pid.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675
  1. /*
  2. * Generic pidhash and scalable, time-bounded PID allocator
  3. *
  4. * (C) 2002-2003 Nadia Yvette Chambers, IBM
  5. * (C) 2004 Nadia Yvette Chambers, Oracle
  6. * (C) 2002-2004 Ingo Molnar, Red Hat
  7. *
  8. * pid-structures are backing objects for tasks sharing a given ID to chain
  9. * against. There is very little to them aside from hashing them and
  10. * parking tasks using given ID's on a list.
  11. *
  12. * The hash is always changed with the tasklist_lock write-acquired,
  13. * and the hash is only accessed with the tasklist_lock at least
  14. * read-acquired, so there's no additional SMP locking needed here.
  15. *
  16. * We have a list of bitmap pages, which bitmaps represent the PID space.
  17. * Allocating and freeing PIDs is completely lockless. The worst-case
  18. * allocation scenario when all but one out of 1 million PIDs possible are
  19. * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
  20. * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
  21. *
  22. * Pid namespaces:
  23. * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  24. * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  25. * Many thanks to Oleg Nesterov for comments and help
  26. *
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/export.h>
  30. #include <linux/slab.h>
  31. #include <linux/init.h>
  32. #include <linux/rculist.h>
  33. #include <linux/bootmem.h>
  34. #include <linux/hash.h>
  35. #include <linux/pid_namespace.h>
  36. #include <linux/init_task.h>
  37. #include <linux/syscalls.h>
  38. #include <linux/proc_ns.h>
  39. #include <linux/proc_fs.h>
  40. #include <linux/anon_inodes.h>
  41. #include <linux/sched/signal.h>
  42. #include <linux/sched/task.h>
  43. #define pid_hashfn(nr, ns) \
  44. hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
  45. static struct hlist_head *pid_hash;
  46. static unsigned int pidhash_shift = 4;
  47. struct pid init_struct_pid = INIT_STRUCT_PID;
  48. int pid_max = PID_MAX_DEFAULT;
  49. #define RESERVED_PIDS 300
  50. int pid_max_min = RESERVED_PIDS + 1;
  51. int pid_max_max = PID_MAX_LIMIT;
  52. static inline int mk_pid(struct pid_namespace *pid_ns,
  53. struct pidmap *map, int off)
  54. {
  55. return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
  56. }
  57. #define find_next_offset(map, off) \
  58. find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
  59. /*
  60. * PID-map pages start out as NULL, they get allocated upon
  61. * first use and are never deallocated. This way a low pid_max
  62. * value does not cause lots of bitmaps to be allocated, but
  63. * the scheme scales to up to 4 million PIDs, runtime.
  64. */
  65. struct pid_namespace init_pid_ns = {
  66. .kref = KREF_INIT(2),
  67. .pidmap = {
  68. [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
  69. },
  70. .last_pid = 0,
  71. .nr_hashed = PIDNS_HASH_ADDING,
  72. .level = 0,
  73. .child_reaper = &init_task,
  74. .user_ns = &init_user_ns,
  75. .ns.inum = PROC_PID_INIT_INO,
  76. #ifdef CONFIG_PID_NS
  77. .ns.ops = &pidns_operations,
  78. #endif
  79. };
  80. EXPORT_SYMBOL_GPL(init_pid_ns);
  81. /*
  82. * Note: disable interrupts while the pidmap_lock is held as an
  83. * interrupt might come in and do read_lock(&tasklist_lock).
  84. *
  85. * If we don't disable interrupts there is a nasty deadlock between
  86. * detach_pid()->free_pid() and another cpu that does
  87. * spin_lock(&pidmap_lock) followed by an interrupt routine that does
  88. * read_lock(&tasklist_lock);
  89. *
  90. * After we clean up the tasklist_lock and know there are no
  91. * irq handlers that take it we can leave the interrupts enabled.
  92. * For now it is easier to be safe than to prove it can't happen.
  93. */
  94. static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
  95. static void free_pidmap(struct upid *upid)
  96. {
  97. int nr = upid->nr;
  98. struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
  99. int offset = nr & BITS_PER_PAGE_MASK;
  100. clear_bit(offset, map->page);
  101. atomic_inc(&map->nr_free);
  102. }
  103. /*
  104. * If we started walking pids at 'base', is 'a' seen before 'b'?
  105. */
  106. static int pid_before(int base, int a, int b)
  107. {
  108. /*
  109. * This is the same as saying
  110. *
  111. * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
  112. * and that mapping orders 'a' and 'b' with respect to 'base'.
  113. */
  114. return (unsigned)(a - base) < (unsigned)(b - base);
  115. }
  116. /*
  117. * We might be racing with someone else trying to set pid_ns->last_pid
  118. * at the pid allocation time (there's also a sysctl for this, but racing
  119. * with this one is OK, see comment in kernel/pid_namespace.c about it).
  120. * We want the winner to have the "later" value, because if the
  121. * "earlier" value prevails, then a pid may get reused immediately.
  122. *
  123. * Since pids rollover, it is not sufficient to just pick the bigger
  124. * value. We have to consider where we started counting from.
  125. *
  126. * 'base' is the value of pid_ns->last_pid that we observed when
  127. * we started looking for a pid.
  128. *
  129. * 'pid' is the pid that we eventually found.
  130. */
  131. static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
  132. {
  133. int prev;
  134. int last_write = base;
  135. do {
  136. prev = last_write;
  137. last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
  138. } while ((prev != last_write) && (pid_before(base, last_write, pid)));
  139. }
  140. static int alloc_pidmap(struct pid_namespace *pid_ns)
  141. {
  142. int i, offset, max_scan, pid, last = pid_ns->last_pid;
  143. struct pidmap *map;
  144. pid = last + 1;
  145. if (pid >= pid_max)
  146. pid = RESERVED_PIDS;
  147. offset = pid & BITS_PER_PAGE_MASK;
  148. map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
  149. /*
  150. * If last_pid points into the middle of the map->page we
  151. * want to scan this bitmap block twice, the second time
  152. * we start with offset == 0 (or RESERVED_PIDS).
  153. */
  154. max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
  155. for (i = 0; i <= max_scan; ++i) {
  156. if (unlikely(!map->page)) {
  157. void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  158. /*
  159. * Free the page if someone raced with us
  160. * installing it:
  161. */
  162. spin_lock_irq(&pidmap_lock);
  163. if (!map->page) {
  164. map->page = page;
  165. page = NULL;
  166. }
  167. spin_unlock_irq(&pidmap_lock);
  168. kfree(page);
  169. if (unlikely(!map->page))
  170. return -ENOMEM;
  171. }
  172. if (likely(atomic_read(&map->nr_free))) {
  173. for ( ; ; ) {
  174. if (!test_and_set_bit(offset, map->page)) {
  175. atomic_dec(&map->nr_free);
  176. set_last_pid(pid_ns, last, pid);
  177. return pid;
  178. }
  179. offset = find_next_offset(map, offset);
  180. if (offset >= BITS_PER_PAGE)
  181. break;
  182. pid = mk_pid(pid_ns, map, offset);
  183. if (pid >= pid_max)
  184. break;
  185. }
  186. }
  187. if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
  188. ++map;
  189. offset = 0;
  190. } else {
  191. map = &pid_ns->pidmap[0];
  192. offset = RESERVED_PIDS;
  193. if (unlikely(last == offset))
  194. break;
  195. }
  196. pid = mk_pid(pid_ns, map, offset);
  197. }
  198. return -EAGAIN;
  199. }
  200. int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
  201. {
  202. int offset;
  203. struct pidmap *map, *end;
  204. if (last >= PID_MAX_LIMIT)
  205. return -1;
  206. offset = (last + 1) & BITS_PER_PAGE_MASK;
  207. map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
  208. end = &pid_ns->pidmap[PIDMAP_ENTRIES];
  209. for (; map < end; map++, offset = 0) {
  210. if (unlikely(!map->page))
  211. continue;
  212. offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
  213. if (offset < BITS_PER_PAGE)
  214. return mk_pid(pid_ns, map, offset);
  215. }
  216. return -1;
  217. }
  218. void put_pid(struct pid *pid)
  219. {
  220. struct pid_namespace *ns;
  221. if (!pid)
  222. return;
  223. ns = pid->numbers[pid->level].ns;
  224. if ((atomic_read(&pid->count) == 1) ||
  225. atomic_dec_and_test(&pid->count)) {
  226. kmem_cache_free(ns->pid_cachep, pid);
  227. put_pid_ns(ns);
  228. }
  229. }
  230. EXPORT_SYMBOL_GPL(put_pid);
  231. static void delayed_put_pid(struct rcu_head *rhp)
  232. {
  233. struct pid *pid = container_of(rhp, struct pid, rcu);
  234. put_pid(pid);
  235. }
  236. void free_pid(struct pid *pid)
  237. {
  238. /* We can be called with write_lock_irq(&tasklist_lock) held */
  239. int i;
  240. unsigned long flags;
  241. spin_lock_irqsave(&pidmap_lock, flags);
  242. for (i = 0; i <= pid->level; i++) {
  243. struct upid *upid = pid->numbers + i;
  244. struct pid_namespace *ns = upid->ns;
  245. hlist_del_rcu(&upid->pid_chain);
  246. switch(--ns->nr_hashed) {
  247. case 2:
  248. case 1:
  249. /* When all that is left in the pid namespace
  250. * is the reaper wake up the reaper. The reaper
  251. * may be sleeping in zap_pid_ns_processes().
  252. */
  253. wake_up_process(ns->child_reaper);
  254. break;
  255. case PIDNS_HASH_ADDING:
  256. /* Handle a fork failure of the first process */
  257. WARN_ON(ns->child_reaper);
  258. ns->nr_hashed = 0;
  259. /* fall through */
  260. case 0:
  261. schedule_work(&ns->proc_work);
  262. break;
  263. }
  264. }
  265. spin_unlock_irqrestore(&pidmap_lock, flags);
  266. for (i = 0; i <= pid->level; i++)
  267. free_pidmap(pid->numbers + i);
  268. call_rcu(&pid->rcu, delayed_put_pid);
  269. }
  270. struct pid *alloc_pid(struct pid_namespace *ns)
  271. {
  272. struct pid *pid;
  273. enum pid_type type;
  274. int i, nr;
  275. struct pid_namespace *tmp;
  276. struct upid *upid;
  277. int retval = -ENOMEM;
  278. pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
  279. if (!pid)
  280. return ERR_PTR(retval);
  281. tmp = ns;
  282. pid->level = ns->level;
  283. for (i = ns->level; i >= 0; i--) {
  284. nr = alloc_pidmap(tmp);
  285. if (nr < 0) {
  286. retval = nr;
  287. goto out_free;
  288. }
  289. pid->numbers[i].nr = nr;
  290. pid->numbers[i].ns = tmp;
  291. tmp = tmp->parent;
  292. }
  293. if (unlikely(is_child_reaper(pid))) {
  294. if (pid_ns_prepare_proc(ns)) {
  295. disable_pid_allocation(ns);
  296. goto out_free;
  297. }
  298. }
  299. get_pid_ns(ns);
  300. atomic_set(&pid->count, 1);
  301. for (type = 0; type < PIDTYPE_MAX; ++type)
  302. INIT_HLIST_HEAD(&pid->tasks[type]);
  303. init_waitqueue_head(&pid->wait_pidfd);
  304. upid = pid->numbers + ns->level;
  305. spin_lock_irq(&pidmap_lock);
  306. if (!(ns->nr_hashed & PIDNS_HASH_ADDING))
  307. goto out_unlock;
  308. for ( ; upid >= pid->numbers; --upid) {
  309. hlist_add_head_rcu(&upid->pid_chain,
  310. &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
  311. upid->ns->nr_hashed++;
  312. }
  313. spin_unlock_irq(&pidmap_lock);
  314. return pid;
  315. out_unlock:
  316. spin_unlock_irq(&pidmap_lock);
  317. put_pid_ns(ns);
  318. out_free:
  319. while (++i <= ns->level)
  320. free_pidmap(pid->numbers + i);
  321. kmem_cache_free(ns->pid_cachep, pid);
  322. return ERR_PTR(retval);
  323. }
  324. void disable_pid_allocation(struct pid_namespace *ns)
  325. {
  326. spin_lock_irq(&pidmap_lock);
  327. ns->nr_hashed &= ~PIDNS_HASH_ADDING;
  328. spin_unlock_irq(&pidmap_lock);
  329. }
  330. struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
  331. {
  332. struct upid *pnr;
  333. hlist_for_each_entry_rcu(pnr,
  334. &pid_hash[pid_hashfn(nr, ns)], pid_chain)
  335. if (pnr->nr == nr && pnr->ns == ns)
  336. return container_of(pnr, struct pid,
  337. numbers[ns->level]);
  338. return NULL;
  339. }
  340. EXPORT_SYMBOL_GPL(find_pid_ns);
  341. struct pid *find_vpid(int nr)
  342. {
  343. return find_pid_ns(nr, task_active_pid_ns(current));
  344. }
  345. EXPORT_SYMBOL_GPL(find_vpid);
  346. /*
  347. * attach_pid() must be called with the tasklist_lock write-held.
  348. */
  349. void attach_pid(struct task_struct *task, enum pid_type type)
  350. {
  351. struct pid_link *link = &task->pids[type];
  352. hlist_add_head_rcu(&link->node, &link->pid->tasks[type]);
  353. }
  354. static void __change_pid(struct task_struct *task, enum pid_type type,
  355. struct pid *new)
  356. {
  357. struct pid_link *link;
  358. struct pid *pid;
  359. int tmp;
  360. link = &task->pids[type];
  361. pid = link->pid;
  362. hlist_del_rcu(&link->node);
  363. link->pid = new;
  364. for (tmp = PIDTYPE_MAX; --tmp >= 0; )
  365. if (!hlist_empty(&pid->tasks[tmp]))
  366. return;
  367. free_pid(pid);
  368. }
  369. void detach_pid(struct task_struct *task, enum pid_type type)
  370. {
  371. __change_pid(task, type, NULL);
  372. }
  373. void change_pid(struct task_struct *task, enum pid_type type,
  374. struct pid *pid)
  375. {
  376. __change_pid(task, type, pid);
  377. attach_pid(task, type);
  378. }
  379. /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
  380. void transfer_pid(struct task_struct *old, struct task_struct *new,
  381. enum pid_type type)
  382. {
  383. new->pids[type].pid = old->pids[type].pid;
  384. hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
  385. }
  386. struct task_struct *pid_task(struct pid *pid, enum pid_type type)
  387. {
  388. struct task_struct *result = NULL;
  389. if (pid) {
  390. struct hlist_node *first;
  391. first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
  392. lockdep_tasklist_lock_is_held());
  393. if (first)
  394. result = hlist_entry(first, struct task_struct, pids[(type)].node);
  395. }
  396. return result;
  397. }
  398. EXPORT_SYMBOL(pid_task);
  399. /*
  400. * Must be called under rcu_read_lock().
  401. */
  402. struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
  403. {
  404. RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
  405. "find_task_by_pid_ns() needs rcu_read_lock() protection");
  406. return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
  407. }
  408. struct task_struct *find_task_by_vpid(pid_t vnr)
  409. {
  410. return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
  411. }
  412. struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
  413. {
  414. struct pid *pid;
  415. rcu_read_lock();
  416. if (type != PIDTYPE_PID)
  417. task = task->group_leader;
  418. pid = get_pid(rcu_dereference(task->pids[type].pid));
  419. rcu_read_unlock();
  420. return pid;
  421. }
  422. EXPORT_SYMBOL_GPL(get_task_pid);
  423. struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
  424. {
  425. struct task_struct *result;
  426. rcu_read_lock();
  427. result = pid_task(pid, type);
  428. if (result)
  429. get_task_struct(result);
  430. rcu_read_unlock();
  431. return result;
  432. }
  433. EXPORT_SYMBOL_GPL(get_pid_task);
  434. struct pid *find_get_pid(pid_t nr)
  435. {
  436. struct pid *pid;
  437. rcu_read_lock();
  438. pid = get_pid(find_vpid(nr));
  439. rcu_read_unlock();
  440. return pid;
  441. }
  442. EXPORT_SYMBOL_GPL(find_get_pid);
  443. pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
  444. {
  445. struct upid *upid;
  446. pid_t nr = 0;
  447. if (pid && ns->level <= pid->level) {
  448. upid = &pid->numbers[ns->level];
  449. if (upid->ns == ns)
  450. nr = upid->nr;
  451. }
  452. return nr;
  453. }
  454. EXPORT_SYMBOL_GPL(pid_nr_ns);
  455. pid_t pid_vnr(struct pid *pid)
  456. {
  457. return pid_nr_ns(pid, task_active_pid_ns(current));
  458. }
  459. EXPORT_SYMBOL_GPL(pid_vnr);
  460. pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
  461. struct pid_namespace *ns)
  462. {
  463. pid_t nr = 0;
  464. rcu_read_lock();
  465. if (!ns)
  466. ns = task_active_pid_ns(current);
  467. if (likely(pid_alive(task))) {
  468. if (type != PIDTYPE_PID) {
  469. if (type == __PIDTYPE_TGID)
  470. type = PIDTYPE_PID;
  471. task = task->group_leader;
  472. }
  473. nr = pid_nr_ns(rcu_dereference(task->pids[type].pid), ns);
  474. }
  475. rcu_read_unlock();
  476. return nr;
  477. }
  478. EXPORT_SYMBOL(__task_pid_nr_ns);
  479. struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
  480. {
  481. return ns_of_pid(task_pid(tsk));
  482. }
  483. EXPORT_SYMBOL_GPL(task_active_pid_ns);
  484. /*
  485. * Used by proc to find the first pid that is greater than or equal to nr.
  486. *
  487. * If there is a pid at nr this function is exactly the same as find_pid_ns.
  488. */
  489. struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
  490. {
  491. struct pid *pid;
  492. do {
  493. pid = find_pid_ns(nr, ns);
  494. if (pid)
  495. break;
  496. nr = next_pidmap(ns, nr);
  497. } while (nr > 0);
  498. return pid;
  499. }
  500. /**
  501. * pidfd_create() - Create a new pid file descriptor.
  502. *
  503. * @pid: struct pid that the pidfd will reference
  504. *
  505. * This creates a new pid file descriptor with the O_CLOEXEC flag set.
  506. *
  507. * Note, that this function can only be called after the fd table has
  508. * been unshared to avoid leaking the pidfd to the new process.
  509. *
  510. * Return: On success, a cloexec pidfd is returned.
  511. * On error, a negative errno number will be returned.
  512. */
  513. static int pidfd_create(struct pid *pid)
  514. {
  515. int fd;
  516. fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
  517. O_RDWR | O_CLOEXEC);
  518. if (fd < 0)
  519. put_pid(pid);
  520. return fd;
  521. }
  522. /**
  523. * pidfd_open() - Open new pid file descriptor.
  524. *
  525. * @pid: pid for which to retrieve a pidfd
  526. * @flags: flags to pass
  527. *
  528. * This creates a new pid file descriptor with the O_CLOEXEC flag set for
  529. * the process identified by @pid. Currently, the process identified by
  530. * @pid must be a thread-group leader. This restriction currently exists
  531. * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
  532. * be used with CLONE_THREAD) and pidfd polling (only supports thread group
  533. * leaders).
  534. *
  535. * Return: On success, a cloexec pidfd is returned.
  536. * On error, a negative errno number will be returned.
  537. */
  538. SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
  539. {
  540. int fd, ret;
  541. struct pid *p;
  542. struct task_struct *tsk;
  543. if (flags)
  544. return -EINVAL;
  545. if (pid <= 0)
  546. return -EINVAL;
  547. p = find_get_pid(pid);
  548. if (!p)
  549. return -ESRCH;
  550. ret = 0;
  551. rcu_read_lock();
  552. tsk = pid_task(p, PIDTYPE_PID);
  553. /* Check that pid belongs to a group leader task */
  554. if (!tsk || !thread_group_leader(tsk))
  555. ret = -EINVAL;
  556. rcu_read_unlock();
  557. fd = ret ?: pidfd_create(p);
  558. put_pid(p);
  559. return fd;
  560. }
  561. /*
  562. * The pid hash table is scaled according to the amount of memory in the
  563. * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
  564. * more.
  565. */
  566. void __init pidhash_init(void)
  567. {
  568. pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
  569. HASH_EARLY | HASH_SMALL | HASH_ZERO,
  570. &pidhash_shift, NULL,
  571. 0, 4096);
  572. }
  573. void __init pidmap_init(void)
  574. {
  575. /* Verify no one has done anything silly: */
  576. BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING);
  577. /* bump default and minimum pid_max based on number of cpus */
  578. pid_max = min(pid_max_max, max_t(int, pid_max,
  579. PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
  580. pid_max_min = max_t(int, pid_max_min,
  581. PIDS_PER_CPU_MIN * num_possible_cpus());
  582. pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
  583. init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  584. /* Reserve PID 0. We never call free_pidmap(0) */
  585. set_bit(0, init_pid_ns.pidmap[0].page);
  586. atomic_dec(&init_pid_ns.pidmap[0].nr_free);
  587. init_pid_ns.pid_cachep = KMEM_CACHE(pid,
  588. SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
  589. }