it tends to start
  26. * at 0 on boot (but people really shouldn't rely on that).
  27. *
  28. * cpu_clock(i) -- can be used from any context, including NMI.
  29. * local_clock() -- is cpu_clock() on the current cpu.
  30. *
  31. * sched_clock_cpu(i)
  32. *
  33. * How:
  34. *
  35. * The implementation either uses sched_clock() when
  36. * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
  37. * sched_clock() is assumed to provide these properties (mostly it means
  38. * the architecture provides a globally synchronized highres time source).
  39. *
  40. * Otherwise it tries to create a semi stable clock from a mixture of other
  41. * clocks, including:
  42. *
  43. * - GTOD (clock monotomic)
  44. * - sched_clock()
  45. * - explicit idle events
  46. *
  47. * We use GTOD as base and use sched_clock() deltas to improve resolution. The
  48. * deltas are filtered to provide monotonicity and keeping it within an
  49. * expected window.
  50. *
  51. * Furthermore, explicit sleep and wakeup hooks allow us to account for time
  52. * that is otherwise invisible (TSC gets stopped).
  53. *
  54. */
  55. #include <linux/spinlock.h>
  56. #include <linux/hardirq.h>
  57. #include <linux/export.h>
  58. #include <linux/percpu.h>
  59. #include <linux/ktime.h>
  60. #include <linux/sched.h>
  61. #include <linux/nmi.h>
  62. #include <linux/sched/clock.h>
  63. #include <linux/static_key.h>
  64. #include <linux/workqueue.h>
  65. #include <linux/compiler.h>
  66. #include <linux/tick.h>
  67. #include <linux/init.h>
  68. /*
  69. * Scheduler clock - returns current time in nanosec units.
  70. * This is default implementation.
  71. * Architectures and sub-architectures can override this.
  72. */
  73. unsigned long long __weak sched_clock(void)
  74. {
  75. return (unsigned long long)(jiffies - INITIAL_JIFFIES)
  76. * (NSEC_PER_SEC / HZ);
  77. }
  78. EXPORT_SYMBOL_GPL(sched_clock);
  79. __read_mostly int sched_clock_running;
  80. void sched_clock_init(void)
  81. {
  82. sched_clock_running = 1;
  83. }
  84. #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
  85. /*
  86. * We must start with !__sched_clock_stable because the unstable -> stable
  87. * transition is accurate, while the stable -> unstable transition is not.
  88. *
  89. * Similarly we start with __sched_clock_stable_early, thereby assuming we
  90. * will become stable, such that there's only a single 1 -> 0 transition.
  91. */
  92. static DEFINE_STATIC_KEY_FALSE(__sched_clock_stable);
  93. static int __sched_clock_stable_early = 1;
  94. /*
  95. * We want: ktime_get_ns() + __gtod_offset == sched_clock() + __sched_clock_offset
  96. */
  97. __read_mostly u64 __sched_clock_offset;
  98. static __read_mostly u64 __gtod_offset;
  99. struct sched_clock_data {
  100. u64 tick_raw;
  101. u64 tick_gtod;
  102. u64 clock;
  103. };
  104. static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
  105. static inline struct sched_clock_data *this_scd(void)
  106. {
  107. return this_cpu_ptr(&sched_clock_data);
  108. }
  109. static inline struct sched_clock_data *cpu_sdc(int cpu)
  110. {
  111. return &per_cpu(sched_clock_data, cpu);
  112. }
  113. int sched_clock_stable(void)
  114. {
  115. return static_branch_likely(&__sched_clock_stable);
  116. }
  117. static void __scd_stamp(struct sched_clock_data *scd)
  118. {
  119. scd->tick_gtod = ktime_get_ns();
  120. scd->tick_raw = sched_clock();
  121. }
  122. static void __set_sched_clock_stable(void)
  123. {
  124. struct sched_clock_data *scd;
  125. /*
  126. * Since we're still unstable and the tick is already running, we have
  127. * to disable IRQs in order to get a consistent scd->tick* reading.
  128. */
  129. local_irq_disable();
  130. scd = this_scd();
  131. /*
  132. * Attempt to make the (initial) unstable->stable transition continuous.
  133. */
  134. __sched_clock_offset = (scd->tick_gtod + __gtod_offset) - (scd->tick_raw);
  135. local_irq_enable();
  136. printk(KERN_INFO "sched_clock: Marking stable (%lld, %lld)->(%lld, %lld)\n",
  137. scd->tick_gtod, __gtod_offset,
  138. scd->tick_raw, __sched_clock_offset);
  139. static_branch_enable(&__sched_clock_stable);
  140. tick_dep_clear(TICK_DEP_BIT_CLOCK_UNSTABLE);
  141. }
  142. /*
  143. * If we ever get here, we're screwed, because we found out -- typically after
  144. * the fact -- that TSC wasn't good. This means all our clocksources (including
  145. * ktime) could have reported wrong values.
  146. *
  147. * What we do here is an attempt to fix up and continue sort of where we left
  148. * off in a coherent manner.
  149. *
  150. * The only way to fully avoid random clock jumps is to boot with:
  151. * "tsc=unstable".
  152. */
  153. static void __sched_clock_work(struct work_struct *work)
  154. {
  155. struct sched_clock_data *scd;
  156. int cpu;
  157. /* take a current timestamp and set 'now' */
  158. preempt_disable();
  159. scd = this_scd();
  160. __scd_stamp(scd);
  161. scd->clock = scd->tick_gtod + __gtod_offset;
  162. preempt_enable();
  163. /* clone to all CPUs */
  164. for_each_possible_cpu(cpu)
  165. per_cpu(sched_clock_data, cpu) = *scd;
  166. printk(KERN_WARNING "TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.\n");
  167. printk(KERN_INFO "sched_clock: Marking unstable (%lld, %lld)<-(%lld, %lld)\n",
  168. scd->tick_gtod, __gtod_offset,
  169. scd->tick_raw, __sched_clock_offset);
  170. static_branch_disable(&__sched_clock_stable);
  171. }
  172. static DECLARE_WORK(sched_clock_work, __sched_clock_work);
  173. static void __clear_sched_clock_stable(void)
  174. {
  175. if (!sched_clock_stable())
  176. return;
  177. tick_dep_set(TICK_DEP_BIT_CLOCK_UNSTABLE);
  178. schedule_work(&sched_clock_work);
  179. }
  180. void clear_sched_clock_stable(void)
  181. {
  182. __sched_clock_stable_early = 0;
  183. smp_mb(); /* matches sched_clock_init_late() */
  184. if (sched_clock_running == 2)
  185. __clear_sched_clock_stable();
  186. }
  187. /*
  188. * We run this as late_initcall() such that it runs after all built-in drivers,
  189. * notably: acpi_processor and intel_idle, which can mark the TSC as unstable.
  190. */
  191. static int __init sched_clock_init_late(void)
  192. {
  193. sched_clock_running = 2;
  194. /*
  195. * Ensure that it is impossible to not do a static_key update.
  196. *
  197. * Either {set,clear}_sched_clock_stable() must see sched_clock_running
  198. * and do the update, or we must see their __sched_clock_stable_early
  199. * and do the update, or both.
  200. */
  201. smp_mb(); /* matches {set,clear}_sched_clock_stable() */
  202. if (__sched_clock_stable_early)
  203. __set_sched_clock_stable();
  204. return 0;
  205. }
  206. late_initcall(sched_clock_init_late);
  207. /*
  208. * min, max except they take wrapping into account
  209. */
  210. static inline u64 wrap_min(u64 x, u64 y)
  211. {
  212. return (s64)(x - y) < 0 ? x : y;
  213. }
  214. static inline u64 wrap_max(u64 x, u64 y)
  215. {
  216. return (s64)(x - y) > 0 ? x : y;
  217. }
  218. /*
  219. * update the percpu scd from the raw @now value
  220. *
  221. * - filter out backward motion
  222. * - use the GTOD tick value to create a window to filter crazy TSC values
  223. */
  224. static u64 sched_clock_local(struct sched_clock_data *scd)
  225. {
  226. u64 now, clock, old_clock, min_clock, max_clock, gtod;
  227. s64 delta;
  228. again:
  229. now = sched_clock();
  230. delta = now - scd->tick_raw;
  231. if (unlikely(delta < 0))
  232. delta = 0;
  233. old_clock = scd->clock;
  234. /*
  235. * scd->clock = clamp(scd->tick_gtod + delta,
  236. * max(scd->tick_gtod, scd->clock),
  237. * scd->tick_gtod + TICK_NSEC);
  238. */
  239. gtod = scd->tick_gtod + __gtod_offset;
  240. clock = gtod + delta;
  241. min_clock = wrap_max(gtod, old_clock);
  242. max_clock = wrap_max(old_clock, gtod + TICK_NSEC);
  243. clock = wrap_max(clock, min_clock);
  244. clock = wrap_min(clock, max_clock);
  245. if (cmpxchg64(&scd->clock, old_clock, clock) != old_clock)
  246. goto again;
  247. return clock;
  248. }
  249. static u64 sched_clock_remote(struct sched_clock_data *scd)
  250. {
  251. struct sched_clock_data *my_scd = this_scd();
  252. u64 this_clock, remote_clock;
  253. u64 *ptr, old_val, val;
  254. #if BITS_PER_LONG != 64
  255. again:
  256. /*
  257. * Careful here: The local and the remote clock values need to
  258. * be read out atomic as we need to compare the values and
  259. * then update either the local or the remote side. So the
  260. * cmpxchg64 below only protects one readout.
  261. *
  262. * We must reread via sched_clock_local() in the retry case on
  263. * 32bit as an NMI could use sched_clock_local() via the
  264. * tracer and hit between the readout of
  265. * the low32bit and the high 32bit portion.
  266. */
  267. this_clock = sched_clock_local(my_scd);
  268. /*
  269. * We must enforce atomic readout on 32bit, otherwise the
  270. * update on the remote cpu can hit inbetween the readout of
  271. * the low32bit and the high 32bit portion.
  272. */
  273. remote_clock = cmpxchg64(&scd->clock, 0, 0);
  274. #else
  275. /*
  276. * On 64bit the read of [my]scd->clock is atomic versus the
  277. * update, so we can avoid the above 32bit dance.
  278. */
  279. sched_clock_local(my_scd);
  280. again:
  281. this_clock = my_scd->clock;
  282. remote_clock = scd->clock;
  283. #endif
  284. /*
  285. * Use the opportunity that we have both locks
  286. * taken to couple the two clocks: we take the
  287. * larger time as the latest time for both
  288. * runqueues. (this creates monotonic movement)
  289. */
  290. if (likely((s64)(remote_clock - this_clock) < 0)) {
  291. ptr = &scd->clock;
  292. old_val = remote_clock;
  293. val = this_clock;
  294. } else {
  295. /*
  296. * Should be rare, but possible:
  297. */
  298. ptr = &my_scd->clock;
  299. old_val = this_clock;
  300. val = remote_clock;
  301. }
  302. if (cmpxchg64(ptr, old_val, val) != old_val)
  303. goto again;
  304. return val;
  305. }
  306. /*
  307. * Similar to cpu_clock(), but requires local IRQs to be disabled.
  308. *
  309. * See cpu_clock().
  310. */
  311. u64 sched_clock_cpu(int cpu)
  312. {
  313. struct sched_clock_data *scd;
  314. u64 clock;
  315. if (sched_clock_stable())
  316. return sched_clock() + __sched_clock_offset;
  317. if (unlikely(!sched_clock_running))
  318. return 0ull;
  319. preempt_disable_notrace();
  320. scd = cpu_sdc(cpu);
  321. if (cpu != smp_processor_id())
  322. clock = sched_clock_remote(scd);
  323. else
  324. clock = sched_clock_local(scd);
  325. preempt_enable_notrace();
  326. return clock;
  327. }
  328. EXPORT_SYMBOL_GPL(sched_clock_cpu);
  329. void sched_clock_tick(void)
  330. {
  331. struct sched_clock_data *scd;
  332. if (sched_clock_stable())
  333. return;
  334. if (unlikely(!sched_clock_running))
  335. return;
  336. WARN_ON_ONCE(!irqs_disabled());
  337. scd = this_scd();
  338. __scd_stamp(scd);
  339. sched_clock_local(scd);
  340. }
  341. void sched_clock_tick_stable(void)
  342. {
  343. u64 gtod, clock;
  344. if (!sched_clock_stable())
  345. return;
  346. /*
  347. * Called under watchdog_lock.
  348. *
  349. * The watchdog just found this TSC to (still) be stable, so now is a
  350. * good moment to update our __gtod_offset. Because once we find the
  351. * TSC to be unstable, any computation will be computing crap.
  352. */
  353. local_irq_disable();
  354. gtod = ktime_get_ns();
  355. clock = sched_clock();
  356. __gtod_offset = (clock + __sched_clock_offset) - gtod;
  357. local_irq_enable();
  358. }
  359. /*
  360. * We are going deep-idle (irqs are disabled):
  361. */
  362. void sched_clock_idle_sleep_event(void)
  363. {
  364. sched_clock_cpu(smp_processor_id());
  365. }
  366. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  367. /*
  368. * We just idled; resync with ktime.
  369. */
  370. void sched_clock_idle_wakeup_event(void)
  371. {
  372. unsigned long flags;
  373. if (sched_clock_stable())
  374. return;
  375. if (unlikely(timekeeping_suspended))
  376. return;
  377. local_irq_save(flags);
  378. sched_clock_tick();
  379. local_irq_restore(flags);
  380. }
  381. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  382. #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
  383. u64 sched_clock_cpu(int cpu)
  384. {
  385. if (unlikely(!sched_clock_running))
  386. return 0;
  387. return sched_clock();
  388. }
  389. #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
  390. /*
  391. * Running clock - returns the time that has elapsed while a guest has been
  392. * running.
  393. * On a guest this value should be local_clock minus the time the guest was
  394. * suspended by the hypervisor (for any reason).
  395. * On bare metal this function should return the same as local_clock.
  396. * Architectures and sub-architectures can override this.
  397. */
  398. u64 __weak running_clock(void)
  399. {
  400. return local_clock();
  401. }