12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252 |
- /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
- * Copyright (c) 2016 Facebook
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of version 2 of the GNU General Public
- * License as published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- */
- #include <linux/kernel.h>
- #include <linux/types.h>
- #include <linux/slab.h>
- #include <linux/bpf.h>
- #include <linux/bpf_verifier.h>
- #include <linux/filter.h>
- #include <net/netlink.h>
- #include <linux/file.h>
- #include <linux/vmalloc.h>
- #include <linux/stringify.h>
- /* bpf_check() is a static code analyzer that walks eBPF program
- * instruction by instruction and updates register/stack state.
- * All paths of conditional branches are analyzed until 'bpf_exit' insn.
- *
- * The first pass is depth-first-search to check that the program is a DAG.
- * It rejects the following programs:
- * - larger than BPF_MAXINSNS insns
- * - if loop is present (detected via back-edge)
- * - unreachable insns exist (shouldn't be a forest. program = one function)
- * - out of bounds or malformed jumps
- * The second pass is all possible path descent from the 1st insn.
- * Since it's analyzing all pathes through the program, the length of the
- * analysis is limited to 64k insn, which may be hit even if total number of
- * insn is less then 4K, but there are too many branches that change stack/regs.
- * Number of 'branches to be analyzed' is limited to 1k
- *
- * On entry to each instruction, each register has a type, and the instruction
- * changes the types of the registers depending on instruction semantics.
- * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
- * copied to R1.
- *
- * All registers are 64-bit.
- * R0 - return register
- * R1-R5 argument passing registers
- * R6-R9 callee saved registers
- * R10 - frame pointer read-only
- *
- * At the start of BPF program the register R1 contains a pointer to bpf_context
- * and has type PTR_TO_CTX.
- *
- * Verifier tracks arithmetic operations on pointers in case:
- * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
- * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
- * 1st insn copies R10 (which has FRAME_PTR) type into R1
- * and 2nd arithmetic instruction is pattern matched to recognize
- * that it wants to construct a pointer to some element within stack.
- * So after 2nd insn, the register R1 has type PTR_TO_STACK
- * (and -20 constant is saved for further stack bounds checking).
- * Meaning that this reg is a pointer to stack plus known immediate constant.
- *
- * Most of the time the registers have SCALAR_VALUE type, which
- * means the register has some value, but it's not a valid pointer.
- * (like pointer plus pointer becomes SCALAR_VALUE type)
- *
- * When verifier sees load or store instructions the type of base register
- * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
- * types recognized by check_mem_access() function.
- *
- * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
- * and the range of [ptr, ptr + map's value_size) is accessible.
- *
- * registers used to pass values to function calls are checked against
- * function argument constraints.
- *
- * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
- * It means that the register type passed to this function must be
- * PTR_TO_STACK and it will be used inside the function as
- * 'pointer to map element key'
- *
- * For example the argument constraints for bpf_map_lookup_elem():
- * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
- * .arg1_type = ARG_CONST_MAP_PTR,
- * .arg2_type = ARG_PTR_TO_MAP_KEY,
- *
- * ret_type says that this function returns 'pointer to map elem value or null'
- * function expects 1st argument to be a const pointer to 'struct bpf_map' and
- * 2nd argument should be a pointer to stack, which will be used inside
- * the helper function as a pointer to map element key.
- *
- * On the kernel side the helper function looks like:
- * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
- * {
- * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
- * void *key = (void *) (unsigned long) r2;
- * void *value;
- *
- * here kernel can access 'key' and 'map' pointers safely, knowing that
- * [key, key + map->key_size) bytes are valid and were initialized on
- * the stack of eBPF program.
- * }
- *
- * Corresponding eBPF program may look like:
- * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
- * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
- * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
- * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
- * here verifier looks at prototype of map_lookup_elem() and sees:
- * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
- * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
- *
- * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
- * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
- * and were initialized prior to this call.
- * If it's ok, then verifier allows this BPF_CALL insn and looks at
- * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
- * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
- * returns ether pointer to map value or NULL.
- *
- * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
- * insn, the register holding that pointer in the true branch changes state to
- * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
- * branch. See check_cond_jmp_op().
- *
- * After the call R0 is set to return type of the function and registers R1-R5
- * are set to NOT_INIT to indicate that they are no longer readable.
- */
- /* verifier_state + insn_idx are pushed to stack when branch is encountered */
- struct bpf_verifier_stack_elem {
- /* verifer state is 'st'
- * before processing instruction 'insn_idx'
- * and after processing instruction 'prev_insn_idx'
- */
- struct bpf_verifier_state st;
- int insn_idx;
- int prev_insn_idx;
- struct bpf_verifier_stack_elem *next;
- };
- #define BPF_COMPLEXITY_LIMIT_INSNS 131072
- #define BPF_COMPLEXITY_LIMIT_STACK 1024
- #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
- struct bpf_call_arg_meta {
- struct bpf_map *map_ptr;
- bool raw_mode;
- bool pkt_access;
- int regno;
- int access_size;
- };
- /* verbose verifier prints what it's seeing
- * bpf_check() is called under lock, so no race to access these global vars
- */
- static u32 log_level, log_size, log_len;
- static char *log_buf;
- static DEFINE_MUTEX(bpf_verifier_lock);
- /* log_level controls verbosity level of eBPF verifier.
- * verbose() is used to dump the verification trace to the log, so the user
- * can figure out what's wrong with the program
- */
- static __printf(1, 2) void verbose(const char *fmt, ...)
- {
- va_list args;
- if (log_level == 0 || log_len >= log_size - 1)
- return;
- va_start(args, fmt);
- log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
- va_end(args);
- }
- /* string representation of 'enum bpf_reg_type' */
- static const char * const reg_type_str[] = {
- [NOT_INIT] = "?",
- [SCALAR_VALUE] = "inv",
- [PTR_TO_CTX] = "ctx",
- [CONST_PTR_TO_MAP] = "map_ptr",
- [PTR_TO_MAP_VALUE] = "map_value",
- [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
- [PTR_TO_STACK] = "fp",
- [PTR_TO_PACKET] = "pkt",
- [PTR_TO_PACKET_END] = "pkt_end",
- };
- #define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
- static const char * const func_id_str[] = {
- __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
- };
- #undef __BPF_FUNC_STR_FN
- static const char *func_id_name(int id)
- {
- BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
- if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
- return func_id_str[id];
- else
- return "unknown";
- }
- static void print_verifier_state(struct bpf_verifier_state *state)
- {
- struct bpf_reg_state *reg;
- enum bpf_reg_type t;
- int i;
- for (i = 0; i < MAX_BPF_REG; i++) {
- reg = &state->regs[i];
- t = reg->type;
- if (t == NOT_INIT)
- continue;
- verbose(" R%d=%s", i, reg_type_str[t]);
- if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
- tnum_is_const(reg->var_off)) {
- /* reg->off should be 0 for SCALAR_VALUE */
- verbose("%lld", reg->var_off.value + reg->off);
- } else {
- verbose("(id=%d", reg->id);
- if (t != SCALAR_VALUE)
- verbose(",off=%d", reg->off);
- if (t == PTR_TO_PACKET)
- verbose(",r=%d", reg->range);
- else if (t == CONST_PTR_TO_MAP ||
- t == PTR_TO_MAP_VALUE ||
- t == PTR_TO_MAP_VALUE_OR_NULL)
- verbose(",ks=%d,vs=%d",
- reg->map_ptr->key_size,
- reg->map_ptr->value_size);
- if (tnum_is_const(reg->var_off)) {
- /* Typically an immediate SCALAR_VALUE, but
- * could be a pointer whose offset is too big
- * for reg->off
- */
- verbose(",imm=%llx", reg->var_off.value);
- } else {
- if (reg->smin_value != reg->umin_value &&
- reg->smin_value != S64_MIN)
- verbose(",smin_value=%lld",
- (long long)reg->smin_value);
- if (reg->smax_value != reg->umax_value &&
- reg->smax_value != S64_MAX)
- verbose(",smax_value=%lld",
- (long long)reg->smax_value);
- if (reg->umin_value != 0)
- verbose(",umin_value=%llu",
- (unsigned long long)reg->umin_value);
- if (reg->umax_value != U64_MAX)
- verbose(",umax_value=%llu",
- (unsigned long long)reg->umax_value);
- if (!tnum_is_unknown(reg->var_off)) {
- char tn_buf[48];
- tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
- verbose(",var_off=%s", tn_buf);
- }
- }
- verbose(")");
- }
- }
- for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
- if (state->stack[i].slot_type[0] == STACK_SPILL)
- verbose(" fp%d=%s",
- (-i - 1) * BPF_REG_SIZE,
- reg_type_str[state->stack[i].spilled_ptr.type]);
- }
- verbose("\n");
- }
- static const char *const bpf_class_string[] = {
- [BPF_LD] = "ld",
- [BPF_LDX] = "ldx",
- [BPF_ST] = "st",
- [BPF_STX] = "stx",
- [BPF_ALU] = "alu",
- [BPF_JMP] = "jmp",
- [BPF_RET] = "BUG",
- [BPF_ALU64] = "alu64",
- };
- static const char *const bpf_alu_string[16] = {
- [BPF_ADD >> 4] = "+=",
- [BPF_SUB >> 4] = "-=",
- [BPF_MUL >> 4] = "*=",
- [BPF_DIV >> 4] = "/=",
- [BPF_OR >> 4] = "|=",
- [BPF_AND >> 4] = "&=",
- [BPF_LSH >> 4] = "<<=",
- [BPF_RSH >> 4] = ">>=",
- [BPF_NEG >> 4] = "neg",
- [BPF_MOD >> 4] = "%=",
- [BPF_XOR >> 4] = "^=",
- [BPF_MOV >> 4] = "=",
- [BPF_ARSH >> 4] = "s>>=",
- [BPF_END >> 4] = "endian",
- };
- static const char *const bpf_ldst_string[] = {
- [BPF_W >> 3] = "u32",
- [BPF_H >> 3] = "u16",
- [BPF_B >> 3] = "u8",
- [BPF_DW >> 3] = "u64",
- };
- static const char *const bpf_jmp_string[16] = {
- [BPF_JA >> 4] = "jmp",
- [BPF_JEQ >> 4] = "==",
- [BPF_JGT >> 4] = ">",
- [BPF_JLT >> 4] = "<",
- [BPF_JGE >> 4] = ">=",
- [BPF_JLE >> 4] = "<=",
- [BPF_JSET >> 4] = "&",
- [BPF_JNE >> 4] = "!=",
- [BPF_JSGT >> 4] = "s>",
- [BPF_JSLT >> 4] = "s<",
- [BPF_JSGE >> 4] = "s>=",
- [BPF_JSLE >> 4] = "s<=",
- [BPF_CALL >> 4] = "call",
- [BPF_EXIT >> 4] = "exit",
- };
- static void print_bpf_insn(const struct bpf_verifier_env *env,
- const struct bpf_insn *insn)
- {
- u8 class = BPF_CLASS(insn->code);
- if (class == BPF_ALU || class == BPF_ALU64) {
- if (BPF_SRC(insn->code) == BPF_X)
- verbose("(%02x) %sr%d %s %sr%d\n",
- insn->code, class == BPF_ALU ? "(u32) " : "",
- insn->dst_reg,
- bpf_alu_string[BPF_OP(insn->code) >> 4],
- class == BPF_ALU ? "(u32) " : "",
- insn->src_reg);
- else
- verbose("(%02x) %sr%d %s %s%d\n",
- insn->code, class == BPF_ALU ? "(u32) " : "",
- insn->dst_reg,
- bpf_alu_string[BPF_OP(insn->code) >> 4],
- class == BPF_ALU ? "(u32) " : "",
- insn->imm);
- } else if (class == BPF_STX) {
- if (BPF_MODE(insn->code) == BPF_MEM)
- verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
- insn->code,
- bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
- insn->dst_reg,
- insn->off, insn->src_reg);
- else if (BPF_MODE(insn->code) == BPF_XADD)
- verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
- insn->code,
- bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
- insn->dst_reg, insn->off,
- insn->src_reg);
- else
- verbose("BUG_%02x\n", insn->code);
- } else if (class == BPF_ST) {
- if (BPF_MODE(insn->code) != BPF_MEM) {
- verbose("BUG_st_%02x\n", insn->code);
- return;
- }
- verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
- insn->code,
- bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
- insn->dst_reg,
- insn->off, insn->imm);
- } else if (class == BPF_LDX) {
- if (BPF_MODE(insn->code) != BPF_MEM) {
- verbose("BUG_ldx_%02x\n", insn->code);
- return;
- }
- verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
- insn->code, insn->dst_reg,
- bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
- insn->src_reg, insn->off);
- } else if (class == BPF_LD) {
- if (BPF_MODE(insn->code) == BPF_ABS) {
- verbose("(%02x) r0 = *(%s *)skb[%d]\n",
- insn->code,
- bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
- insn->imm);
- } else if (BPF_MODE(insn->code) == BPF_IND) {
- verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
- insn->code,
- bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
- insn->src_reg, insn->imm);
- } else if (BPF_MODE(insn->code) == BPF_IMM &&
- BPF_SIZE(insn->code) == BPF_DW) {
- /* At this point, we already made sure that the second
- * part of the ldimm64 insn is accessible.
- */
- u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
- bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;
- if (map_ptr && !env->allow_ptr_leaks)
- imm = 0;
- verbose("(%02x) r%d = 0x%llx\n", insn->code,
- insn->dst_reg, (unsigned long long)imm);
- } else {
- verbose("BUG_ld_%02x\n", insn->code);
- return;
- }
- } else if (class == BPF_JMP) {
- u8 opcode = BPF_OP(insn->code);
- if (opcode == BPF_CALL) {
- verbose("(%02x) call %s#%d\n", insn->code,
- func_id_name(insn->imm), insn->imm);
- } else if (insn->code == (BPF_JMP | BPF_JA)) {
- verbose("(%02x) goto pc%+d\n",
- insn->code, insn->off);
- } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
- verbose("(%02x) exit\n", insn->code);
- } else if (BPF_SRC(insn->code) == BPF_X) {
- verbose("(%02x) if r%d %s r%d goto pc%+d\n",
- insn->code, insn->dst_reg,
- bpf_jmp_string[BPF_OP(insn->code) >> 4],
- insn->src_reg, insn->off);
- } else {
- verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
- insn->code, insn->dst_reg,
- bpf_jmp_string[BPF_OP(insn->code) >> 4],
- insn->imm, insn->off);
- }
- } else {
- verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
- }
- }
- static int copy_stack_state(struct bpf_verifier_state *dst,
- const struct bpf_verifier_state *src)
- {
- if (!src->stack)
- return 0;
- if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
- /* internal bug, make state invalid to reject the program */
- memset(dst, 0, sizeof(*dst));
- return -EFAULT;
- }
- memcpy(dst->stack, src->stack,
- sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
- return 0;
- }
- /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
- * make it consume minimal amount of memory. check_stack_write() access from
- * the program calls into realloc_verifier_state() to grow the stack size.
- * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
- * which this function copies over. It points to previous bpf_verifier_state
- * which is never reallocated
- */
- static int realloc_verifier_state(struct bpf_verifier_state *state, int size,
- bool copy_old)
- {
- u32 old_size = state->allocated_stack;
- struct bpf_stack_state *new_stack;
- int slot = size / BPF_REG_SIZE;
- if (size <= old_size || !size) {
- if (copy_old)
- return 0;
- state->allocated_stack = slot * BPF_REG_SIZE;
- if (!size && old_size) {
- kfree(state->stack);
- state->stack = NULL;
- }
- return 0;
- }
- new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
- GFP_KERNEL);
- if (!new_stack)
- return -ENOMEM;
- if (copy_old) {
- if (state->stack)
- memcpy(new_stack, state->stack,
- sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
- memset(new_stack + old_size / BPF_REG_SIZE, 0,
- sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
- }
- state->allocated_stack = slot * BPF_REG_SIZE;
- kfree(state->stack);
- state->stack = new_stack;
- return 0;
- }
- static void free_verifier_state(struct bpf_verifier_state *state,
- bool free_self)
- {
- kfree(state->stack);
- if (free_self)
- kfree(state);
- }
- /* copy verifier state from src to dst growing dst stack space
- * when necessary to accommodate larger src stack
- */
- static int copy_verifier_state(struct bpf_verifier_state *dst,
- const struct bpf_verifier_state *src)
- {
- int err;
- err = realloc_verifier_state(dst, src->allocated_stack, false);
- if (err)
- return err;
- memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack));
- return copy_stack_state(dst, src);
- }
- static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
- int *insn_idx)
- {
- struct bpf_verifier_state *cur = env->cur_state;
- struct bpf_verifier_stack_elem *elem, *head = env->head;
- int err;
- if (env->head == NULL)
- return -ENOENT;
- if (cur) {
- err = copy_verifier_state(cur, &head->st);
- if (err)
- return err;
- }
- if (insn_idx)
- *insn_idx = head->insn_idx;
- if (prev_insn_idx)
- *prev_insn_idx = head->prev_insn_idx;
- elem = head->next;
- free_verifier_state(&head->st, false);
- kfree(head);
- env->head = elem;
- env->stack_size--;
- return 0;
- }
- static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
- int insn_idx, int prev_insn_idx,
- bool speculative)
- {
- struct bpf_verifier_stack_elem *elem;
- struct bpf_verifier_state *cur = env->cur_state;
- int err;
- elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
- if (!elem)
- goto err;
- elem->insn_idx = insn_idx;
- elem->prev_insn_idx = prev_insn_idx;
- elem->next = env->head;
- elem->st.speculative |= speculative;
- env->head = elem;
- env->stack_size++;
- err = copy_verifier_state(&elem->st, cur);
- if (err)
- goto err;
- if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
- verbose("BPF program is too complex\n");
- goto err;
- }
- return &elem->st;
- err:
- /* pop all elements and return */
- while (!pop_stack(env, NULL, NULL));
- return NULL;
- }
- #define CALLER_SAVED_REGS 6
- static const int caller_saved[CALLER_SAVED_REGS] = {
- BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
- };
- static void __mark_reg_not_init(struct bpf_reg_state *reg);
- /* Mark the unknown part of a register (variable offset or scalar value) as
- * known to have the value @imm.
- */
- static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
- {
- reg->id = 0;
- reg->var_off = tnum_const(imm);
- reg->smin_value = (s64)imm;
- reg->smax_value = (s64)imm;
- reg->umin_value = imm;
- reg->umax_value = imm;
- }
- /* Mark the 'variable offset' part of a register as zero. This should be
- * used only on registers holding a pointer type.
- */
- static void __mark_reg_known_zero(struct bpf_reg_state *reg)
- {
- __mark_reg_known(reg, 0);
- }
- static void mark_reg_known_zero(struct bpf_reg_state *regs, u32 regno)
- {
- if (WARN_ON(regno >= MAX_BPF_REG)) {
- verbose("mark_reg_known_zero(regs, %u)\n", regno);
- /* Something bad happened, let's kill all regs */
- for (regno = 0; regno < MAX_BPF_REG; regno++)
- __mark_reg_not_init(regs + regno);
- return;
- }
- __mark_reg_known_zero(regs + regno);
- }
- /* Attempts to improve min/max values based on var_off information */
- static void __update_reg_bounds(struct bpf_reg_state *reg)
- {
- /* min signed is max(sign bit) | min(other bits) */
- reg->smin_value = max_t(s64, reg->smin_value,
- reg->var_off.value | (reg->var_off.mask & S64_MIN));
- /* max signed is min(sign bit) | max(other bits) */
- reg->smax_value = min_t(s64, reg->smax_value,
- reg->var_off.value | (reg->var_off.mask & S64_MAX));
- reg->umin_value = max(reg->umin_value, reg->var_off.value);
- reg->umax_value = min(reg->umax_value,
- reg->var_off.value | reg->var_off.mask);
- }
- /* Uses signed min/max values to inform unsigned, and vice-versa */
- static void __reg_deduce_bounds(struct bpf_reg_state *reg)
- {
- /* Learn sign from signed bounds.
- * If we cannot cross the sign boundary, then signed and unsigned bounds
- * are the same, so combine. This works even in the negative case, e.g.
- * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
- */
- if (reg->smin_value >= 0 || reg->smax_value < 0) {
- reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
- reg->umin_value);
- reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
- reg->umax_value);
- return;
- }
- /* Learn sign from unsigned bounds. Signed bounds cross the sign
- * boundary, so we must be careful.
- */
- if ((s64)reg->umax_value >= 0) {
- /* Positive. We can't learn anything from the smin, but smax
- * is positive, hence safe.
- */
- reg->smin_value = reg->umin_value;
- reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
- reg->umax_value);
- } else if ((s64)reg->umin_value < 0) {
- /* Negative. We can't learn anything from the smax, but smin
- * is negative, hence safe.
- */
- reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
- reg->umin_value);
- reg->smax_value = reg->umax_value;
- }
- }
- /* Attempts to improve var_off based on unsigned min/max information */
- static void __reg_bound_offset(struct bpf_reg_state *reg)
- {
- reg->var_off = tnum_intersect(reg->var_off,
- tnum_range(reg->umin_value,
- reg->umax_value));
- }
- /* Reset the min/max bounds of a register */
- static void __mark_reg_unbounded(struct bpf_reg_state *reg)
- {
- reg->smin_value = S64_MIN;
- reg->smax_value = S64_MAX;
- reg->umin_value = 0;
- reg->umax_value = U64_MAX;
- }
- /* Mark a register as having a completely unknown (scalar) value. */
- static void __mark_reg_unknown(struct bpf_reg_state *reg)
- {
- reg->type = SCALAR_VALUE;
- reg->id = 0;
- reg->off = 0;
- reg->var_off = tnum_unknown;
- __mark_reg_unbounded(reg);
- }
- static void mark_reg_unknown(struct bpf_reg_state *regs, u32 regno)
- {
- if (WARN_ON(regno >= MAX_BPF_REG)) {
- verbose("mark_reg_unknown(regs, %u)\n", regno);
- /* Something bad happened, let's kill all regs */
- for (regno = 0; regno < MAX_BPF_REG; regno++)
- __mark_reg_not_init(regs + regno);
- return;
- }
- __mark_reg_unknown(regs + regno);
- }
- static void __mark_reg_not_init(struct bpf_reg_state *reg)
- {
- __mark_reg_unknown(reg);
- reg->type = NOT_INIT;
- }
- static void mark_reg_not_init(struct bpf_reg_state *regs, u32 regno)
- {
- if (WARN_ON(regno >= MAX_BPF_REG)) {
- verbose("mark_reg_not_init(regs, %u)\n", regno);
- /* Something bad happened, let's kill all regs */
- for (regno = 0; regno < MAX_BPF_REG; regno++)
- __mark_reg_not_init(regs + regno);
- return;
- }
- __mark_reg_not_init(regs + regno);
- }
- static void init_reg_state(struct bpf_reg_state *regs)
- {
- int i;
- for (i = 0; i < MAX_BPF_REG; i++) {
- mark_reg_not_init(regs, i);
- regs[i].live = REG_LIVE_NONE;
- }
- /* frame pointer */
- regs[BPF_REG_FP].type = PTR_TO_STACK;
- mark_reg_known_zero(regs, BPF_REG_FP);
- /* 1st arg to a function */
- regs[BPF_REG_1].type = PTR_TO_CTX;
- mark_reg_known_zero(regs, BPF_REG_1);
- }
- enum reg_arg_type {
- SRC_OP, /* register is used as source operand */
- DST_OP, /* register is used as destination operand */
- DST_OP_NO_MARK /* same as above, check only, don't mark */
- };
- static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
- {
- struct bpf_verifier_state *parent = state->parent;
- if (regno == BPF_REG_FP)
- /* We don't need to worry about FP liveness because it's read-only */
- return;
- while (parent) {
- /* if read wasn't screened by an earlier write ... */
- if (state->regs[regno].live & REG_LIVE_WRITTEN)
- break;
- /* ... then we depend on parent's value */
- parent->regs[regno].live |= REG_LIVE_READ;
- state = parent;
- parent = state->parent;
- }
- }
- static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
- enum reg_arg_type t)
- {
- struct bpf_reg_state *regs = env->cur_state->regs;
- if (regno >= MAX_BPF_REG) {
- verbose("R%d is invalid\n", regno);
- return -EINVAL;
- }
- if (t == SRC_OP) {
- /* check whether register used as source operand can be read */
- if (regs[regno].type == NOT_INIT) {
- verbose("R%d !read_ok\n", regno);
- return -EACCES;
- }
- mark_reg_read(env->cur_state, regno);
- } else {
- /* check whether register used as dest operand can be written to */
- if (regno == BPF_REG_FP) {
- verbose("frame pointer is read only\n");
- return -EACCES;
- }
- regs[regno].live |= REG_LIVE_WRITTEN;
- if (t == DST_OP)
- mark_reg_unknown(regs, regno);
- }
- return 0;
- }
- static bool is_spillable_regtype(enum bpf_reg_type type)
- {
- switch (type) {
- case PTR_TO_MAP_VALUE:
- case PTR_TO_MAP_VALUE_OR_NULL:
- case PTR_TO_STACK:
- case PTR_TO_CTX:
- case PTR_TO_PACKET:
- case PTR_TO_PACKET_END:
- case CONST_PTR_TO_MAP:
- return true;
- default:
- return false;
- }
- }
- /* check_stack_read/write functions track spill/fill of registers,
- * stack boundary and alignment are checked in check_mem_access()
- */
- static int check_stack_write(struct bpf_verifier_env *env,
- struct bpf_verifier_state *state, int off,
- int size, int value_regno, int insn_idx)
- {
- int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
- err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE),
- true);
- if (err)
- return err;
- /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
- * so it's aligned access and [off, off + size) are within stack limits
- */
- if (!env->allow_ptr_leaks &&
- state->stack[spi].slot_type[0] == STACK_SPILL &&
- size != BPF_REG_SIZE) {
- verbose("attempt to corrupt spilled pointer on stack\n");
- return -EACCES;
- }
- if (value_regno >= 0 &&
- is_spillable_regtype(state->regs[value_regno].type)) {
- /* register containing pointer is being spilled into stack */
- if (size != BPF_REG_SIZE) {
- verbose("invalid size of register spill\n");
- return -EACCES;
- }
- /* save register state */
- state->stack[spi].spilled_ptr = state->regs[value_regno];
- state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
- for (i = 0; i < BPF_REG_SIZE; i++) {
- if (state->stack[spi].slot_type[i] == STACK_MISC &&
- !env->allow_ptr_leaks) {
- int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
- int soff = (-spi - 1) * BPF_REG_SIZE;
- /* detected reuse of integer stack slot with a pointer
- * which means either llvm is reusing stack slot or
- * an attacker is trying to exploit CVE-2018-3639
- * (speculative store bypass)
- * Have to sanitize that slot with preemptive
- * store of zero.
- */
- if (*poff && *poff != soff) {
- /* disallow programs where single insn stores
- * into two different stack slots, since verifier
- * cannot sanitize them
- */
- verbose("insn %d cannot access two stack slots fp%d and fp%d",
- insn_idx, *poff, soff);
- return -EINVAL;
- }
- *poff = soff;
- }
- state->stack[spi].slot_type[i] = STACK_SPILL;
- }
- } else {
- /* regular write of data into stack */
- state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
- for (i = 0; i < size; i++)
- state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
- STACK_MISC;
- }
- return 0;
- }
- static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
- {
- struct bpf_verifier_state *parent = state->parent;
- while (parent) {
- /* if read wasn't screened by an earlier write ... */
- if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
- break;
- /* ... then we depend on parent's value */
- parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
- state = parent;
- parent = state->parent;
- }
- }
- static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
- int value_regno)
- {
- int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
- u8 *stype;
- if (state->allocated_stack <= slot) {
- verbose("invalid read from stack off %d+0 size %d\n",
- off, size);
- return -EACCES;
- }
- stype = state->stack[spi].slot_type;
- if (stype[0] == STACK_SPILL) {
- if (size != BPF_REG_SIZE) {
- verbose("invalid size of register spill\n");
- return -EACCES;
- }
- for (i = 1; i < BPF_REG_SIZE; i++) {
- if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
- verbose("corrupted spill memory\n");
- return -EACCES;
- }
- }
- if (value_regno >= 0) {
- /* restore register state from stack */
- state->regs[value_regno] = state->stack[spi].spilled_ptr;
- mark_stack_slot_read(state, spi);
- }
- return 0;
- } else {
- for (i = 0; i < size; i++) {
- if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) {
- verbose("invalid read from stack off %d+%d size %d\n",
- off, i, size);
- return -EACCES;
- }
- }
- if (value_regno >= 0)
- /* have read misc data from the stack */
- mark_reg_unknown(state->regs, value_regno);
- return 0;
- }
- }
- static int check_stack_access(struct bpf_verifier_env *env,
- const struct bpf_reg_state *reg,
- int off, int size)
- {
- /* Stack accesses must be at a fixed offset, so that we
- * can determine what type of data were returned. See
- * check_stack_read().
- */
- if (!tnum_is_const(reg->var_off)) {
- char tn_buf[48];
- tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
- verbose("variable stack access var_off=%s off=%d size=%d",
- tn_buf, off, size);
- return -EACCES;
- }
- if (off >= 0 || off < -MAX_BPF_STACK) {
- verbose("invalid stack off=%d size=%d\n", off, size);
- return -EACCES;
- }
- return 0;
- }
- /* check read/write into map element returned by bpf_map_lookup_elem() */
- static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
- int size)
- {
- struct bpf_reg_state *regs = cur_regs(env);
- struct bpf_map *map = regs[regno].map_ptr;
- if (off < 0 || size <= 0 || off + size > map->value_size) {
- verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
- map->value_size, off, size);
- return -EACCES;
- }
- return 0;
- }
- /* check read/write into a map element with possible variable offset */
- static int check_map_access(struct bpf_verifier_env *env, u32 regno,
- int off, int size)
- {
- struct bpf_verifier_state *state = env->cur_state;
- struct bpf_reg_state *reg = &state->regs[regno];
- int err;
- /* We may have adjusted the register to this map value, so we
- * need to try adding each of min_value and max_value to off
- * to make sure our theoretical access will be safe.
- */
- if (log_level)
- print_verifier_state(state);
- /* The minimum value is only important with signed
- * comparisons where we can't assume the floor of a
- * value is 0. If we are using signed variables for our
- * index'es we need to make sure that whatever we use
- * will have a set floor within our range.
- */
- if (reg->smin_value < 0 &&
- (reg->smin_value == S64_MIN ||
- (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
- reg->smin_value + off < 0)) {
- verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
- regno);
- return -EACCES;
- }
- err = __check_map_access(env, regno, reg->smin_value + off, size);
- if (err) {
- verbose("R%d min value is outside of the array range\n", regno);
- return err;
- }
- /* If we haven't set a max value then we need to bail since we can't be
- * sure we won't do bad things.
- * If reg->umax_value + off could overflow, treat that as unbounded too.
- */
- if (reg->umax_value >= BPF_MAX_VAR_OFF) {
- verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
- regno);
- return -EACCES;
- }
- err = __check_map_access(env, regno, reg->umax_value + off, size);
- if (err)
- verbose("R%d max value is outside of the array range\n", regno);
- return err;
- }
- #define MAX_PACKET_OFF 0xffff
- static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
- const struct bpf_call_arg_meta *meta,
- enum bpf_access_type t)
- {
- switch (env->prog->type) {
- case BPF_PROG_TYPE_LWT_IN:
- case BPF_PROG_TYPE_LWT_OUT:
- /* dst_input() and dst_output() can't write for now */
- if (t == BPF_WRITE)
- return false;
- /* fallthrough */
- case BPF_PROG_TYPE_SCHED_CLS:
- case BPF_PROG_TYPE_SCHED_ACT:
- case BPF_PROG_TYPE_XDP:
- case BPF_PROG_TYPE_LWT_XMIT:
- case BPF_PROG_TYPE_SK_SKB:
- if (meta)
- return meta->pkt_access;
- env->seen_direct_write = true;
- return true;
- default:
- return false;
- }
- }
- static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
- int off, int size)
- {
- struct bpf_reg_state *regs = cur_regs(env);
- struct bpf_reg_state *reg = ®s[regno];
- if (off < 0 || size <= 0 || (u64)off + size > reg->range) {
- verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
- off, size, regno, reg->id, reg->off, reg->range);
- return -EACCES;
- }
- return 0;
- }
- static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
- int size)
- {
- struct bpf_reg_state *regs = cur_regs(env);
- struct bpf_reg_state *reg = ®s[regno];
- int err;
- /* We may have added a variable offset to the packet pointer; but any
- * reg->range we have comes after that. We are only checking the fixed
- * offset.
- */
- /* We don't allow negative numbers, because we aren't tracking enough
- * detail to prove they're safe.
- */
- if (reg->smin_value < 0) {
- verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
- regno);
- return -EACCES;
- }
- err = __check_packet_access(env, regno, off, size);
- if (err) {
- verbose("R%d offset is outside of the packet\n", regno);
- return err;
- }
- return err;
- }
- /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
- static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
- enum bpf_access_type t, enum bpf_reg_type *reg_type)
- {
- struct bpf_insn_access_aux info = {
- .reg_type = *reg_type,
- };
- /* for analyzer ctx accesses are already validated and converted */
- if (env->analyzer_ops)
- return 0;
- if (env->prog->aux->ops->is_valid_access &&
- env->prog->aux->ops->is_valid_access(off, size, t, &info)) {
- /* A non zero info.ctx_field_size indicates that this field is a
- * candidate for later verifier transformation to load the whole
- * field and then apply a mask when accessed with a narrower
- * access than actual ctx access size. A zero info.ctx_field_size
- * will only allow for whole field access and rejects any other
- * type of narrower access.
- */
- env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
- *reg_type = info.reg_type;
- /* remember the offset of last byte accessed in ctx */
- if (env->prog->aux->max_ctx_offset < off + size)
- env->prog->aux->max_ctx_offset = off + size;
- return 0;
- }
- verbose("invalid bpf_context access off=%d size=%d\n", off, size);
- return -EACCES;
- }
- static bool __is_pointer_value(bool allow_ptr_leaks,
- const struct bpf_reg_state *reg)
- {
- if (allow_ptr_leaks)
- return false;
- return reg->type != SCALAR_VALUE;
- }
- static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
- {
- return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
- }
- static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
- {
- const struct bpf_reg_state *reg = cur_regs(env) + regno;
- return reg->type == PTR_TO_CTX;
- }
- static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
- {
- const struct bpf_reg_state *reg = cur_regs(env) + regno;
- return reg->type == PTR_TO_PACKET;
- }
- static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
- int off, int size, bool strict)
- {
- struct tnum reg_off;
- int ip_align;
- /* Byte size accesses are always allowed. */
- if (!strict || size == 1)
- return 0;
- /* For platforms that do not have a Kconfig enabling
- * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
- * NET_IP_ALIGN is universally set to '2'. And on platforms
- * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
- * to this code only in strict mode where we want to emulate
- * the NET_IP_ALIGN==2 checking. Therefore use an
- * unconditional IP align value of '2'.
- */
- ip_align = 2;
- reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
- if (!tnum_is_aligned(reg_off, size)) {
- char tn_buf[48];
- tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
- verbose("misaligned packet access off %d+%s+%d+%d size %d\n",
- ip_align, tn_buf, reg->off, off, size);
- return -EACCES;
- }
- return 0;
- }
- static int check_generic_ptr_alignment(const struct bpf_reg_state *reg,
- const char *pointer_desc,
- int off, int size, bool strict)
- {
- struct tnum reg_off;
- /* Byte size accesses are always allowed. */
- if (!strict || size == 1)
- return 0;
- reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
- if (!tnum_is_aligned(reg_off, size)) {
- char tn_buf[48];
- tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
- verbose("misaligned %saccess off %s+%d+%d size %d\n",
- pointer_desc, tn_buf, reg->off, off, size);
- return -EACCES;
- }
- return 0;
- }
- static int check_ptr_alignment(struct bpf_verifier_env *env,
- const struct bpf_reg_state *reg, int off,
- int size, bool strict_alignment_once)
- {
- bool strict = env->strict_alignment || strict_alignment_once;
- const char *pointer_desc = "";
- switch (reg->type) {
- case PTR_TO_PACKET:
- /* special case, because of NET_IP_ALIGN */
- return check_pkt_ptr_alignment(reg, off, size, strict);
- case PTR_TO_MAP_VALUE:
- pointer_desc = "value ";
- break;
- case PTR_TO_CTX:
- pointer_desc = "context ";
- break;
- case PTR_TO_STACK:
- pointer_desc = "stack ";
- /* The stack spill tracking logic in check_stack_write()
- * and check_stack_read() relies on stack accesses being
- * aligned.
- */
- strict = true;
- break;
- default:
- break;
- }
- return check_generic_ptr_alignment(reg, pointer_desc, off, size, strict);
- }
- static int check_ctx_reg(struct bpf_verifier_env *env,
- const struct bpf_reg_state *reg, int regno)
- {
- /* Access to ctx or passing it to a helper is only allowed in
- * its original, unmodified form.
- */
- if (reg->off) {
- verbose("dereference of modified ctx ptr R%d off=%d disallowed\n",
- regno, reg->off);
- return -EACCES;
- }
- if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
- char tn_buf[48];
- tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
- verbose("variable ctx access var_off=%s disallowed\n", tn_buf);
- return -EACCES;
- }
- return 0;
- }
- /* truncate register to smaller size (in bytes)
- * must be called with size < BPF_REG_SIZE
- */
- static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
- {
- u64 mask;
- /* clear high bits in bit representation */
- reg->var_off = tnum_cast(reg->var_off, size);
- /* fix arithmetic bounds */
- mask = ((u64)1 << (size * 8)) - 1;
- if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
- reg->umin_value &= mask;
- reg->umax_value &= mask;
- } else {
- reg->umin_value = 0;
- reg->umax_value = mask;
- }
- reg->smin_value = reg->umin_value;
- reg->smax_value = reg->umax_value;
- }
- /* check whether memory at (regno + off) is accessible for t = (read | write)
- * if t==write, value_regno is a register which value is stored into memory
- * if t==read, value_regno is a register which will receive the value from memory
- * if t==write && value_regno==-1, some unknown value is stored into memory
- * if t==read && value_regno==-1, don't care what we read from memory
- */
- static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
- int off, int bpf_size, enum bpf_access_type t,
- int value_regno, bool strict_alignment_once)
- {
- struct bpf_verifier_state *state = env->cur_state;
- struct bpf_reg_state *regs = cur_regs(env);
- struct bpf_reg_state *reg = regs + regno;
- int size, err = 0;
- size = bpf_size_to_bytes(bpf_size);
- if (size < 0)
- return size;
- /* alignment checks will add in reg->off themselves */
- err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
- if (err)
- return err;
- /* for access checks, reg->off is just part of off */
- off += reg->off;
- if (reg->type == PTR_TO_MAP_VALUE) {
- if (t == BPF_WRITE && value_regno >= 0 &&
- is_pointer_value(env, value_regno)) {
- verbose("R%d leaks addr into map\n", value_regno);
- return -EACCES;
- }
- err = check_map_access(env, regno, off, size);
- if (!err && t == BPF_READ && value_regno >= 0)
- mark_reg_unknown(regs, value_regno);
- } else if (reg->type == PTR_TO_CTX) {
- enum bpf_reg_type reg_type = SCALAR_VALUE;
- if (t == BPF_WRITE && value_regno >= 0 &&
- is_pointer_value(env, value_regno)) {
- verbose("R%d leaks addr into ctx\n", value_regno);
- return -EACCES;
- }
- err = check_ctx_reg(env, reg, regno);
- if (err < 0)
- return err;
- err = check_ctx_access(env, insn_idx, off, size, t, ®_type);
- if (!err && t == BPF_READ && value_regno >= 0) {
- /* ctx access returns either a scalar, or a
- * PTR_TO_PACKET[_END]. In the latter case, we know
- * the offset is zero.
- */
- if (reg_type == SCALAR_VALUE)
- mark_reg_unknown(regs, value_regno);
- else
- mark_reg_known_zero(regs, value_regno);
- regs[value_regno].id = 0;
- regs[value_regno].off = 0;
- regs[value_regno].range = 0;
- regs[value_regno].type = reg_type;
- }
- } else if (reg->type == PTR_TO_STACK) {
- off += reg->var_off.value;
- err = check_stack_access(env, reg, off, size);
- if (err)
- return err;
- if (env->prog->aux->stack_depth < -off)
- env->prog->aux->stack_depth = -off;
- if (t == BPF_WRITE)
- err = check_stack_write(env, state, off, size,
- value_regno, insn_idx);
- else
- err = check_stack_read(state, off, size, value_regno);
- } else if (reg->type == PTR_TO_PACKET) {
- if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
- verbose("cannot write into packet\n");
- return -EACCES;
- }
- if (t == BPF_WRITE && value_regno >= 0 &&
- is_pointer_value(env, value_regno)) {
- verbose("R%d leaks addr into packet\n", value_regno);
- return -EACCES;
- }
- err = check_packet_access(env, regno, off, size);
- if (!err && t == BPF_READ && value_regno >= 0)
- mark_reg_unknown(regs, value_regno);
- } else {
- verbose("R%d invalid mem access '%s'\n",
- regno, reg_type_str[reg->type]);
- return -EACCES;
- }
- if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
- regs[value_regno].type == SCALAR_VALUE) {
- /* b/h/w load zero-extends, mark upper bits as known 0 */
- coerce_reg_to_size(®s[value_regno], size);
- }
- return err;
- }
- static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
- {
- int err;
- if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
- insn->imm != 0) {
- verbose("BPF_XADD uses reserved fields\n");
- return -EINVAL;
- }
- /* check src1 operand */
- err = check_reg_arg(env, insn->src_reg, SRC_OP);
- if (err)
- return err;
- /* check src2 operand */
- err = check_reg_arg(env, insn->dst_reg, SRC_OP);
- if (err)
- return err;
- if (is_pointer_value(env, insn->src_reg)) {
- verbose("R%d leaks addr into mem\n", insn->src_reg);
- return -EACCES;
- }
- if (is_ctx_reg(env, insn->dst_reg) ||
- is_pkt_reg(env, insn->dst_reg)) {
- verbose("BPF_XADD stores into R%d %s is not allowed\n",
- insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ?
- "context" : "packet");
- return -EACCES;
- }
- /* check whether atomic_add can read the memory */
- err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
- BPF_SIZE(insn->code), BPF_READ, -1, true);
- if (err)
- return err;
- /* check whether atomic_add can write into the same memory */
- return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
- BPF_SIZE(insn->code), BPF_WRITE, -1, true);
- }
- /* Does this register contain a constant zero? */
- static bool register_is_null(struct bpf_reg_state reg)
- {
- return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
- }
- /* when register 'regno' is passed into function that will read 'access_size'
- * bytes from that pointer, make sure that it's within stack boundary
- * and all elements of stack are initialized.
- * Unlike most pointer bounds-checking functions, this one doesn't take an
- * 'off' argument, so it has to add in reg->off itself.
- */
- static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
- int access_size, bool zero_size_allowed,
- struct bpf_call_arg_meta *meta)
- {
- struct bpf_verifier_state *state = env->cur_state;
- struct bpf_reg_state *regs = state->regs;
- int off, i, slot, spi;
- if (regs[regno].type != PTR_TO_STACK) {
- /* Allow zero-byte read from NULL, regardless of pointer type */
- if (zero_size_allowed && access_size == 0 &&
- register_is_null(regs[regno]))
- return 0;
- verbose("R%d type=%s expected=%s\n", regno,
- reg_type_str[regs[regno].type],
- reg_type_str[PTR_TO_STACK]);
- return -EACCES;
- }
- /* Only allow fixed-offset stack reads */
- if (!tnum_is_const(regs[regno].var_off)) {
- char tn_buf[48];
- tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
- verbose("invalid variable stack read R%d var_off=%s\n",
- regno, tn_buf);
- return -EACCES;
- }
- off = regs[regno].off + regs[regno].var_off.value;
- if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
- access_size <= 0) {
- verbose("invalid stack type R%d off=%d access_size=%d\n",
- regno, off, access_size);
- return -EACCES;
- }
- if (env->prog->aux->stack_depth < -off)
- env->prog->aux->stack_depth = -off;
- if (meta && meta->raw_mode) {
- meta->access_size = access_size;
- meta->regno = regno;
- return 0;
- }
- for (i = 0; i < access_size; i++) {
- slot = -(off + i) - 1;
- spi = slot / BPF_REG_SIZE;
- if (state->allocated_stack <= slot ||
- state->stack[spi].slot_type[slot % BPF_REG_SIZE] !=
- STACK_MISC) {
- verbose("invalid indirect read from stack off %d+%d size %d\n",
- off, i, access_size);
- return -EACCES;
- }
- }
- return 0;
- }
- static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
- int access_size, bool zero_size_allowed,
- struct bpf_call_arg_meta *meta)
- {
- struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
- switch (reg->type) {
- case PTR_TO_PACKET:
- return check_packet_access(env, regno, reg->off, access_size);
- case PTR_TO_MAP_VALUE:
- return check_map_access(env, regno, reg->off, access_size);
- default: /* scalar_value|ptr_to_stack or invalid ptr */
- return check_stack_boundary(env, regno, access_size,
- zero_size_allowed, meta);
- }
- }
- static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
- enum bpf_arg_type arg_type,
- struct bpf_call_arg_meta *meta)
- {
- struct bpf_reg_state *regs = cur_regs(env), *reg = ®s[regno];
- enum bpf_reg_type expected_type, type = reg->type;
- int err = 0;
- if (arg_type == ARG_DONTCARE)
- return 0;
- err = check_reg_arg(env, regno, SRC_OP);
- if (err)
- return err;
- if (arg_type == ARG_ANYTHING) {
- if (is_pointer_value(env, regno)) {
- verbose("R%d leaks addr into helper function\n", regno);
- return -EACCES;
- }
- return 0;
- }
- if (type == PTR_TO_PACKET &&
- !may_access_direct_pkt_data(env, meta, BPF_READ)) {
- verbose("helper access to the packet is not allowed\n");
- return -EACCES;
- }
- if (arg_type == ARG_PTR_TO_MAP_KEY ||
- arg_type == ARG_PTR_TO_MAP_VALUE) {
- expected_type = PTR_TO_STACK;
- if (type != PTR_TO_PACKET && type != expected_type)
- goto err_type;
- } else if (arg_type == ARG_CONST_SIZE ||
- arg_type == ARG_CONST_SIZE_OR_ZERO) {
- expected_type = SCALAR_VALUE;
- if (type != expected_type)
- goto err_type;
- } else if (arg_type == ARG_CONST_MAP_PTR) {
- expected_type = CONST_PTR_TO_MAP;
- if (type != expected_type)
- goto err_type;
- } else if (arg_type == ARG_PTR_TO_CTX) {
- expected_type = PTR_TO_CTX;
- if (type != expected_type)
- goto err_type;
- err = check_ctx_reg(env, reg, regno);
- if (err < 0)
- return err;
- } else if (arg_type == ARG_PTR_TO_MEM ||
- arg_type == ARG_PTR_TO_UNINIT_MEM) {
- expected_type = PTR_TO_STACK;
- /* One exception here. In case function allows for NULL to be
- * passed in as argument, it's a SCALAR_VALUE type. Final test
- * happens during stack boundary checking.
- */
- if (register_is_null(*reg))
- /* final test in check_stack_boundary() */;
- else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
- type != expected_type)
- goto err_type;
- meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
- } else {
- verbose("unsupported arg_type %d\n", arg_type);
- return -EFAULT;
- }
- if (arg_type == ARG_CONST_MAP_PTR) {
- /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
- meta->map_ptr = reg->map_ptr;
- } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
- /* bpf_map_xxx(..., map_ptr, ..., key) call:
- * check that [key, key + map->key_size) are within
- * stack limits and initialized
- */
- if (!meta->map_ptr) {
- /* in function declaration map_ptr must come before
- * map_key, so that it's verified and known before
- * we have to check map_key here. Otherwise it means
- * that kernel subsystem misconfigured verifier
- */
- verbose("invalid map_ptr to access map->key\n");
- return -EACCES;
- }
- if (type == PTR_TO_PACKET)
- err = check_packet_access(env, regno, reg->off,
- meta->map_ptr->key_size);
- else
- err = check_stack_boundary(env, regno,
- meta->map_ptr->key_size,
- false, NULL);
- } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
- /* bpf_map_xxx(..., map_ptr, ..., value) call:
- * check [value, value + map->value_size) validity
- */
- if (!meta->map_ptr) {
- /* kernel subsystem misconfigured verifier */
- verbose("invalid map_ptr to access map->value\n");
- return -EACCES;
- }
- if (type == PTR_TO_PACKET)
- err = check_packet_access(env, regno, reg->off,
- meta->map_ptr->value_size);
- else
- err = check_stack_boundary(env, regno,
- meta->map_ptr->value_size,
- false, NULL);
- } else if (arg_type == ARG_CONST_SIZE ||
- arg_type == ARG_CONST_SIZE_OR_ZERO) {
- bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
- /* bpf_xxx(..., buf, len) call will access 'len' bytes
- * from stack pointer 'buf'. Check it
- * note: regno == len, regno - 1 == buf
- */
- if (regno == 0) {
- /* kernel subsystem misconfigured verifier */
- verbose("ARG_CONST_SIZE cannot be first argument\n");
- return -EACCES;
- }
- /* The register is SCALAR_VALUE; the access check
- * happens using its boundaries.
- */
- if (!tnum_is_const(reg->var_off))
- /* For unprivileged variable accesses, disable raw
- * mode so that the program is required to
- * initialize all the memory that the helper could
- * just partially fill up.
- */
- meta = NULL;
- if (reg->smin_value < 0) {
- verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
- regno);
- return -EACCES;
- }
- if (reg->umin_value == 0) {
- err = check_helper_mem_access(env, regno - 1, 0,
- zero_size_allowed,
- meta);
- if (err)
- return err;
- }
- if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
- verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
- regno);
- return -EACCES;
- }
- err = check_helper_mem_access(env, regno - 1,
- reg->umax_value,
- zero_size_allowed, meta);
- }
- return err;
- err_type:
- verbose("R%d type=%s expected=%s\n", regno,
- reg_type_str[type], reg_type_str[expected_type]);
- return -EACCES;
- }
- static int check_map_func_compatibility(struct bpf_map *map, int func_id)
- {
- if (!map)
- return 0;
- /* We need a two way check, first is from map perspective ... */
- switch (map->map_type) {
- case BPF_MAP_TYPE_PROG_ARRAY:
- if (func_id != BPF_FUNC_tail_call)
- goto error;
- break;
- case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
- if (func_id != BPF_FUNC_perf_event_read &&
- func_id != BPF_FUNC_perf_event_output)
- goto error;
- break;
- case BPF_MAP_TYPE_STACK_TRACE:
- if (func_id != BPF_FUNC_get_stackid)
- goto error;
- break;
- case BPF_MAP_TYPE_CGROUP_ARRAY:
- if (func_id != BPF_FUNC_skb_under_cgroup &&
- func_id != BPF_FUNC_current_task_under_cgroup)
- goto error;
- break;
- /* devmap returns a pointer to a live net_device ifindex that we cannot
- * allow to be modified from bpf side. So do not allow lookup elements
- * for now.
- */
- case BPF_MAP_TYPE_DEVMAP:
- if (func_id != BPF_FUNC_redirect_map)
- goto error;
- break;
- case BPF_MAP_TYPE_ARRAY_OF_MAPS:
- case BPF_MAP_TYPE_HASH_OF_MAPS:
- if (func_id != BPF_FUNC_map_lookup_elem)
- goto error;
- break;
- case BPF_MAP_TYPE_SOCKMAP:
- if (func_id != BPF_FUNC_sk_redirect_map &&
- func_id != BPF_FUNC_sock_map_update &&
- func_id != BPF_FUNC_map_delete_elem)
- goto error;
- break;
- default:
- break;
- }
- /* ... and second from the function itself. */
- switch (func_id) {
- case BPF_FUNC_tail_call:
- if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
- goto error;
- break;
- case BPF_FUNC_perf_event_read:
- case BPF_FUNC_perf_event_output:
- if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
- goto error;
- break;
- case BPF_FUNC_get_stackid:
- if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
- goto error;
- break;
- case BPF_FUNC_current_task_under_cgroup:
- case BPF_FUNC_skb_under_cgroup:
- if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
- goto error;
- break;
- case BPF_FUNC_redirect_map:
- if (map->map_type != BPF_MAP_TYPE_DEVMAP)
- goto error;
- break;
- case BPF_FUNC_sk_redirect_map:
- if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
- goto error;
- break;
- case BPF_FUNC_sock_map_update:
- if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
- goto error;
- break;
- default:
- break;
- }
- return 0;
- error:
- verbose("cannot pass map_type %d into func %s#%d\n",
- map->map_type, func_id_name(func_id), func_id);
- return -EINVAL;
- }
- static int check_raw_mode(const struct bpf_func_proto *fn)
- {
- int count = 0;
- if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
- count++;
- if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
- count++;
- if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
- count++;
- if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
- count++;
- if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
- count++;
- return count > 1 ? -EINVAL : 0;
- }
- /* Packet data might have moved, any old PTR_TO_PACKET[_END] are now invalid,
- * so turn them into unknown SCALAR_VALUE.
- */
- static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
- {
- struct bpf_verifier_state *state = env->cur_state;
- struct bpf_reg_state *regs = state->regs, *reg;
- int i;
- for (i = 0; i < MAX_BPF_REG; i++)
- if (regs[i].type == PTR_TO_PACKET ||
- regs[i].type == PTR_TO_PACKET_END)
- mark_reg_unknown(regs, i);
- for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
- if (state->stack[i].slot_type[0] != STACK_SPILL)
- continue;
- reg = &state->stack[i].spilled_ptr;
- if (reg->type != PTR_TO_PACKET &&
- reg->type != PTR_TO_PACKET_END)
- continue;
- __mark_reg_unknown(reg);
- }
- }
- static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
- {
- const struct bpf_func_proto *fn = NULL;
- struct bpf_reg_state *regs;
- struct bpf_call_arg_meta meta;
- bool changes_data;
- int i, err;
- /* find function prototype */
- if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
- verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
- return -EINVAL;
- }
- if (env->prog->aux->ops->get_func_proto)
- fn = env->prog->aux->ops->get_func_proto(func_id);
- if (!fn) {
- verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
- return -EINVAL;
- }
- /* eBPF programs must be GPL compatible to use GPL-ed functions */
- if (!env->prog->gpl_compatible && fn->gpl_only) {
- verbose("cannot call GPL only function from proprietary program\n");
- return -EINVAL;
- }
- changes_data = bpf_helper_changes_pkt_data(fn->func);
- memset(&meta, 0, sizeof(meta));
- meta.pkt_access = fn->pkt_access;
- /* We only support one arg being in raw mode at the moment, which
- * is sufficient for the helper functions we have right now.
- */
- err = check_raw_mode(fn);
- if (err) {
- verbose("kernel subsystem misconfigured func %s#%d\n",
- func_id_name(func_id), func_id);
- return err;
- }
- /* check args */
- err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
- if (err)
- return err;
- err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
- if (err)
- return err;
- if (func_id == BPF_FUNC_tail_call) {
- if (meta.map_ptr == NULL) {
- verbose("verifier bug\n");
- return -EINVAL;
- }
- env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr;
- }
- err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
- if (err)
- return err;
- err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
- if (err)
- return err;
- err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
- if (err)
- return err;
- /* Mark slots with STACK_MISC in case of raw mode, stack offset
- * is inferred from register state.
- */
- for (i = 0; i < meta.access_size; i++) {
- err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
- BPF_WRITE, -1, false);
- if (err)
- return err;
- }
- regs = cur_regs(env);
- /* reset caller saved regs */
- for (i = 0; i < CALLER_SAVED_REGS; i++) {
- mark_reg_not_init(regs, caller_saved[i]);
- check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
- }
- /* update return register (already marked as written above) */
- if (fn->ret_type == RET_INTEGER) {
- /* sets type to SCALAR_VALUE */
- mark_reg_unknown(regs, BPF_REG_0);
- } else if (fn->ret_type == RET_VOID) {
- regs[BPF_REG_0].type = NOT_INIT;
- } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
- struct bpf_insn_aux_data *insn_aux;
- regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
- /* There is no offset yet applied, variable or fixed */
- mark_reg_known_zero(regs, BPF_REG_0);
- regs[BPF_REG_0].off = 0;
- /* remember map_ptr, so that check_map_access()
- * can check 'value_size' boundary of memory access
- * to map element returned from bpf_map_lookup_elem()
- */
- if (meta.map_ptr == NULL) {
- verbose("kernel subsystem misconfigured verifier\n");
- return -EINVAL;
- }
- regs[BPF_REG_0].map_ptr = meta.map_ptr;
- regs[BPF_REG_0].id = ++env->id_gen;
- insn_aux = &env->insn_aux_data[insn_idx];
- if (!insn_aux->map_ptr)
- insn_aux->map_ptr = meta.map_ptr;
- else if (insn_aux->map_ptr != meta.map_ptr)
- insn_aux->map_ptr = BPF_MAP_PTR_POISON;
- } else {
- verbose("unknown return type %d of func %s#%d\n",
- fn->ret_type, func_id_name(func_id), func_id);
- return -EINVAL;
- }
- err = check_map_func_compatibility(meta.map_ptr, func_id);
- if (err)
- return err;
- if (changes_data)
- clear_all_pkt_pointers(env);
- return 0;
- }
- static bool signed_add_overflows(s64 a, s64 b)
- {
- /* Do the add in u64, where overflow is well-defined */
- s64 res = (s64)((u64)a + (u64)b);
- if (b < 0)
- return res > a;
- return res < a;
- }
- static bool signed_sub_overflows(s64 a, s64 b)
- {
- /* Do the sub in u64, where overflow is well-defined */
- s64 res = (s64)((u64)a - (u64)b);
- if (b < 0)
- return res < a;
- return res > a;
- }
- static bool check_reg_sane_offset(struct bpf_verifier_env *env,
- const struct bpf_reg_state *reg,
- enum bpf_reg_type type)
- {
- bool known = tnum_is_const(reg->var_off);
- s64 val = reg->var_off.value;
- s64 smin = reg->smin_value;
- if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
- verbose("math between %s pointer and %lld is not allowed\n",
- reg_type_str[type], val);
- return false;
- }
- if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
- verbose("%s pointer offset %d is not allowed\n",
- reg_type_str[type], reg->off);
- return false;
- }
- if (smin == S64_MIN) {
- verbose("math between %s pointer and register with unbounded min value is not allowed\n",
- reg_type_str[type]);
- return false;
- }
- if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
- verbose("value %lld makes %s pointer be out of bounds\n",
- smin, reg_type_str[type]);
- return false;
- }
- return true;
- }
- static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
- {
- return &env->insn_aux_data[env->insn_idx];
- }
- enum {
- REASON_BOUNDS = -1,
- REASON_TYPE = -2,
- REASON_PATHS = -3,
- REASON_LIMIT = -4,
- REASON_STACK = -5,
- };
- static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
- u32 *alu_limit, bool mask_to_left)
- {
- u32 max = 0, ptr_limit = 0;
- switch (ptr_reg->type) {
- case PTR_TO_STACK:
- /* Offset 0 is out-of-bounds, but acceptable start for the
- * left direction, see BPF_REG_FP. Also, unknown scalar
- * offset where we would need to deal with min/max bounds is
- * currently prohibited for unprivileged.
- */
- max = MAX_BPF_STACK + mask_to_left;
- ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
- break;
- case PTR_TO_MAP_VALUE:
- max = ptr_reg->map_ptr->value_size;
- ptr_limit = (mask_to_left ?
- ptr_reg->smin_value :
- ptr_reg->umax_value) + ptr_reg->off;
- break;
- default:
- return REASON_TYPE;
- }
- if (ptr_limit >= max)
- return REASON_LIMIT;
- *alu_limit = ptr_limit;
- return 0;
- }
- static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
- const struct bpf_insn *insn)
- {
- return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
- }
- static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
- u32 alu_state, u32 alu_limit)
- {
- /* If we arrived here from different branches with different
- * state or limits to sanitize, then this won't work.
- */
- if (aux->alu_state &&
- (aux->alu_state != alu_state ||
- aux->alu_limit != alu_limit))
- return REASON_PATHS;
- /* Corresponding fixup done in fixup_bpf_calls(). */
- aux->alu_state = alu_state;
- aux->alu_limit = alu_limit;
- return 0;
- }
- static int sanitize_val_alu(struct bpf_verifier_env *env,
- struct bpf_insn *insn)
- {
- struct bpf_insn_aux_data *aux = cur_aux(env);
- if (can_skip_alu_sanitation(env, insn))
- return 0;
- return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
- }
- static bool sanitize_needed(u8 opcode)
- {
- return opcode == BPF_ADD || opcode == BPF_SUB;
- }
- struct bpf_sanitize_info {
- struct bpf_insn_aux_data aux;
- bool mask_to_left;
- };
- static int sanitize_ptr_alu(struct bpf_verifier_env *env,
- struct bpf_insn *insn,
- const struct bpf_reg_state *ptr_reg,
- const struct bpf_reg_state *off_reg,
- struct bpf_reg_state *dst_reg,
- struct bpf_sanitize_info *info,
- const bool commit_window)
- {
- struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
- struct bpf_verifier_state *vstate = env->cur_state;
- bool off_is_imm = tnum_is_const(off_reg->var_off);
- bool off_is_neg = off_reg->smin_value < 0;
- bool ptr_is_dst_reg = ptr_reg == dst_reg;
- u8 opcode = BPF_OP(insn->code);
- u32 alu_state, alu_limit;
- struct bpf_reg_state tmp;
- bool ret;
- int err;
- if (can_skip_alu_sanitation(env, insn))
- return 0;
- /* We already marked aux for masking from non-speculative
- * paths, thus we got here in the first place. We only care
- * to explore bad access from here.
- */
- if (vstate->speculative)
- goto do_sim;
- if (!commit_window) {
- if (!tnum_is_const(off_reg->var_off) &&
- (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
- return REASON_BOUNDS;
- info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
- (opcode == BPF_SUB && !off_is_neg);
- }
- err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
- if (err < 0)
- return err;
- if (commit_window) {
- /* In commit phase we narrow the masking window based on
- * the observed pointer move after the simulated operation.
- */
- alu_state = info->aux.alu_state;
- alu_limit = abs(info->aux.alu_limit - alu_limit);
- } else {
- alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
- alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
- alu_state |= ptr_is_dst_reg ?
- BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
- }
- err = update_alu_sanitation_state(aux, alu_state, alu_limit);
- if (err < 0)
- return err;
- do_sim:
- /* If we're in commit phase, we're done here given we already
- * pushed the truncated dst_reg into the speculative verification
- * stack.
- *
- * Also, when register is a known constant, we rewrite register-based
- * operation to immediate-based, and thus do not need masking (and as
- * a consequence, do not need to simulate the zero-truncation either).
- */
- if (commit_window || off_is_imm)
- return 0;
- /* Simulate and find potential out-of-bounds access under
- * speculative execution from truncation as a result of
- * masking when off was not within expected range. If off
- * sits in dst, then we temporarily need to move ptr there
- * to simulate dst (== 0) +/-= ptr. Needed, for example,
- * for cases where we use K-based arithmetic in one direction
- * and truncated reg-based in the other in order to explore
- * bad access.
- */
- if (!ptr_is_dst_reg) {
- tmp = *dst_reg;
- *dst_reg = *ptr_reg;
- }
- ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
- if (!ptr_is_dst_reg && ret)
- *dst_reg = tmp;
- return !ret ? REASON_STACK : 0;
- }
- static int sanitize_err(struct bpf_verifier_env *env,
- const struct bpf_insn *insn, int reason,
- const struct bpf_reg_state *off_reg,
- const struct bpf_reg_state *dst_reg)
- {
- static const char *err = "pointer arithmetic with it prohibited for !root";
- const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
- u32 dst = insn->dst_reg, src = insn->src_reg;
- switch (reason) {
- case REASON_BOUNDS:
- verbose("R%d has unknown scalar with mixed signed bounds, %s\n",
- off_reg == dst_reg ? dst : src, err);
- break;
- case REASON_TYPE:
- verbose("R%d has pointer with unsupported alu operation, %s\n",
- off_reg == dst_reg ? src : dst, err);
- break;
- case REASON_PATHS:
- verbose("R%d tried to %s from different maps, paths or scalars, %s\n",
- dst, op, err);
- break;
- case REASON_LIMIT:
- verbose("R%d tried to %s beyond pointer bounds, %s\n",
- dst, op, err);
- break;
- case REASON_STACK:
- verbose("R%d could not be pushed for speculative verification, %s\n",
- dst, err);
- break;
- default:
- verbose("verifier internal error: unknown reason (%d)\n",
- reason);
- break;
- }
- return -EACCES;
- }
- static int sanitize_check_bounds(struct bpf_verifier_env *env,
- const struct bpf_insn *insn,
- const struct bpf_reg_state *dst_reg)
- {
- u32 dst = insn->dst_reg;
- /* For unprivileged we require that resulting offset must be in bounds
- * in order to be able to sanitize access later on.
- */
- if (env->allow_ptr_leaks)
- return 0;
- switch (dst_reg->type) {
- case PTR_TO_STACK:
- if (check_stack_access(env, dst_reg, dst_reg->off +
- dst_reg->var_off.value, 1)) {
- verbose("R%d stack pointer arithmetic goes out of range, "
- "prohibited for !root\n", dst);
- return -EACCES;
- }
- break;
- case PTR_TO_MAP_VALUE:
- if (check_map_access(env, dst, dst_reg->off, 1)) {
- verbose("R%d pointer arithmetic of map value goes out of range, "
- "prohibited for !root\n", dst);
- return -EACCES;
- }
- break;
- default:
- break;
- }
- return 0;
- }
- /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
- * Caller should also handle BPF_MOV case separately.
- * If we return -EACCES, caller may want to try again treating pointer as a
- * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
- */
- static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
- struct bpf_insn *insn,
- const struct bpf_reg_state *ptr_reg,
- const struct bpf_reg_state *off_reg)
- {
- struct bpf_reg_state *regs = cur_regs(env), *dst_reg;
- bool known = tnum_is_const(off_reg->var_off);
- s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
- smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
- u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
- umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
- struct bpf_sanitize_info info = {};
- u8 opcode = BPF_OP(insn->code);
- u32 dst = insn->dst_reg;
- int ret;
- dst_reg = ®s[dst];
- if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
- smin_val > smax_val || umin_val > umax_val) {
- /* Taint dst register if offset had invalid bounds derived from
- * e.g. dead branches.
- */
- __mark_reg_unknown(dst_reg);
- return 0;
- }
- if (BPF_CLASS(insn->code) != BPF_ALU64) {
- /* 32-bit ALU ops on pointers produce (meaningless) scalars */
- verbose("R%d 32-bit pointer arithmetic prohibited\n",
- dst);
- return -EACCES;
- }
- if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
- verbose("R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
- dst);
- return -EACCES;
- }
- if (ptr_reg->type == CONST_PTR_TO_MAP) {
- verbose("R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
- dst);
- return -EACCES;
- }
- if (ptr_reg->type == PTR_TO_PACKET_END) {
- verbose("R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
- dst);
- return -EACCES;
- }
- /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
- * The id may be overwritten later if we create a new variable offset.
- */
- dst_reg->type = ptr_reg->type;
- dst_reg->id = ptr_reg->id;
- if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
- !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
- return -EINVAL;
- if (sanitize_needed(opcode)) {
- ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
- &info, false);
- if (ret < 0)
- return sanitize_err(env, insn, ret, off_reg, dst_reg);
- }
- switch (opcode) {
- case BPF_ADD:
- /* We can take a fixed offset as long as it doesn't overflow
- * the s32 'off' field
- */
- if (known && (ptr_reg->off + smin_val ==
- (s64)(s32)(ptr_reg->off + smin_val))) {
- /* pointer += K. Accumulate it into fixed offset */
- dst_reg->smin_value = smin_ptr;
- dst_reg->smax_value = smax_ptr;
- dst_reg->umin_value = umin_ptr;
- dst_reg->umax_value = umax_ptr;
- dst_reg->var_off = ptr_reg->var_off;
- dst_reg->off = ptr_reg->off + smin_val;
- dst_reg->raw = ptr_reg->raw;
- break;
- }
- /* A new variable offset is created. Note that off_reg->off
- * == 0, since it's a scalar.
- * dst_reg gets the pointer type and since some positive
- * integer value was added to the pointer, give it a new 'id'
- * if it's a PTR_TO_PACKET.
- * this creates a new 'base' pointer, off_reg (variable) gets
- * added into the variable offset, and we copy the fixed offset
- * from ptr_reg.
- */
- if (signed_add_overflows(smin_ptr, smin_val) ||
- signed_add_overflows(smax_ptr, smax_val)) {
- dst_reg->smin_value = S64_MIN;
- dst_reg->smax_value = S64_MAX;
- } else {
- dst_reg->smin_value = smin_ptr + smin_val;
- dst_reg->smax_value = smax_ptr + smax_val;
- }
- if (umin_ptr + umin_val < umin_ptr ||
- umax_ptr + umax_val < umax_ptr) {
- dst_reg->umin_value = 0;
- dst_reg->umax_value = U64_MAX;
- } else {
- dst_reg->umin_value = umin_ptr + umin_val;
- dst_reg->umax_value = umax_ptr + umax_val;
- }
- dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
- dst_reg->off = ptr_reg->off;
- dst_reg->raw = ptr_reg->raw;
- if (ptr_reg->type == PTR_TO_PACKET) {
- dst_reg->id = ++env->id_gen;
- /* something was added to pkt_ptr, set range to zero */
- dst_reg->raw = 0;
- }
- break;
- case BPF_SUB:
- if (dst_reg == off_reg) {
- /* scalar -= pointer. Creates an unknown scalar */
- verbose("R%d tried to subtract pointer from scalar\n",
- dst);
- return -EACCES;
- }
- /* We don't allow subtraction from FP, because (according to
- * test_verifier.c test "invalid fp arithmetic", JITs might not
- * be able to deal with it.
- */
- if (ptr_reg->type == PTR_TO_STACK) {
- verbose("R%d subtraction from stack pointer prohibited\n",
- dst);
- return -EACCES;
- }
- if (known && (ptr_reg->off - smin_val ==
- (s64)(s32)(ptr_reg->off - smin_val))) {
- /* pointer -= K. Subtract it from fixed offset */
- dst_reg->smin_value = smin_ptr;
- dst_reg->smax_value = smax_ptr;
- dst_reg->umin_value = umin_ptr;
- dst_reg->umax_value = umax_ptr;
- dst_reg->var_off = ptr_reg->var_off;
- dst_reg->id = ptr_reg->id;
- dst_reg->off = ptr_reg->off - smin_val;
- dst_reg->raw = ptr_reg->raw;
- break;
- }
- /* A new variable offset is created. If the subtrahend is known
- * nonnegative, then any reg->range we had before is still good.
- */
- if (signed_sub_overflows(smin_ptr, smax_val) ||
- signed_sub_overflows(smax_ptr, smin_val)) {
- /* Overflow possible, we know nothing */
- dst_reg->smin_value = S64_MIN;
- dst_reg->smax_value = S64_MAX;
- } else {
- dst_reg->smin_value = smin_ptr - smax_val;
- dst_reg->smax_value = smax_ptr - smin_val;
- }
- if (umin_ptr < umax_val) {
- /* Overflow possible, we know nothing */
- dst_reg->umin_value = 0;
- dst_reg->umax_value = U64_MAX;
- } else {
- /* Cannot overflow (as long as bounds are consistent) */
- dst_reg->umin_value = umin_ptr - umax_val;
- dst_reg->umax_value = umax_ptr - umin_val;
- }
- dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
- dst_reg->off = ptr_reg->off;
- dst_reg->raw = ptr_reg->raw;
- if (ptr_reg->type == PTR_TO_PACKET) {
- dst_reg->id = ++env->id_gen;
- /* something was added to pkt_ptr, set range to zero */
- if (smin_val < 0)
- dst_reg->raw = 0;
- }
- break;
- case BPF_AND:
- case BPF_OR:
- case BPF_XOR:
- /* bitwise ops on pointers are troublesome. */
- verbose("R%d bitwise operator %s on pointer prohibited\n",
- dst, bpf_alu_string[opcode >> 4]);
- return -EACCES;
- default:
- /* other operators (e.g. MUL,LSH) produce non-pointer results */
- verbose("R%d pointer arithmetic with %s operator prohibited\n",
- dst, bpf_alu_string[opcode >> 4]);
- return -EACCES;
- }
- if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
- return -EINVAL;
- __update_reg_bounds(dst_reg);
- __reg_deduce_bounds(dst_reg);
- __reg_bound_offset(dst_reg);
- if (sanitize_check_bounds(env, insn, dst_reg) < 0)
- return -EACCES;
- if (sanitize_needed(opcode)) {
- ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
- &info, true);
- if (ret < 0)
- return sanitize_err(env, insn, ret, off_reg, dst_reg);
- }
- return 0;
- }
- /* WARNING: This function does calculations on 64-bit values, but the actual
- * execution may occur on 32-bit values. Therefore, things like bitshifts
- * need extra checks in the 32-bit case.
- */
- static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
- struct bpf_insn *insn,
- struct bpf_reg_state *dst_reg,
- struct bpf_reg_state src_reg)
- {
- struct bpf_reg_state *regs = cur_regs(env);
- u8 opcode = BPF_OP(insn->code);
- bool src_known, dst_known;
- s64 smin_val, smax_val;
- u64 umin_val, umax_val;
- u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
- int ret;
- if (insn_bitness == 32) {
- /* Relevant for 32-bit RSH: Information can propagate towards
- * LSB, so it isn't sufficient to only truncate the output to
- * 32 bits.
- */
- coerce_reg_to_size(dst_reg, 4);
- coerce_reg_to_size(&src_reg, 4);
- }
- smin_val = src_reg.smin_value;
- smax_val = src_reg.smax_value;
- umin_val = src_reg.umin_value;
- umax_val = src_reg.umax_value;
- src_known = tnum_is_const(src_reg.var_off);
- dst_known = tnum_is_const(dst_reg->var_off);
- if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
- smin_val > smax_val || umin_val > umax_val) {
- /* Taint dst register if offset had invalid bounds derived from
- * e.g. dead branches.
- */
- __mark_reg_unknown(dst_reg);
- return 0;
- }
- if (!src_known &&
- opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
- __mark_reg_unknown(dst_reg);
- return 0;
- }
- if (sanitize_needed(opcode)) {
- ret = sanitize_val_alu(env, insn);
- if (ret < 0)
- return sanitize_err(env, insn, ret, NULL, NULL);
- }
- switch (opcode) {
- case BPF_ADD:
- if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
- signed_add_overflows(dst_reg->smax_value, smax_val)) {
- dst_reg->smin_value = S64_MIN;
- dst_reg->smax_value = S64_MAX;
- } else {
- dst_reg->smin_value += smin_val;
- dst_reg->smax_value += smax_val;
- }
- if (dst_reg->umin_value + umin_val < umin_val ||
- dst_reg->umax_value + umax_val < umax_val) {
- dst_reg->umin_value = 0;
- dst_reg->umax_value = U64_MAX;
- } else {
- dst_reg->umin_value += umin_val;
- dst_reg->umax_value += umax_val;
- }
- dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
- break;
- case BPF_SUB:
- if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
- signed_sub_overflows(dst_reg->smax_value, smin_val)) {
- /* Overflow possible, we know nothing */
- dst_reg->smin_value = S64_MIN;
- dst_reg->smax_value = S64_MAX;
- } else {
- dst_reg->smin_value -= smax_val;
- dst_reg->smax_value -= smin_val;
- }
- if (dst_reg->umin_value < umax_val) {
- /* Overflow possible, we know nothing */
- dst_reg->umin_value = 0;
- dst_reg->umax_value = U64_MAX;
- } else {
- /* Cannot overflow (as long as bounds are consistent) */
- dst_reg->umin_value -= umax_val;
- dst_reg->umax_value -= umin_val;
- }
- dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
- break;
- case BPF_MUL:
- dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
- if (smin_val < 0 || dst_reg->smin_value < 0) {
- /* Ain't nobody got time to multiply that sign */
- __mark_reg_unbounded(dst_reg);
- __update_reg_bounds(dst_reg);
- break;
- }
- /* Both values are positive, so we can work with unsigned and
- * copy the result to signed (unless it exceeds S64_MAX).
- */
- if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
- /* Potential overflow, we know nothing */
- __mark_reg_unbounded(dst_reg);
- /* (except what we can learn from the var_off) */
- __update_reg_bounds(dst_reg);
- break;
- }
- dst_reg->umin_value *= umin_val;
- dst_reg->umax_value *= umax_val;
- if (dst_reg->umax_value > S64_MAX) {
- /* Overflow possible, we know nothing */
- dst_reg->smin_value = S64_MIN;
- dst_reg->smax_value = S64_MAX;
- } else {
- dst_reg->smin_value = dst_reg->umin_value;
- dst_reg->smax_value = dst_reg->umax_value;
- }
- break;
- case BPF_AND:
- if (src_known && dst_known) {
- __mark_reg_known(dst_reg, dst_reg->var_off.value &
- src_reg.var_off.value);
- break;
- }
- /* We get our minimum from the var_off, since that's inherently
- * bitwise. Our maximum is the minimum of the operands' maxima.
- */
- dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
- dst_reg->umin_value = dst_reg->var_off.value;
- dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
- if (dst_reg->smin_value < 0 || smin_val < 0) {
- /* Lose signed bounds when ANDing negative numbers,
- * ain't nobody got time for that.
- */
- dst_reg->smin_value = S64_MIN;
- dst_reg->smax_value = S64_MAX;
- } else {
- /* ANDing two positives gives a positive, so safe to
- * cast result into s64.
- */
- dst_reg->smin_value = dst_reg->umin_value;
- dst_reg->smax_value = dst_reg->umax_value;
- }
- /* We may learn something more from the var_off */
- __update_reg_bounds(dst_reg);
- break;
- case BPF_OR:
- if (src_known && dst_known) {
- __mark_reg_known(dst_reg, dst_reg->var_off.value |
- src_reg.var_off.value);
- break;
- }
- /* We get our maximum from the var_off, and our minimum is the
- * maximum of the operands' minima
- */
- dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
- dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
- dst_reg->umax_value = dst_reg->var_off.value |
- dst_reg->var_off.mask;
- if (dst_reg->smin_value < 0 || smin_val < 0) {
- /* Lose signed bounds when ORing negative numbers,
- * ain't nobody got time for that.
- */
- dst_reg->smin_value = S64_MIN;
- dst_reg->smax_value = S64_MAX;
- } else {
- /* ORing two positives gives a positive, so safe to
- * cast result into s64.
- */
- dst_reg->smin_value = dst_reg->umin_value;
- dst_reg->smax_value = dst_reg->umax_value;
- }
- /* We may learn something more from the var_off */
- __update_reg_bounds(dst_reg);
- break;
- case BPF_LSH:
- if (umax_val >= insn_bitness) {
- /* Shifts greater than 31 or 63 are undefined.
- * This includes shifts by a negative number.
- */
- mark_reg_unknown(regs, insn->dst_reg);
- break;
- }
- /* We lose all sign bit information (except what we can pick
- * up from var_off)
- */
- dst_reg->smin_value = S64_MIN;
- dst_reg->smax_value = S64_MAX;
- /* If we might shift our top bit out, then we know nothing */
- if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
- dst_reg->umin_value = 0;
- dst_reg->umax_value = U64_MAX;
- } else {
- dst_reg->umin_value <<= umin_val;
- dst_reg->umax_value <<= umax_val;
- }
- if (src_known)
- dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
- else
- dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
- /* We may learn something more from the var_off */
- __update_reg_bounds(dst_reg);
- break;
- case BPF_RSH:
- if (umax_val >= insn_bitness) {
- /* Shifts greater than 31 or 63 are undefined.
- * This includes shifts by a negative number.
- */
- mark_reg_unknown(regs, insn->dst_reg);
- break;
- }
- /* BPF_RSH is an unsigned shift. If the value in dst_reg might
- * be negative, then either:
- * 1) src_reg might be zero, so the sign bit of the result is
- * unknown, so we lose our signed bounds
- * 2) it's known negative, thus the unsigned bounds capture the
- * signed bounds
- * 3) the signed bounds cross zero, so they tell us nothing
- * about the result
- * If the value in dst_reg is known nonnegative, then again the
- * unsigned bounts capture the signed bounds.
- * Thus, in all cases it suffices to blow away our signed bounds
- * and rely on inferring new ones from the unsigned bounds and
- * var_off of the result.
- */
- dst_reg->smin_value = S64_MIN;
- dst_reg->smax_value = S64_MAX;
- if (src_known)
- dst_reg->var_off = tnum_rshift(dst_reg->var_off,
- umin_val);
- else
- dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
- dst_reg->umin_value >>= umax_val;
- dst_reg->umax_value >>= umin_val;
- /* We may learn something more from the var_off */
- __update_reg_bounds(dst_reg);
- break;
- default:
- mark_reg_unknown(regs, insn->dst_reg);
- break;
- }
- if (BPF_CLASS(insn->code) != BPF_ALU64) {
- /* 32-bit ALU ops are (32,32)->32 */
- coerce_reg_to_size(dst_reg, 4);
- }
- __reg_deduce_bounds(dst_reg);
- __reg_bound_offset(dst_reg);
- return 0;
- }
- /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
- * and var_off.
- */
- static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
- struct bpf_insn *insn)
- {
- struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg;
- struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
- u8 opcode = BPF_OP(insn->code);
- dst_reg = ®s[insn->dst_reg];
- src_reg = NULL;
- if (dst_reg->type != SCALAR_VALUE)
- ptr_reg = dst_reg;
- if (BPF_SRC(insn->code) == BPF_X) {
- src_reg = ®s[insn->src_reg];
- if (src_reg->type != SCALAR_VALUE) {
- if (dst_reg->type != SCALAR_VALUE) {
- /* Combining two pointers by any ALU op yields
- * an arbitrary scalar. Disallow all math except
- * pointer subtraction
- */
- if (opcode == BPF_SUB && env->allow_ptr_leaks) {
- mark_reg_unknown(regs, insn->dst_reg);
- return 0;
- }
- verbose("R%d pointer %s pointer prohibited\n",
- insn->dst_reg,
- bpf_alu_string[opcode >> 4]);
- return -EACCES;
- } else {
- /* scalar += pointer
- * This is legal, but we have to reverse our
- * src/dest handling in computing the range
- */
- return adjust_ptr_min_max_vals(env, insn,
- src_reg, dst_reg);
- }
- } else if (ptr_reg) {
- /* pointer += scalar */
- return adjust_ptr_min_max_vals(env, insn,
- dst_reg, src_reg);
- }
- } else {
- /* Pretend the src is a reg with a known value, since we only
- * need to be able to read from this state.
- */
- off_reg.type = SCALAR_VALUE;
- __mark_reg_known(&off_reg, insn->imm);
- src_reg = &off_reg;
- if (ptr_reg) /* pointer += K */
- return adjust_ptr_min_max_vals(env, insn,
- ptr_reg, src_reg);
- }
- /* Got here implies adding two SCALAR_VALUEs */
- if (WARN_ON_ONCE(ptr_reg)) {
- print_verifier_state(env->cur_state);
- verbose("verifier internal error: unexpected ptr_reg\n");
- return -EINVAL;
- }
- if (WARN_ON(!src_reg)) {
- print_verifier_state(env->cur_state);
- verbose("verifier internal error: no src_reg\n");
- return -EINVAL;
- }
- return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
- }
- /* check validity of 32-bit and 64-bit arithmetic operations */
- static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
- {
- struct bpf_reg_state *regs = cur_regs(env);
- u8 opcode = BPF_OP(insn->code);
- int err;
- if (opcode == BPF_END || opcode == BPF_NEG) {
- if (opcode == BPF_NEG) {
- if (BPF_SRC(insn->code) != 0 ||
- insn->src_reg != BPF_REG_0 ||
- insn->off != 0 || insn->imm != 0) {
- verbose("BPF_NEG uses reserved fields\n");
- return -EINVAL;
- }
- } else {
- if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
- (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
- BPF_CLASS(insn->code) == BPF_ALU64) {
- verbose("BPF_END uses reserved fields\n");
- return -EINVAL;
- }
- }
- /* check src operand */
- err = check_reg_arg(env, insn->dst_reg, SRC_OP);
- if (err)
- return err;
- if (is_pointer_value(env, insn->dst_reg)) {
- verbose("R%d pointer arithmetic prohibited\n",
- insn->dst_reg);
- return -EACCES;
- }
- /* check dest operand */
- err = check_reg_arg(env, insn->dst_reg, DST_OP);
- if (err)
- return err;
- } else if (opcode == BPF_MOV) {
- if (BPF_SRC(insn->code) == BPF_X) {
- if (insn->imm != 0 || insn->off != 0) {
- verbose("BPF_MOV uses reserved fields\n");
- return -EINVAL;
- }
- /* check src operand */
- err = check_reg_arg(env, insn->src_reg, SRC_OP);
- if (err)
- return err;
- } else {
- if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
- verbose("BPF_MOV uses reserved fields\n");
- return -EINVAL;
- }
- }
- /* check dest operand */
- err = check_reg_arg(env, insn->dst_reg, DST_OP);
- if (err)
- return err;
- if (BPF_SRC(insn->code) == BPF_X) {
- if (BPF_CLASS(insn->code) == BPF_ALU64) {
- /* case: R1 = R2
- * copy register state to dest reg
- */
- regs[insn->dst_reg] = regs[insn->src_reg];
- regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
- } else {
- /* R1 = (u32) R2 */
- if (is_pointer_value(env, insn->src_reg)) {
- verbose("R%d partial copy of pointer\n",
- insn->src_reg);
- return -EACCES;
- }
- mark_reg_unknown(regs, insn->dst_reg);
- coerce_reg_to_size(®s[insn->dst_reg], 4);
- }
- } else {
- /* case: R = imm
- * remember the value we stored into this reg
- */
- regs[insn->dst_reg].type = SCALAR_VALUE;
- if (BPF_CLASS(insn->code) == BPF_ALU64) {
- __mark_reg_known(regs + insn->dst_reg,
- insn->imm);
- } else {
- __mark_reg_known(regs + insn->dst_reg,
- (u32)insn->imm);
- }
- }
- } else if (opcode > BPF_END) {
- verbose("invalid BPF_ALU opcode %x\n", opcode);
- return -EINVAL;
- } else { /* all other ALU ops: and, sub, xor, add, ... */
- if (BPF_SRC(insn->code) == BPF_X) {
- if (insn->imm != 0 || insn->off != 0) {
- verbose("BPF_ALU uses reserved fields\n");
- return -EINVAL;
- }
- /* check src1 operand */
- err = check_reg_arg(env, insn->src_reg, SRC_OP);
- if (err)
- return err;
- } else {
- if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
- verbose("BPF_ALU uses reserved fields\n");
- return -EINVAL;
- }
- }
- /* check src2 operand */
- err = check_reg_arg(env, insn->dst_reg, SRC_OP);
- if (err)
- return err;
- if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
- BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
- verbose("div by zero\n");
- return -EINVAL;
- }
- if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
- verbose("BPF_ARSH not supported for 32 bit ALU\n");
- return -EINVAL;
- }
- if ((opcode == BPF_LSH || opcode == BPF_RSH ||
- opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
- int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
- if (insn->imm < 0 || insn->imm >= size) {
- verbose("invalid shift %d\n", insn->imm);
- return -EINVAL;
- }
- }
- /* check dest operand */
- err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
- if (err)
- return err;
- return adjust_reg_min_max_vals(env, insn);
- }
- return 0;
- }
- static void find_good_pkt_pointers(struct bpf_verifier_state *state,
- struct bpf_reg_state *dst_reg,
- bool range_right_open)
- {
- struct bpf_reg_state *regs = state->regs, *reg;
- u16 new_range;
- int i;
- if (dst_reg->off < 0 ||
- (dst_reg->off == 0 && range_right_open))
- /* This doesn't give us any range */
- return;
- if (dst_reg->umax_value > MAX_PACKET_OFF ||
- dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
- /* Risk of overflow. For instance, ptr + (1<<63) may be less
- * than pkt_end, but that's because it's also less than pkt.
- */
- return;
- new_range = dst_reg->off;
- if (range_right_open)
- new_range--;
- /* Examples for register markings:
- *
- * pkt_data in dst register:
- *
- * r2 = r3;
- * r2 += 8;
- * if (r2 > pkt_end) goto <handle exception>
- * <access okay>
- *
- * r2 = r3;
- * r2 += 8;
- * if (r2 < pkt_end) goto <access okay>
- * <handle exception>
- *
- * Where:
- * r2 == dst_reg, pkt_end == src_reg
- * r2=pkt(id=n,off=8,r=0)
- * r3=pkt(id=n,off=0,r=0)
- *
- * pkt_data in src register:
- *
- * r2 = r3;
- * r2 += 8;
- * if (pkt_end >= r2) goto <access okay>
- * <handle exception>
- *
- * r2 = r3;
- * r2 += 8;
- * if (pkt_end <= r2) goto <handle exception>
- * <access okay>
- *
- * Where:
- * pkt_end == dst_reg, r2 == src_reg
- * r2=pkt(id=n,off=8,r=0)
- * r3=pkt(id=n,off=0,r=0)
- *
- * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
- * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
- * and [r3, r3 + 8-1) respectively is safe to access depending on
- * the check.
- */
- /* If our ids match, then we must have the same max_value. And we
- * don't care about the other reg's fixed offset, since if it's too big
- * the range won't allow anything.
- * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
- */
- for (i = 0; i < MAX_BPF_REG; i++)
- if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
- /* keep the maximum range already checked */
- regs[i].range = max(regs[i].range, new_range);
- for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
- if (state->stack[i].slot_type[0] != STACK_SPILL)
- continue;
- reg = &state->stack[i].spilled_ptr;
- if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
- reg->range = max(reg->range, new_range);
- }
- }
- /* Adjusts the register min/max values in the case that the dst_reg is the
- * variable register that we are working on, and src_reg is a constant or we're
- * simply doing a BPF_K check.
- * In JEQ/JNE cases we also adjust the var_off values.
- */
- static void reg_set_min_max(struct bpf_reg_state *true_reg,
- struct bpf_reg_state *false_reg, u64 val,
- u8 opcode)
- {
- /* If the dst_reg is a pointer, we can't learn anything about its
- * variable offset from the compare (unless src_reg were a pointer into
- * the same object, but we don't bother with that.
- * Since false_reg and true_reg have the same type by construction, we
- * only need to check one of them for pointerness.
- */
- if (__is_pointer_value(false, false_reg))
- return;
- switch (opcode) {
- case BPF_JEQ:
- /* If this is false then we know nothing Jon Snow, but if it is
- * true then we know for sure.
- */
- __mark_reg_known(true_reg, val);
- break;
- case BPF_JNE:
- /* If this is true we know nothing Jon Snow, but if it is false
- * we know the value for sure;
- */
- __mark_reg_known(false_reg, val);
- break;
- case BPF_JGT:
- false_reg->umax_value = min(false_reg->umax_value, val);
- true_reg->umin_value = max(true_reg->umin_value, val + 1);
- break;
- case BPF_JSGT:
- false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
- true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
- break;
- case BPF_JLT:
- false_reg->umin_value = max(false_reg->umin_value, val);
- true_reg->umax_value = min(true_reg->umax_value, val - 1);
- break;
- case BPF_JSLT:
- false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
- true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
- break;
- case BPF_JGE:
- false_reg->umax_value = min(false_reg->umax_value, val - 1);
- true_reg->umin_value = max(true_reg->umin_value, val);
- break;
- case BPF_JSGE:
- false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
- true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
- break;
- case BPF_JLE:
- false_reg->umin_value = max(false_reg->umin_value, val + 1);
- true_reg->umax_value = min(true_reg->umax_value, val);
- break;
- case BPF_JSLE:
- false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
- true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
- break;
- default:
- break;
- }
- __reg_deduce_bounds(false_reg);
- __reg_deduce_bounds(true_reg);
- /* We might have learned some bits from the bounds. */
- __reg_bound_offset(false_reg);
- __reg_bound_offset(true_reg);
- /* Intersecting with the old var_off might have improved our bounds
- * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
- * then new var_off is (0; 0x7f...fc) which improves our umax.
- */
- __update_reg_bounds(false_reg);
- __update_reg_bounds(true_reg);
- }
- /* Same as above, but for the case that dst_reg holds a constant and src_reg is
- * the variable reg.
- */
- static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
- struct bpf_reg_state *false_reg, u64 val,
- u8 opcode)
- {
- if (__is_pointer_value(false, false_reg))
- return;
- switch (opcode) {
- case BPF_JEQ:
- /* If this is false then we know nothing Jon Snow, but if it is
- * true then we know for sure.
- */
- __mark_reg_known(true_reg, val);
- break;
- case BPF_JNE:
- /* If this is true we know nothing Jon Snow, but if it is false
- * we know the value for sure;
- */
- __mark_reg_known(false_reg, val);
- break;
- case BPF_JGT:
- true_reg->umax_value = min(true_reg->umax_value, val - 1);
- false_reg->umin_value = max(false_reg->umin_value, val);
- break;
- case BPF_JSGT:
- true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
- false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
- break;
- case BPF_JLT:
- true_reg->umin_value = max(true_reg->umin_value, val + 1);
- false_reg->umax_value = min(false_reg->umax_value, val);
- break;
- case BPF_JSLT:
- true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
- false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
- break;
- case BPF_JGE:
- true_reg->umax_value = min(true_reg->umax_value, val);
- false_reg->umin_value = max(false_reg->umin_value, val + 1);
- break;
- case BPF_JSGE:
- true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
- false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
- break;
- case BPF_JLE:
- true_reg->umin_value = max(true_reg->umin_value, val);
- false_reg->umax_value = min(false_reg->umax_value, val - 1);
- break;
- case BPF_JSLE:
- true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
- false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
- break;
- default:
- break;
- }
- __reg_deduce_bounds(false_reg);
- __reg_deduce_bounds(true_reg);
- /* We might have learned some bits from the bounds. */
- __reg_bound_offset(false_reg);
- __reg_bound_offset(true_reg);
- /* Intersecting with the old var_off might have improved our bounds
- * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
- * then new var_off is (0; 0x7f...fc) which improves our umax.
- */
- __update_reg_bounds(false_reg);
- __update_reg_bounds(true_reg);
- }
- /* Regs are known to be equal, so intersect their min/max/var_off */
- static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
- struct bpf_reg_state *dst_reg)
- {
- src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
- dst_reg->umin_value);
- src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
- dst_reg->umax_value);
- src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
- dst_reg->smin_value);
- src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
- dst_reg->smax_value);
- src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
- dst_reg->var_off);
- /* We might have learned new bounds from the var_off. */
- __update_reg_bounds(src_reg);
- __update_reg_bounds(dst_reg);
- /* We might have learned something about the sign bit. */
- __reg_deduce_bounds(src_reg);
- __reg_deduce_bounds(dst_reg);
- /* We might have learned some bits from the bounds. */
- __reg_bound_offset(src_reg);
- __reg_bound_offset(dst_reg);
- /* Intersecting with the old var_off might have improved our bounds
- * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
- * then new var_off is (0; 0x7f...fc) which improves our umax.
- */
- __update_reg_bounds(src_reg);
- __update_reg_bounds(dst_reg);
- }
- static void reg_combine_min_max(struct bpf_reg_state *true_src,
- struct bpf_reg_state *true_dst,
- struct bpf_reg_state *false_src,
- struct bpf_reg_state *false_dst,
- u8 opcode)
- {
- switch (opcode) {
- case BPF_JEQ:
- __reg_combine_min_max(true_src, true_dst);
- break;
- case BPF_JNE:
- __reg_combine_min_max(false_src, false_dst);
- break;
- }
- }
- static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
- bool is_null)
- {
- struct bpf_reg_state *reg = ®s[regno];
- if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
- /* Old offset (both fixed and variable parts) should
- * have been known-zero, because we don't allow pointer
- * arithmetic on pointers that might be NULL.
- */
- if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
- !tnum_equals_const(reg->var_off, 0) ||
- reg->off)) {
- __mark_reg_known_zero(reg);
- reg->off = 0;
- }
- if (is_null) {
- reg->type = SCALAR_VALUE;
- } else if (reg->map_ptr->inner_map_meta) {
- reg->type = CONST_PTR_TO_MAP;
- reg->map_ptr = reg->map_ptr->inner_map_meta;
- } else {
- reg->type = PTR_TO_MAP_VALUE;
- }
- /* We don't need id from this point onwards anymore, thus we
- * should better reset it, so that state pruning has chances
- * to take effect.
- */
- reg->id = 0;
- }
- }
- /* The logic is similar to find_good_pkt_pointers(), both could eventually
- * be folded together at some point.
- */
- static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
- bool is_null)
- {
- struct bpf_reg_state *regs = state->regs;
- u32 id = regs[regno].id;
- int i;
- for (i = 0; i < MAX_BPF_REG; i++)
- mark_map_reg(regs, i, id, is_null);
- for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
- if (state->stack[i].slot_type[0] != STACK_SPILL)
- continue;
- mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
- }
- }
- static int check_cond_jmp_op(struct bpf_verifier_env *env,
- struct bpf_insn *insn, int *insn_idx)
- {
- struct bpf_verifier_state *other_branch, *this_branch = env->cur_state;
- struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
- u8 opcode = BPF_OP(insn->code);
- int err;
- if (opcode > BPF_JSLE) {
- verbose("invalid BPF_JMP opcode %x\n", opcode);
- return -EINVAL;
- }
- if (BPF_SRC(insn->code) == BPF_X) {
- if (insn->imm != 0) {
- verbose("BPF_JMP uses reserved fields\n");
- return -EINVAL;
- }
- /* check src1 operand */
- err = check_reg_arg(env, insn->src_reg, SRC_OP);
- if (err)
- return err;
- if (is_pointer_value(env, insn->src_reg)) {
- verbose("R%d pointer comparison prohibited\n",
- insn->src_reg);
- return -EACCES;
- }
- } else {
- if (insn->src_reg != BPF_REG_0) {
- verbose("BPF_JMP uses reserved fields\n");
- return -EINVAL;
- }
- }
- /* check src2 operand */
- err = check_reg_arg(env, insn->dst_reg, SRC_OP);
- if (err)
- return err;
- dst_reg = ®s[insn->dst_reg];
- /* detect if R == 0 where R was initialized to zero earlier */
- if (BPF_SRC(insn->code) == BPF_K &&
- (opcode == BPF_JEQ || opcode == BPF_JNE) &&
- dst_reg->type == SCALAR_VALUE &&
- tnum_equals_const(dst_reg->var_off, insn->imm)) {
- if (opcode == BPF_JEQ) {
- /* if (imm == imm) goto pc+off;
- * only follow the goto, ignore fall-through
- */
- *insn_idx += insn->off;
- return 0;
- } else {
- /* if (imm != imm) goto pc+off;
- * only follow fall-through branch, since
- * that's where the program will go
- */
- return 0;
- }
- }
- other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
- false);
- if (!other_branch)
- return -EFAULT;
- /* detect if we are comparing against a constant value so we can adjust
- * our min/max values for our dst register.
- * this is only legit if both are scalars (or pointers to the same
- * object, I suppose, but we don't support that right now), because
- * otherwise the different base pointers mean the offsets aren't
- * comparable.
- */
- if (BPF_SRC(insn->code) == BPF_X) {
- if (dst_reg->type == SCALAR_VALUE &&
- regs[insn->src_reg].type == SCALAR_VALUE) {
- if (tnum_is_const(regs[insn->src_reg].var_off))
- reg_set_min_max(&other_branch->regs[insn->dst_reg],
- dst_reg, regs[insn->src_reg].var_off.value,
- opcode);
- else if (tnum_is_const(dst_reg->var_off))
- reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
- ®s[insn->src_reg],
- dst_reg->var_off.value, opcode);
- else if (opcode == BPF_JEQ || opcode == BPF_JNE)
- /* Comparing for equality, we can combine knowledge */
- reg_combine_min_max(&other_branch->regs[insn->src_reg],
- &other_branch->regs[insn->dst_reg],
- ®s[insn->src_reg],
- ®s[insn->dst_reg], opcode);
- }
- } else if (dst_reg->type == SCALAR_VALUE) {
- reg_set_min_max(&other_branch->regs[insn->dst_reg],
- dst_reg, insn->imm, opcode);
- }
- /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
- if (BPF_SRC(insn->code) == BPF_K &&
- insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
- dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
- /* Mark all identical map registers in each branch as either
- * safe or unknown depending R == 0 or R != 0 conditional.
- */
- mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
- mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
- } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
- dst_reg->type == PTR_TO_PACKET &&
- regs[insn->src_reg].type == PTR_TO_PACKET_END) {
- /* pkt_data' > pkt_end */
- find_good_pkt_pointers(this_branch, dst_reg, false);
- } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
- dst_reg->type == PTR_TO_PACKET_END &&
- regs[insn->src_reg].type == PTR_TO_PACKET) {
- /* pkt_end > pkt_data' */
- find_good_pkt_pointers(other_branch, ®s[insn->src_reg], true);
- } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
- dst_reg->type == PTR_TO_PACKET &&
- regs[insn->src_reg].type == PTR_TO_PACKET_END) {
- /* pkt_data' < pkt_end */
- find_good_pkt_pointers(other_branch, dst_reg, true);
- } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
- dst_reg->type == PTR_TO_PACKET_END &&
- regs[insn->src_reg].type == PTR_TO_PACKET) {
- /* pkt_end < pkt_data' */
- find_good_pkt_pointers(this_branch, ®s[insn->src_reg], false);
- } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
- dst_reg->type == PTR_TO_PACKET &&
- regs[insn->src_reg].type == PTR_TO_PACKET_END) {
- /* pkt_data' >= pkt_end */
- find_good_pkt_pointers(this_branch, dst_reg, true);
- } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
- dst_reg->type == PTR_TO_PACKET_END &&
- regs[insn->src_reg].type == PTR_TO_PACKET) {
- /* pkt_end >= pkt_data' */
- find_good_pkt_pointers(other_branch, ®s[insn->src_reg], false);
- } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
- dst_reg->type == PTR_TO_PACKET &&
- regs[insn->src_reg].type == PTR_TO_PACKET_END) {
- /* pkt_data' <= pkt_end */
- find_good_pkt_pointers(other_branch, dst_reg, false);
- } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
- dst_reg->type == PTR_TO_PACKET_END &&
- regs[insn->src_reg].type == PTR_TO_PACKET) {
- /* pkt_end <= pkt_data' */
- find_good_pkt_pointers(this_branch, ®s[insn->src_reg], true);
- } else if (is_pointer_value(env, insn->dst_reg)) {
- verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
- return -EACCES;
- }
- if (log_level)
- print_verifier_state(this_branch);
- return 0;
- }
- /* return the map pointer stored inside BPF_LD_IMM64 instruction */
- static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
- {
- u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
- return (struct bpf_map *) (unsigned long) imm64;
- }
- /* verify BPF_LD_IMM64 instruction */
- static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
- {
- struct bpf_reg_state *regs = cur_regs(env);
- int err;
- if (BPF_SIZE(insn->code) != BPF_DW) {
- verbose("invalid BPF_LD_IMM insn\n");
- return -EINVAL;
- }
- if (insn->off != 0) {
- verbose("BPF_LD_IMM64 uses reserved fields\n");
- return -EINVAL;
- }
- err = check_reg_arg(env, insn->dst_reg, DST_OP);
- if (err)
- return err;
- if (insn->src_reg == 0) {
- u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
- regs[insn->dst_reg].type = SCALAR_VALUE;
- __mark_reg_known(®s[insn->dst_reg], imm);
- return 0;
- }
- /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
- BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
- regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
- regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
- return 0;
- }
- static bool may_access_skb(enum bpf_prog_type type)
- {
- switch (type) {
- case BPF_PROG_TYPE_SOCKET_FILTER:
- case BPF_PROG_TYPE_SCHED_CLS:
- case BPF_PROG_TYPE_SCHED_ACT:
- return true;
- default:
- return false;
- }
- }
- /* verify safety of LD_ABS|LD_IND instructions:
- * - they can only appear in the programs where ctx == skb
- * - since they are wrappers of function calls, they scratch R1-R5 registers,
- * preserve R6-R9, and store return value into R0
- *
- * Implicit input:
- * ctx == skb == R6 == CTX
- *
- * Explicit input:
- * SRC == any register
- * IMM == 32-bit immediate
- *
- * Output:
- * R0 - 8/16/32-bit skb data converted to cpu endianness
- */
- static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
- {
- struct bpf_reg_state *regs = cur_regs(env);
- static const int ctx_reg = BPF_REG_6;
- u8 mode = BPF_MODE(insn->code);
- int i, err;
- if (!may_access_skb(env->prog->type)) {
- verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
- return -EINVAL;
- }
- if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
- BPF_SIZE(insn->code) == BPF_DW ||
- (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
- verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
- return -EINVAL;
- }
- /* check whether implicit source operand (register R6) is readable */
- err = check_reg_arg(env, ctx_reg, SRC_OP);
- if (err)
- return err;
- if (regs[ctx_reg].type != PTR_TO_CTX) {
- verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
- return -EINVAL;
- }
- if (mode == BPF_IND) {
- /* check explicit source operand */
- err = check_reg_arg(env, insn->src_reg, SRC_OP);
- if (err)
- return err;
- }
- err = check_ctx_reg(env, ®s[ctx_reg], ctx_reg);
- if (err < 0)
- return err;
- /* reset caller saved regs to unreadable */
- for (i = 0; i < CALLER_SAVED_REGS; i++) {
- mark_reg_not_init(regs, caller_saved[i]);
- check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
- }
- /* mark destination R0 register as readable, since it contains
- * the value fetched from the packet.
- * Already marked as written above.
- */
- mark_reg_unknown(regs, BPF_REG_0);
- return 0;
- }
- /* non-recursive DFS pseudo code
- * 1 procedure DFS-iterative(G,v):
- * 2 label v as discovered
- * 3 let S be a stack
- * 4 S.push(v)
- * 5 while S is not empty
- * 6 t <- S.pop()
- * 7 if t is what we're looking for:
- * 8 return t
- * 9 for all edges e in G.adjacentEdges(t) do
- * 10 if edge e is already labelled
- * 11 continue with the next edge
- * 12 w <- G.adjacentVertex(t,e)
- * 13 if vertex w is not discovered and not explored
- * 14 label e as tree-edge
- * 15 label w as discovered
- * 16 S.push(w)
- * 17 continue at 5
- * 18 else if vertex w is discovered
- * 19 label e as back-edge
- * 20 else
- * 21 // vertex w is explored
- * 22 label e as forward- or cross-edge
- * 23 label t as explored
- * 24 S.pop()
- *
- * convention:
- * 0x10 - discovered
- * 0x11 - discovered and fall-through edge labelled
- * 0x12 - discovered and fall-through and branch edges labelled
- * 0x20 - explored
- */
- enum {
- DISCOVERED = 0x10,
- EXPLORED = 0x20,
- FALLTHROUGH = 1,
- BRANCH = 2,
- };
- #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
- static int *insn_stack; /* stack of insns to process */
- static int cur_stack; /* current stack index */
- static int *insn_state;
- /* t, w, e - match pseudo-code above:
- * t - index of current instruction
- * w - next instruction
- * e - edge
- */
- static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
- {
- if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
- return 0;
- if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
- return 0;
- if (w < 0 || w >= env->prog->len) {
- verbose("jump out of range from insn %d to %d\n", t, w);
- return -EINVAL;
- }
- if (e == BRANCH)
- /* mark branch target for state pruning */
- env->explored_states[w] = STATE_LIST_MARK;
- if (insn_state[w] == 0) {
- /* tree-edge */
- insn_state[t] = DISCOVERED | e;
- insn_state[w] = DISCOVERED;
- if (cur_stack >= env->prog->len)
- return -E2BIG;
- insn_stack[cur_stack++] = w;
- return 1;
- } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
- verbose("back-edge from insn %d to %d\n", t, w);
- return -EINVAL;
- } else if (insn_state[w] == EXPLORED) {
- /* forward- or cross-edge */
- insn_state[t] = DISCOVERED | e;
- } else {
- verbose("insn state internal bug\n");
- return -EFAULT;
- }
- return 0;
- }
- /* non-recursive depth-first-search to detect loops in BPF program
- * loop == back-edge in directed graph
- */
- static int check_cfg(struct bpf_verifier_env *env)
- {
- struct bpf_insn *insns = env->prog->insnsi;
- int insn_cnt = env->prog->len;
- int ret = 0;
- int i, t;
- insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
- if (!insn_state)
- return -ENOMEM;
- insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
- if (!insn_stack) {
- kfree(insn_state);
- return -ENOMEM;
- }
- insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
- insn_stack[0] = 0; /* 0 is the first instruction */
- cur_stack = 1;
- peek_stack:
- if (cur_stack == 0)
- goto check_state;
- t = insn_stack[cur_stack - 1];
- if (BPF_CLASS(insns[t].code) == BPF_JMP) {
- u8 opcode = BPF_OP(insns[t].code);
- if (opcode == BPF_EXIT) {
- goto mark_explored;
- } else if (opcode == BPF_CALL) {
- ret = push_insn(t, t + 1, FALLTHROUGH, env);
- if (ret == 1)
- goto peek_stack;
- else if (ret < 0)
- goto err_free;
- if (t + 1 < insn_cnt)
- env->explored_states[t + 1] = STATE_LIST_MARK;
- } else if (opcode == BPF_JA) {
- if (BPF_SRC(insns[t].code) != BPF_K) {
- ret = -EINVAL;
- goto err_free;
- }
- /* unconditional jump with single edge */
- ret = push_insn(t, t + insns[t].off + 1,
- FALLTHROUGH, env);
- if (ret == 1)
- goto peek_stack;
- else if (ret < 0)
- goto err_free;
- /* tell verifier to check for equivalent states
- * after every call and jump
- */
- if (t + 1 < insn_cnt)
- env->explored_states[t + 1] = STATE_LIST_MARK;
- } else {
- /* conditional jump with two edges */
- env->explored_states[t] = STATE_LIST_MARK;
- ret = push_insn(t, t + 1, FALLTHROUGH, env);
- if (ret == 1)
- goto peek_stack;
- else if (ret < 0)
- goto err_free;
- ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
- if (ret == 1)
- goto peek_stack;
- else if (ret < 0)
- goto err_free;
- }
- } else {
- /* all other non-branch instructions with single
- * fall-through edge
- */
- ret = push_insn(t, t + 1, FALLTHROUGH, env);
- if (ret == 1)
- goto peek_stack;
- else if (ret < 0)
- goto err_free;
- }
- mark_explored:
- insn_state[t] = EXPLORED;
- if (cur_stack-- <= 0) {
- verbose("pop stack internal bug\n");
- ret = -EFAULT;
- goto err_free;
- }
- goto peek_stack;
- check_state:
- for (i = 0; i < insn_cnt; i++) {
- if (insn_state[i] != EXPLORED) {
- verbose("unreachable insn %d\n", i);
- ret = -EINVAL;
- goto err_free;
- }
- }
- ret = 0; /* cfg looks good */
- err_free:
- kfree(insn_state);
- kfree(insn_stack);
- return ret;
- }
- /* check %cur's range satisfies %old's */
- static bool range_within(struct bpf_reg_state *old,
- struct bpf_reg_state *cur)
- {
- return old->umin_value <= cur->umin_value &&
- old->umax_value >= cur->umax_value &&
- old->smin_value <= cur->smin_value &&
- old->smax_value >= cur->smax_value;
- }
- /* Maximum number of register states that can exist at once */
- #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
- struct idpair {
- u32 old;
- u32 cur;
- };
- /* If in the old state two registers had the same id, then they need to have
- * the same id in the new state as well. But that id could be different from
- * the old state, so we need to track the mapping from old to new ids.
- * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
- * regs with old id 5 must also have new id 9 for the new state to be safe. But
- * regs with a different old id could still have new id 9, we don't care about
- * that.
- * So we look through our idmap to see if this old id has been seen before. If
- * so, we require the new id to match; otherwise, we add the id pair to the map.
- */
- static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
- {
- unsigned int i;
- for (i = 0; i < ID_MAP_SIZE; i++) {
- if (!idmap[i].old) {
- /* Reached an empty slot; haven't seen this id before */
- idmap[i].old = old_id;
- idmap[i].cur = cur_id;
- return true;
- }
- if (idmap[i].old == old_id)
- return idmap[i].cur == cur_id;
- }
- /* We ran out of idmap slots, which should be impossible */
- WARN_ON_ONCE(1);
- return false;
- }
- /* Returns true if (rold safe implies rcur safe) */
- static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
- struct idpair *idmap)
- {
- if (!(rold->live & REG_LIVE_READ))
- /* explored state didn't use this */
- return true;
- if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
- return true;
- if (rold->type == NOT_INIT)
- /* explored state can't have used this */
- return true;
- if (rcur->type == NOT_INIT)
- return false;
- switch (rold->type) {
- case SCALAR_VALUE:
- if (rcur->type == SCALAR_VALUE) {
- /* new val must satisfy old val knowledge */
- return range_within(rold, rcur) &&
- tnum_in(rold->var_off, rcur->var_off);
- } else {
- /* We're trying to use a pointer in place of a scalar.
- * Even if the scalar was unbounded, this could lead to
- * pointer leaks because scalars are allowed to leak
- * while pointers are not. We could make this safe in
- * special cases if root is calling us, but it's
- * probably not worth the hassle.
- */
- return false;
- }
- case PTR_TO_MAP_VALUE:
- /* If the new min/max/var_off satisfy the old ones and
- * everything else matches, we are OK.
- * We don't care about the 'id' value, because nothing
- * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
- */
- return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
- range_within(rold, rcur) &&
- tnum_in(rold->var_off, rcur->var_off);
- case PTR_TO_MAP_VALUE_OR_NULL:
- /* a PTR_TO_MAP_VALUE could be safe to use as a
- * PTR_TO_MAP_VALUE_OR_NULL into the same map.
- * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
- * checked, doing so could have affected others with the same
- * id, and we can't check for that because we lost the id when
- * we converted to a PTR_TO_MAP_VALUE.
- */
- if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
- return false;
- if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
- return false;
- /* Check our ids match any regs they're supposed to */
- return check_ids(rold->id, rcur->id, idmap);
- case PTR_TO_PACKET:
- if (rcur->type != PTR_TO_PACKET)
- return false;
- /* We must have at least as much range as the old ptr
- * did, so that any accesses which were safe before are
- * still safe. This is true even if old range < old off,
- * since someone could have accessed through (ptr - k), or
- * even done ptr -= k in a register, to get a safe access.
- */
- if (rold->range > rcur->range)
- return false;
- /* If the offsets don't match, we can't trust our alignment;
- * nor can we be sure that we won't fall out of range.
- */
- if (rold->off != rcur->off)
- return false;
- /* id relations must be preserved */
- if (rold->id && !check_ids(rold->id, rcur->id, idmap))
- return false;
- /* new val must satisfy old val knowledge */
- return range_within(rold, rcur) &&
- tnum_in(rold->var_off, rcur->var_off);
- case PTR_TO_CTX:
- case CONST_PTR_TO_MAP:
- case PTR_TO_STACK:
- case PTR_TO_PACKET_END:
- /* Only valid matches are exact, which memcmp() above
- * would have accepted
- */
- default:
- /* Don't know what's going on, just say it's not safe */
- return false;
- }
- /* Shouldn't get here; if we do, say it's not safe */
- WARN_ON_ONCE(1);
- return false;
- }
- static bool stacksafe(struct bpf_verifier_state *old,
- struct bpf_verifier_state *cur,
- struct idpair *idmap)
- {
- int i, spi;
- /* if explored stack has more populated slots than current stack
- * such stacks are not equivalent
- */
- if (old->allocated_stack > cur->allocated_stack)
- return false;
- /* walk slots of the explored stack and ignore any additional
- * slots in the current stack, since explored(safe) state
- * didn't use them
- */
- for (i = 0; i < old->allocated_stack; i++) {
- spi = i / BPF_REG_SIZE;
- if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
- continue;
- if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
- cur->stack[spi].slot_type[i % BPF_REG_SIZE])
- /* Ex: old explored (safe) state has STACK_SPILL in
- * this stack slot, but current has has STACK_MISC ->
- * this verifier states are not equivalent,
- * return false to continue verification of this path
- */
- return false;
- if (i % BPF_REG_SIZE)
- continue;
- if (old->stack[spi].slot_type[0] != STACK_SPILL)
- continue;
- if (!regsafe(&old->stack[spi].spilled_ptr,
- &cur->stack[spi].spilled_ptr,
- idmap))
- /* when explored and current stack slot are both storing
- * spilled registers, check that stored pointers types
- * are the same as well.
- * Ex: explored safe path could have stored
- * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
- * but current path has stored:
- * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
- * such verifier states are not equivalent.
- * return false to continue verification of this path
- */
- return false;
- }
- return true;
- }
- /* compare two verifier states
- *
- * all states stored in state_list are known to be valid, since
- * verifier reached 'bpf_exit' instruction through them
- *
- * this function is called when verifier exploring different branches of
- * execution popped from the state stack. If it sees an old state that has
- * more strict register state and more strict stack state then this execution
- * branch doesn't need to be explored further, since verifier already
- * concluded that more strict state leads to valid finish.
- *
- * Therefore two states are equivalent if register state is more conservative
- * and explored stack state is more conservative than the current one.
- * Example:
- * explored current
- * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
- * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
- *
- * In other words if current stack state (one being explored) has more
- * valid slots than old one that already passed validation, it means
- * the verifier can stop exploring and conclude that current state is valid too
- *
- * Similarly with registers. If explored state has register type as invalid
- * whereas register type in current state is meaningful, it means that
- * the current state will reach 'bpf_exit' instruction safely
- */
- static bool states_equal(struct bpf_verifier_env *env,
- struct bpf_verifier_state *old,
- struct bpf_verifier_state *cur)
- {
- struct idpair *idmap;
- bool ret = false;
- int i;
- /* Verification state from speculative execution simulation
- * must never prune a non-speculative execution one.
- */
- if (old->speculative && !cur->speculative)
- return false;
- idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
- /* If we failed to allocate the idmap, just say it's not safe */
- if (!idmap)
- return false;
- for (i = 0; i < MAX_BPF_REG; i++) {
- if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
- goto out_free;
- }
- if (!stacksafe(old, cur, idmap))
- goto out_free;
- ret = true;
- out_free:
- kfree(idmap);
- return ret;
- }
- /* A write screens off any subsequent reads; but write marks come from the
- * straight-line code between a state and its parent. When we arrive at a
- * jump target (in the first iteration of the propagate_liveness() loop),
- * we didn't arrive by the straight-line code, so read marks in state must
- * propagate to parent regardless of state's write marks.
- */
- static bool do_propagate_liveness(const struct bpf_verifier_state *state,
- struct bpf_verifier_state *parent)
- {
- bool writes = parent == state->parent; /* Observe write marks */
- bool touched = false; /* any changes made? */
- int i;
- if (!parent)
- return touched;
- /* Propagate read liveness of registers... */
- BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
- /* We don't need to worry about FP liveness because it's read-only */
- for (i = 0; i < BPF_REG_FP; i++) {
- if (parent->regs[i].live & REG_LIVE_READ)
- continue;
- if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
- continue;
- if (state->regs[i].live & REG_LIVE_READ) {
- parent->regs[i].live |= REG_LIVE_READ;
- touched = true;
- }
- }
- /* ... and stack slots */
- for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
- i < parent->allocated_stack / BPF_REG_SIZE; i++) {
- if (parent->stack[i].slot_type[0] != STACK_SPILL)
- continue;
- if (state->stack[i].slot_type[0] != STACK_SPILL)
- continue;
- if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
- continue;
- if (writes &&
- (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN))
- continue;
- if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) {
- parent->stack[i].spilled_ptr.live |= REG_LIVE_READ;
- touched = true;
- }
- }
- return touched;
- }
- /* "parent" is "a state from which we reach the current state", but initially
- * it is not the state->parent (i.e. "the state whose straight-line code leads
- * to the current state"), instead it is the state that happened to arrive at
- * a (prunable) equivalent of the current state. See comment above
- * do_propagate_liveness() for consequences of this.
- * This function is just a more efficient way of calling mark_reg_read() or
- * mark_stack_slot_read() on each reg in "parent" that is read in "state",
- * though it requires that parent != state->parent in the call arguments.
- */
- static void propagate_liveness(const struct bpf_verifier_state *state,
- struct bpf_verifier_state *parent)
- {
- while (do_propagate_liveness(state, parent)) {
- /* Something changed, so we need to feed those changes onward */
- state = parent;
- parent = state->parent;
- }
- }
- static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
- {
- struct bpf_verifier_state_list *new_sl;
- struct bpf_verifier_state_list *sl;
- struct bpf_verifier_state *cur = env->cur_state;
- int i, err;
- sl = env->explored_states[insn_idx];
- if (!sl)
- /* this 'insn_idx' instruction wasn't marked, so we will not
- * be doing state search here
- */
- return 0;
- while (sl != STATE_LIST_MARK) {
- if (states_equal(env, &sl->state, cur)) {
- /* reached equivalent register/stack state,
- * prune the search.
- * Registers read by the continuation are read by us.
- * If we have any write marks in env->cur_state, they
- * will prevent corresponding reads in the continuation
- * from reaching our parent (an explored_state). Our
- * own state will get the read marks recorded, but
- * they'll be immediately forgotten as we're pruning
- * this state and will pop a new one.
- */
- propagate_liveness(&sl->state, cur);
- return 1;
- }
- sl = sl->next;
- }
- /* there were no equivalent states, remember current one.
- * technically the current state is not proven to be safe yet,
- * but it will either reach bpf_exit (which means it's safe) or
- * it will be rejected. Since there are no loops, we won't be
- * seeing this 'insn_idx' instruction again on the way to bpf_exit
- */
- new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
- if (!new_sl)
- return -ENOMEM;
- /* add new state to the head of linked list */
- err = copy_verifier_state(&new_sl->state, cur);
- if (err) {
- free_verifier_state(&new_sl->state, false);
- kfree(new_sl);
- return err;
- }
- new_sl->next = env->explored_states[insn_idx];
- env->explored_states[insn_idx] = new_sl;
- /* connect new state to parentage chain */
- cur->parent = &new_sl->state;
- /* clear write marks in current state: the writes we did are not writes
- * our child did, so they don't screen off its reads from us.
- * (There are no read marks in current state, because reads always mark
- * their parent and current state never has children yet. Only
- * explored_states can get read marks.)
- */
- for (i = 0; i < BPF_REG_FP; i++)
- cur->regs[i].live = REG_LIVE_NONE;
- for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++)
- if (cur->stack[i].slot_type[0] == STACK_SPILL)
- cur->stack[i].spilled_ptr.live = REG_LIVE_NONE;
- return 0;
- }
- static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
- int insn_idx, int prev_insn_idx)
- {
- if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
- return 0;
- return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
- }
- static int do_check(struct bpf_verifier_env *env)
- {
- struct bpf_verifier_state *state;
- struct bpf_insn *insns = env->prog->insnsi;
- struct bpf_reg_state *regs;
- int insn_cnt = env->prog->len;
- int insn_processed = 0;
- bool do_print_state = false;
- state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
- if (!state)
- return -ENOMEM;
- env->cur_state = state;
- init_reg_state(state->regs);
- state->parent = NULL;
- for (;;) {
- struct bpf_insn *insn;
- u8 class;
- int err;
- if (env->insn_idx >= insn_cnt) {
- verbose("invalid insn idx %d insn_cnt %d\n",
- env->insn_idx, insn_cnt);
- return -EFAULT;
- }
- insn = &insns[env->insn_idx];
- class = BPF_CLASS(insn->code);
- if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
- verbose("BPF program is too large. Processed %d insn\n",
- insn_processed);
- return -E2BIG;
- }
- err = is_state_visited(env, env->insn_idx);
- if (err < 0)
- return err;
- if (err == 1) {
- /* found equivalent state, can prune the search */
- if (log_level) {
- if (do_print_state)
- verbose("\nfrom %d to %d%s: safe\n",
- env->prev_insn_idx, env->insn_idx,
- env->cur_state->speculative ?
- " (speculative execution)" : "");
- else
- verbose("%d: safe\n", env->insn_idx);
- }
- goto process_bpf_exit;
- }
- if (need_resched())
- cond_resched();
- if (log_level > 1 || (log_level && do_print_state)) {
- if (log_level > 1)
- verbose("%d:", env->insn_idx);
- else
- verbose("\nfrom %d to %d%s:",
- env->prev_insn_idx, env->insn_idx,
- env->cur_state->speculative ?
- " (speculative execution)" : "");
- print_verifier_state(env->cur_state);
- do_print_state = false;
- }
- if (log_level) {
- verbose("%d: ", env->insn_idx);
- print_bpf_insn(env, insn);
- }
- err = ext_analyzer_insn_hook(env, env->insn_idx, env->prev_insn_idx);
- if (err)
- return err;
- regs = cur_regs(env);
- env->insn_aux_data[env->insn_idx].seen = true;
- if (class == BPF_ALU || class == BPF_ALU64) {
- err = check_alu_op(env, insn);
- if (err)
- return err;
- } else if (class == BPF_LDX) {
- enum bpf_reg_type *prev_src_type, src_reg_type;
- /* check for reserved fields is already done */
- /* check src operand */
- err = check_reg_arg(env, insn->src_reg, SRC_OP);
- if (err)
- return err;
- err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
- if (err)
- return err;
- src_reg_type = regs[insn->src_reg].type;
- /* check that memory (src_reg + off) is readable,
- * the state of dst_reg will be updated by this func
- */
- err = check_mem_access(env, env->insn_idx, insn->src_reg,
- insn->off, BPF_SIZE(insn->code),
- BPF_READ, insn->dst_reg, false);
- if (err)
- return err;
- prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
- if (*prev_src_type == NOT_INIT) {
- /* saw a valid insn
- * dst_reg = *(u32 *)(src_reg + off)
- * save type to validate intersecting paths
- */
- *prev_src_type = src_reg_type;
- } else if (src_reg_type != *prev_src_type &&
- (src_reg_type == PTR_TO_CTX ||
- *prev_src_type == PTR_TO_CTX)) {
- /* ABuser program is trying to use the same insn
- * dst_reg = *(u32*) (src_reg + off)
- * with different pointer types:
- * src_reg == ctx in one branch and
- * src_reg == stack|map in some other branch.
- * Reject it.
- */
- verbose("same insn cannot be used with different pointers\n");
- return -EINVAL;
- }
- } else if (class == BPF_STX) {
- enum bpf_reg_type *prev_dst_type, dst_reg_type;
- if (BPF_MODE(insn->code) == BPF_XADD) {
- err = check_xadd(env, env->insn_idx, insn);
- if (err)
- return err;
- env->insn_idx++;
- continue;
- }
- /* check src1 operand */
- err = check_reg_arg(env, insn->src_reg, SRC_OP);
- if (err)
- return err;
- /* check src2 operand */
- err = check_reg_arg(env, insn->dst_reg, SRC_OP);
- if (err)
- return err;
- dst_reg_type = regs[insn->dst_reg].type;
- /* check that memory (dst_reg + off) is writeable */
- err = check_mem_access(env, env->insn_idx, insn->dst_reg,
- insn->off, BPF_SIZE(insn->code),
- BPF_WRITE, insn->src_reg, false);
- if (err)
- return err;
- prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
- if (*prev_dst_type == NOT_INIT) {
- *prev_dst_type = dst_reg_type;
- } else if (dst_reg_type != *prev_dst_type &&
- (dst_reg_type == PTR_TO_CTX ||
- *prev_dst_type == PTR_TO_CTX)) {
- verbose("same insn cannot be used with different pointers\n");
- return -EINVAL;
- }
- } else if (class == BPF_ST) {
- if (BPF_MODE(insn->code) != BPF_MEM ||
- insn->src_reg != BPF_REG_0) {
- verbose("BPF_ST uses reserved fields\n");
- return -EINVAL;
- }
- /* check src operand */
- err = check_reg_arg(env, insn->dst_reg, SRC_OP);
- if (err)
- return err;
- if (is_ctx_reg(env, insn->dst_reg)) {
- verbose("BPF_ST stores into R%d context is not allowed\n",
- insn->dst_reg);
- return -EACCES;
- }
- /* check that memory (dst_reg + off) is writeable */
- err = check_mem_access(env, env->insn_idx, insn->dst_reg,
- insn->off, BPF_SIZE(insn->code),
- BPF_WRITE, -1, false);
- if (err)
- return err;
- } else if (class == BPF_JMP) {
- u8 opcode = BPF_OP(insn->code);
- if (opcode == BPF_CALL) {
- if (BPF_SRC(insn->code) != BPF_K ||
- insn->off != 0 ||
- insn->src_reg != BPF_REG_0 ||
- insn->dst_reg != BPF_REG_0) {
- verbose("BPF_CALL uses reserved fields\n");
- return -EINVAL;
- }
- err = check_call(env, insn->imm, env->insn_idx);
- if (err)
- return err;
- } else if (opcode == BPF_JA) {
- if (BPF_SRC(insn->code) != BPF_K ||
- insn->imm != 0 ||
- insn->src_reg != BPF_REG_0 ||
- insn->dst_reg != BPF_REG_0) {
- verbose("BPF_JA uses reserved fields\n");
- return -EINVAL;
- }
- env->insn_idx += insn->off + 1;
- continue;
- } else if (opcode == BPF_EXIT) {
- if (BPF_SRC(insn->code) != BPF_K ||
- insn->imm != 0 ||
- insn->src_reg != BPF_REG_0 ||
- insn->dst_reg != BPF_REG_0) {
- verbose("BPF_EXIT uses reserved fields\n");
- return -EINVAL;
- }
- /* eBPF calling convetion is such that R0 is used
- * to return the value from eBPF program.
- * Make sure that it's readable at this time
- * of bpf_exit, which means that program wrote
- * something into it earlier
- */
- err = check_reg_arg(env, BPF_REG_0, SRC_OP);
- if (err)
- return err;
- if (is_pointer_value(env, BPF_REG_0)) {
- verbose("R0 leaks addr as return value\n");
- return -EACCES;
- }
- process_bpf_exit:
- err = pop_stack(env, &env->prev_insn_idx, &env->insn_idx);
- if (err < 0) {
- if (err != -ENOENT)
- return err;
- break;
- } else {
- do_print_state = true;
- continue;
- }
- } else {
- err = check_cond_jmp_op(env, insn, &env->insn_idx);
- if (err)
- return err;
- }
- } else if (class == BPF_LD) {
- u8 mode = BPF_MODE(insn->code);
- if (mode == BPF_ABS || mode == BPF_IND) {
- err = check_ld_abs(env, insn);
- if (err)
- return err;
- } else if (mode == BPF_IMM) {
- err = check_ld_imm(env, insn);
- if (err)
- return err;
- env->insn_idx++;
- env->insn_aux_data[env->insn_idx].seen = true;
- } else {
- verbose("invalid BPF_LD mode\n");
- return -EINVAL;
- }
- } else {
- verbose("unknown insn class %d\n", class);
- return -EINVAL;
- }
- env->insn_idx++;
- }
- verbose("processed %d insns, stack depth %d\n",
- insn_processed, env->prog->aux->stack_depth);
- return 0;
- }
- static int check_map_prealloc(struct bpf_map *map)
- {
- return (map->map_type != BPF_MAP_TYPE_HASH &&
- map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
- map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
- !(map->map_flags & BPF_F_NO_PREALLOC);
- }
- static int check_map_prog_compatibility(struct bpf_map *map,
- struct bpf_prog *prog)
- {
- /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
- * preallocated hash maps, since doing memory allocation
- * in overflow_handler can crash depending on where nmi got
- * triggered.
- */
- if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
- if (!check_map_prealloc(map)) {
- verbose("perf_event programs can only use preallocated hash map\n");
- return -EINVAL;
- }
- if (map->inner_map_meta &&
- !check_map_prealloc(map->inner_map_meta)) {
- verbose("perf_event programs can only use preallocated inner hash map\n");
- return -EINVAL;
- }
- }
- return 0;
- }
- /* look for pseudo eBPF instructions that access map FDs and
- * replace them with actual map pointers
- */
- static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
- {
- struct bpf_insn *insn = env->prog->insnsi;
- int insn_cnt = env->prog->len;
- int i, j, err;
- err = bpf_prog_calc_tag(env->prog);
- if (err)
- return err;
- for (i = 0; i < insn_cnt; i++, insn++) {
- if (BPF_CLASS(insn->code) == BPF_LDX &&
- (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
- verbose("BPF_LDX uses reserved fields\n");
- return -EINVAL;
- }
- if (BPF_CLASS(insn->code) == BPF_STX &&
- ((BPF_MODE(insn->code) != BPF_MEM &&
- BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
- verbose("BPF_STX uses reserved fields\n");
- return -EINVAL;
- }
- if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
- struct bpf_map *map;
- struct fd f;
- if (i == insn_cnt - 1 || insn[1].code != 0 ||
- insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
- insn[1].off != 0) {
- verbose("invalid bpf_ld_imm64 insn\n");
- return -EINVAL;
- }
- if (insn->src_reg == 0)
- /* valid generic load 64-bit imm */
- goto next_insn;
- if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
- verbose("unrecognized bpf_ld_imm64 insn\n");
- return -EINVAL;
- }
- f = fdget(insn->imm);
- map = __bpf_map_get(f);
- if (IS_ERR(map)) {
- verbose("fd %d is not pointing to valid bpf_map\n",
- insn->imm);
- return PTR_ERR(map);
- }
- err = check_map_prog_compatibility(map, env->prog);
- if (err) {
- fdput(f);
- return err;
- }
- /* store map pointer inside BPF_LD_IMM64 instruction */
- insn[0].imm = (u32) (unsigned long) map;
- insn[1].imm = ((u64) (unsigned long) map) >> 32;
- /* check whether we recorded this map already */
- for (j = 0; j < env->used_map_cnt; j++)
- if (env->used_maps[j] == map) {
- fdput(f);
- goto next_insn;
- }
- if (env->used_map_cnt >= MAX_USED_MAPS) {
- fdput(f);
- return -E2BIG;
- }
- /* hold the map. If the program is rejected by verifier,
- * the map will be released by release_maps() or it
- * will be used by the valid program until it's unloaded
- * and all maps are released in free_used_maps()
- */
- map = bpf_map_inc(map, false);
- if (IS_ERR(map)) {
- fdput(f);
- return PTR_ERR(map);
- }
- env->used_maps[env->used_map_cnt++] = map;
- fdput(f);
- next_insn:
- insn++;
- i++;
- }
- }
- /* now all pseudo BPF_LD_IMM64 instructions load valid
- * 'struct bpf_map *' into a register instead of user map_fd.
- * These pointers will be used later by verifier to validate map access.
- */
- return 0;
- }
- /* drop refcnt of maps used by the rejected program */
- static void release_maps(struct bpf_verifier_env *env)
- {
- int i;
- for (i = 0; i < env->used_map_cnt; i++)
- bpf_map_put(env->used_maps[i]);
- }
- /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
- static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
- {
- struct bpf_insn *insn = env->prog->insnsi;
- int insn_cnt = env->prog->len;
- int i;
- for (i = 0; i < insn_cnt; i++, insn++)
- if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
- insn->src_reg = 0;
- }
- /* single env->prog->insni[off] instruction was replaced with the range
- * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
- * [0, off) and [off, end) to new locations, so the patched range stays zero
- */
- static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
- u32 off, u32 cnt)
- {
- struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
- int i;
- if (cnt == 1)
- return 0;
- new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
- if (!new_data)
- return -ENOMEM;
- memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
- memcpy(new_data + off + cnt - 1, old_data + off,
- sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
- for (i = off; i < off + cnt - 1; i++)
- new_data[i].seen = true;
- env->insn_aux_data = new_data;
- vfree(old_data);
- return 0;
- }
- static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
- const struct bpf_insn *patch, u32 len)
- {
- struct bpf_prog *new_prog;
- new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
- if (!new_prog)
- return NULL;
- if (adjust_insn_aux_data(env, new_prog->len, off, len))
- return NULL;
- return new_prog;
- }
- /* The verifier does more data flow analysis than llvm and will not explore
- * branches that are dead at run time. Malicious programs can have dead code
- * too. Therefore replace all dead at-run-time code with nops.
- */
- static void sanitize_dead_code(struct bpf_verifier_env *env)
- {
- struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
- struct bpf_insn nop = BPF_MOV64_REG(BPF_REG_0, BPF_REG_0);
- struct bpf_insn *insn = env->prog->insnsi;
- const int insn_cnt = env->prog->len;
- int i;
- for (i = 0; i < insn_cnt; i++) {
- if (aux_data[i].seen)
- continue;
- memcpy(insn + i, &nop, sizeof(nop));
- }
- }
- /* convert load instructions that access fields of 'struct __sk_buff'
- * into sequence of instructions that access fields of 'struct sk_buff'
- */
- static int convert_ctx_accesses(struct bpf_verifier_env *env)
- {
- const struct bpf_verifier_ops *ops = env->prog->aux->ops;
- int i, cnt, size, ctx_field_size, delta = 0;
- const int insn_cnt = env->prog->len;
- struct bpf_insn insn_buf[16], *insn;
- struct bpf_prog *new_prog;
- enum bpf_access_type type;
- bool is_narrower_load;
- u32 target_size;
- if (ops->gen_prologue) {
- cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
- env->prog);
- if (cnt >= ARRAY_SIZE(insn_buf)) {
- verbose("bpf verifier is misconfigured\n");
- return -EINVAL;
- } else if (cnt) {
- new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
- if (!new_prog)
- return -ENOMEM;
- env->prog = new_prog;
- delta += cnt - 1;
- }
- }
- if (!ops->convert_ctx_access)
- return 0;
- insn = env->prog->insnsi + delta;
- for (i = 0; i < insn_cnt; i++, insn++) {
- if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
- insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
- insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
- insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
- type = BPF_READ;
- else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
- insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
- insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
- insn->code == (BPF_STX | BPF_MEM | BPF_DW))
- type = BPF_WRITE;
- else
- continue;
- if (type == BPF_WRITE &&
- env->insn_aux_data[i + delta].sanitize_stack_off) {
- struct bpf_insn patch[] = {
- /* Sanitize suspicious stack slot with zero.
- * There are no memory dependencies for this store,
- * since it's only using frame pointer and immediate
- * constant of zero
- */
- BPF_ST_MEM(BPF_DW, BPF_REG_FP,
- env->insn_aux_data[i + delta].sanitize_stack_off,
- 0),
- /* the original STX instruction will immediately
- * overwrite the same stack slot with appropriate value
- */
- *insn,
- };
- cnt = ARRAY_SIZE(patch);
- new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
- if (!new_prog)
- return -ENOMEM;
- delta += cnt - 1;
- env->prog = new_prog;
- insn = new_prog->insnsi + i + delta;
- continue;
- }
- if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
- continue;
- ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
- size = BPF_LDST_BYTES(insn);
- /* If the read access is a narrower load of the field,
- * convert to a 4/8-byte load, to minimum program type specific
- * convert_ctx_access changes. If conversion is successful,
- * we will apply proper mask to the result.
- */
- is_narrower_load = size < ctx_field_size;
- if (is_narrower_load) {
- u32 off = insn->off;
- u8 size_code;
- if (type == BPF_WRITE) {
- verbose("bpf verifier narrow ctx access misconfigured\n");
- return -EINVAL;
- }
- size_code = BPF_H;
- if (ctx_field_size == 4)
- size_code = BPF_W;
- else if (ctx_field_size == 8)
- size_code = BPF_DW;
- insn->off = off & ~(ctx_field_size - 1);
- insn->code = BPF_LDX | BPF_MEM | size_code;
- }
- target_size = 0;
- cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
- &target_size);
- if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
- (ctx_field_size && !target_size)) {
- verbose("bpf verifier is misconfigured\n");
- return -EINVAL;
- }
- if (is_narrower_load && size < target_size) {
- if (ctx_field_size <= 4)
- insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
- (1 << size * 8) - 1);
- else
- insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
- (1 << size * 8) - 1);
- }
- new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
- if (!new_prog)
- return -ENOMEM;
- delta += cnt - 1;
- /* keep walking new program and skip insns we just inserted */
- env->prog = new_prog;
- insn = new_prog->insnsi + i + delta;
- }
- return 0;
- }
- /* fixup insn->imm field of bpf_call instructions
- * and inline eligible helpers as explicit sequence of BPF instructions
- *
- * this function is called after eBPF program passed verification
- */
- static int fixup_bpf_calls(struct bpf_verifier_env *env)
- {
- struct bpf_prog *prog = env->prog;
- struct bpf_insn *insn = prog->insnsi;
- const struct bpf_func_proto *fn;
- const int insn_cnt = prog->len;
- struct bpf_insn insn_buf[16];
- struct bpf_prog *new_prog;
- struct bpf_map *map_ptr;
- int i, cnt, delta = 0;
- struct bpf_insn_aux_data *aux;
- for (i = 0; i < insn_cnt; i++, insn++) {
- if (insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
- insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
- /* due to JIT bugs clear upper 32-bits of src register
- * before div/mod operation
- */
- insn_buf[0] = BPF_MOV32_REG(insn->src_reg, insn->src_reg);
- insn_buf[1] = *insn;
- cnt = 2;
- new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
- if (!new_prog)
- return -ENOMEM;
- delta += cnt - 1;
- env->prog = prog = new_prog;
- insn = new_prog->insnsi + i + delta;
- continue;
- }
- if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
- insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
- const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
- const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
- struct bpf_insn insn_buf[16];
- struct bpf_insn *patch = &insn_buf[0];
- bool issrc, isneg, isimm;
- u32 off_reg;
- aux = &env->insn_aux_data[i + delta];
- if (!aux->alu_state ||
- aux->alu_state == BPF_ALU_NON_POINTER)
- continue;
- isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
- issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
- BPF_ALU_SANITIZE_SRC;
- isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
- off_reg = issrc ? insn->src_reg : insn->dst_reg;
- if (isimm) {
- *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
- } else {
- if (isneg)
- *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
- *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
- *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
- *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
- *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
- *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
- *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
- }
- if (!issrc)
- *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
- insn->src_reg = BPF_REG_AX;
- if (isneg)
- insn->code = insn->code == code_add ?
- code_sub : code_add;
- *patch++ = *insn;
- if (issrc && isneg && !isimm)
- *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
- cnt = patch - insn_buf;
- new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
- if (!new_prog)
- return -ENOMEM;
- delta += cnt - 1;
- env->prog = prog = new_prog;
- insn = new_prog->insnsi + i + delta;
- continue;
- }
- if (insn->code != (BPF_JMP | BPF_CALL))
- continue;
- if (insn->imm == BPF_FUNC_get_route_realm)
- prog->dst_needed = 1;
- if (insn->imm == BPF_FUNC_get_prandom_u32)
- bpf_user_rnd_init_once();
- if (insn->imm == BPF_FUNC_tail_call) {
- /* If we tail call into other programs, we
- * cannot make any assumptions since they can
- * be replaced dynamically during runtime in
- * the program array.
- */
- prog->cb_access = 1;
- env->prog->aux->stack_depth = MAX_BPF_STACK;
- /* mark bpf_tail_call as different opcode to avoid
- * conditional branch in the interpeter for every normal
- * call and to prevent accidental JITing by JIT compiler
- * that doesn't support bpf_tail_call yet
- */
- insn->imm = 0;
- insn->code = BPF_JMP | BPF_TAIL_CALL;
- /* instead of changing every JIT dealing with tail_call
- * emit two extra insns:
- * if (index >= max_entries) goto out;
- * index &= array->index_mask;
- * to avoid out-of-bounds cpu speculation
- */
- map_ptr = env->insn_aux_data[i + delta].map_ptr;
- if (map_ptr == BPF_MAP_PTR_POISON) {
- verbose("tail_call obusing map_ptr\n");
- return -EINVAL;
- }
- if (!map_ptr->unpriv_array)
- continue;
- insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
- map_ptr->max_entries, 2);
- insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
- container_of(map_ptr,
- struct bpf_array,
- map)->index_mask);
- insn_buf[2] = *insn;
- cnt = 3;
- new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
- if (!new_prog)
- return -ENOMEM;
- delta += cnt - 1;
- env->prog = prog = new_prog;
- insn = new_prog->insnsi + i + delta;
- continue;
- }
- /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
- * handlers are currently limited to 64 bit only.
- */
- if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
- insn->imm == BPF_FUNC_map_lookup_elem) {
- map_ptr = env->insn_aux_data[i + delta].map_ptr;
- if (map_ptr == BPF_MAP_PTR_POISON ||
- !map_ptr->ops->map_gen_lookup)
- goto patch_call_imm;
- cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
- if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
- verbose("bpf verifier is misconfigured\n");
- return -EINVAL;
- }
- new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
- cnt);
- if (!new_prog)
- return -ENOMEM;
- delta += cnt - 1;
- /* keep walking new program and skip insns we just inserted */
- env->prog = prog = new_prog;
- insn = new_prog->insnsi + i + delta;
- continue;
- }
- if (insn->imm == BPF_FUNC_redirect_map) {
- /* Note, we cannot use prog directly as imm as subsequent
- * rewrites would still change the prog pointer. The only
- * stable address we can use is aux, which also works with
- * prog clones during blinding.
- */
- u64 addr = (unsigned long)prog->aux;
- struct bpf_insn r4_ld[] = {
- BPF_LD_IMM64(BPF_REG_4, addr),
- *insn,
- };
- cnt = ARRAY_SIZE(r4_ld);
- new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
- if (!new_prog)
- return -ENOMEM;
- delta += cnt - 1;
- env->prog = prog = new_prog;
- insn = new_prog->insnsi + i + delta;
- }
- patch_call_imm:
- fn = prog->aux->ops->get_func_proto(insn->imm);
- /* all functions that have prototype and verifier allowed
- * programs to call them, must be real in-kernel functions
- */
- if (!fn->func) {
- verbose("kernel subsystem misconfigured func %s#%d\n",
- func_id_name(insn->imm), insn->imm);
- return -EFAULT;
- }
- insn->imm = fn->func - __bpf_call_base;
- }
- return 0;
- }
- static void free_states(struct bpf_verifier_env *env)
- {
- struct bpf_verifier_state_list *sl, *sln;
- int i;
- if (!env->explored_states)
- return;
- for (i = 0; i < env->prog->len; i++) {
- sl = env->explored_states[i];
- if (sl)
- while (sl != STATE_LIST_MARK) {
- sln = sl->next;
- free_verifier_state(&sl->state, false);
- kfree(sl);
- sl = sln;
- }
- }
- kfree(env->explored_states);
- }
- int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
- {
- char __user *log_ubuf = NULL;
- struct bpf_verifier_env *env;
- int ret = -EINVAL;
- /* 'struct bpf_verifier_env' can be global, but since it's not small,
- * allocate/free it every time bpf_check() is called
- */
- env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
- if (!env)
- return -ENOMEM;
- env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
- (*prog)->len);
- ret = -ENOMEM;
- if (!env->insn_aux_data)
- goto err_free_env;
- env->prog = *prog;
- /* grab the mutex to protect few globals used by verifier */
- mutex_lock(&bpf_verifier_lock);
- if (attr->log_level || attr->log_buf || attr->log_size) {
- /* user requested verbose verifier output
- * and supplied buffer to store the verification trace
- */
- log_level = attr->log_level;
- log_ubuf = (char __user *) (unsigned long) attr->log_buf;
- log_size = attr->log_size;
- log_len = 0;
- ret = -EINVAL;
- /* log_* values have to be sane */
- if (log_size < 128 || log_size > UINT_MAX >> 8 ||
- log_level == 0 || log_ubuf == NULL)
- goto err_unlock;
- ret = -ENOMEM;
- log_buf = vmalloc(log_size);
- if (!log_buf)
- goto err_unlock;
- } else {
- log_level = 0;
- }
- env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
- if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
- env->strict_alignment = true;
- ret = replace_map_fd_with_map_ptr(env);
- if (ret < 0)
- goto skip_full_check;
- env->explored_states = kcalloc(env->prog->len,
- sizeof(struct bpf_verifier_state_list *),
- GFP_USER);
- ret = -ENOMEM;
- if (!env->explored_states)
- goto skip_full_check;
- ret = check_cfg(env);
- if (ret < 0)
- goto skip_full_check;
- env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
- ret = do_check(env);
- if (env->cur_state) {
- free_verifier_state(env->cur_state, true);
- env->cur_state = NULL;
- }
- skip_full_check:
- while (!pop_stack(env, NULL, NULL));
- free_states(env);
- if (ret == 0)
- sanitize_dead_code(env);
- if (ret == 0)
- /* program is valid, convert *(u32*)(ctx + off) accesses */
- ret = convert_ctx_accesses(env);
- if (ret == 0)
- ret = fixup_bpf_calls(env);
- if (log_level && log_len >= log_size - 1) {
- BUG_ON(log_len >= log_size);
- /* verifier log exceeded user supplied buffer */
- ret = -ENOSPC;
- /* fall through to return what was recorded */
- }
- /* copy verifier log back to user space including trailing zero */
- if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
- ret = -EFAULT;
- goto free_log_buf;
- }
- if (ret == 0 && env->used_map_cnt) {
- /* if program passed verifier, update used_maps in bpf_prog_info */
- env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
- sizeof(env->used_maps[0]),
- GFP_KERNEL);
- if (!env->prog->aux->used_maps) {
- ret = -ENOMEM;
- goto free_log_buf;
- }
- memcpy(env->prog->aux->used_maps, env->used_maps,
- sizeof(env->used_maps[0]) * env->used_map_cnt);
- env->prog->aux->used_map_cnt = env->used_map_cnt;
- /* program is valid. Convert pseudo bpf_ld_imm64 into generic
- * bpf_ld_imm64 instructions
- */
- convert_pseudo_ld_imm64(env);
- }
- free_log_buf:
- if (log_level)
- vfree(log_buf);
- if (!env->prog->aux->used_maps)
- /* if we didn't copy map pointers into bpf_prog_info, release
- * them now. Otherwise free_used_maps() will release them.
- */
- release_maps(env);
- *prog = env->prog;
- err_unlock:
- mutex_unlock(&bpf_verifier_lock);
- vfree(env->insn_aux_data);
- err_free_env:
- kfree(env);
- return ret;
- }
- int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
- void *priv)
- {
- struct bpf_verifier_env *env;
- int ret;
- env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
- if (!env)
- return -ENOMEM;
- env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
- prog->len);
- ret = -ENOMEM;
- if (!env->insn_aux_data)
- goto err_free_env;
- env->prog = prog;
- env->analyzer_ops = ops;
- env->analyzer_priv = priv;
- /* grab the mutex to protect few globals used by verifier */
- mutex_lock(&bpf_verifier_lock);
- log_level = 0;
- env->strict_alignment = false;
- if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
- env->strict_alignment = true;
- env->explored_states = kcalloc(env->prog->len,
- sizeof(struct bpf_verifier_state_list *),
- GFP_KERNEL);
- ret = -ENOMEM;
- if (!env->explored_states)
- goto skip_full_check;
- ret = check_cfg(env);
- if (ret < 0)
- goto skip_full_check;
- env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
- ret = do_check(env);
- if (env->cur_state) {
- free_verifier_state(env->cur_state, true);
- env->cur_state = NULL;
- }
- skip_full_check:
- while (!pop_stack(env, NULL, NULL));
- free_states(env);
- mutex_unlock(&bpf_verifier_lock);
- vfree(env->insn_aux_data);
- err_free_env:
- kfree(env);
- return ret;
- }
- EXPORT_SYMBOL_GPL(bpf_analyzer);
|