tnum.c 3.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181
  1. /* tnum: tracked (or tristate) numbers
  2. *
  3. * A tnum tracks knowledge about the bits of a value. Each bit can be either
  4. * known (0 or 1), or unknown (x). Arithmetic operations on tnums will
  5. * propagate the unknown bits such that the tnum result represents all the
  6. * possible results for possible values of the operands.
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/tnum.h>
  10. #define TNUM(_v, _m) (struct tnum){.value = _v, .mask = _m}
  11. /* A completely unknown value */
  12. const struct tnum tnum_unknown = { .value = 0, .mask = -1 };
  13. struct tnum tnum_const(u64 value)
  14. {
  15. return TNUM(value, 0);
  16. }
  17. struct tnum tnum_range(u64 min, u64 max)
  18. {
  19. u64 chi = min ^ max, delta;
  20. u8 bits = fls64(chi);
  21. /* special case, needed because 1ULL << 64 is undefined */
  22. if (bits > 63)
  23. return tnum_unknown;
  24. /* e.g. if chi = 4, bits = 3, delta = (1<<3) - 1 = 7.
  25. * if chi = 0, bits = 0, delta = (1<<0) - 1 = 0, so we return
  26. * constant min (since min == max).
  27. */
  28. delta = (1ULL << bits) - 1;
  29. return TNUM(min & ~delta, delta);
  30. }
  31. struct tnum tnum_lshift(struct tnum a, u8 shift)
  32. {
  33. return TNUM(a.value << shift, a.mask << shift);
  34. }
  35. struct tnum tnum_rshift(struct tnum a, u8 shift)
  36. {
  37. return TNUM(a.value >> shift, a.mask >> shift);
  38. }
  39. struct tnum tnum_add(struct tnum a, struct tnum b)
  40. {
  41. u64 sm, sv, sigma, chi, mu;
  42. sm = a.mask + b.mask;
  43. sv = a.value + b.value;
  44. sigma = sm + sv;
  45. chi = sigma ^ sv;
  46. mu = chi | a.mask | b.mask;
  47. return TNUM(sv & ~mu, mu);
  48. }
  49. struct tnum tnum_sub(struct tnum a, struct tnum b)
  50. {
  51. u64 dv, alpha, beta, chi, mu;
  52. dv = a.value - b.value;
  53. alpha = dv + a.mask;
  54. beta = dv - b.mask;
  55. chi = alpha ^ beta;
  56. mu = chi | a.mask | b.mask;
  57. return TNUM(dv & ~mu, mu);
  58. }
  59. struct tnum tnum_and(struct tnum a, struct tnum b)
  60. {
  61. u64 alpha, beta, v;
  62. alpha = a.value | a.mask;
  63. beta = b.value | b.mask;
  64. v = a.value & b.value;
  65. return TNUM(v, alpha & beta & ~v);
  66. }
  67. struct tnum tnum_or(struct tnum a, struct tnum b)
  68. {
  69. u64 v, mu;
  70. v = a.value | b.value;
  71. mu = a.mask | b.mask;
  72. return TNUM(v, mu & ~v);
  73. }
  74. struct tnum tnum_xor(struct tnum a, struct tnum b)
  75. {
  76. u64 v, mu;
  77. v = a.value ^ b.value;
  78. mu = a.mask | b.mask;
  79. return TNUM(v & ~mu, mu);
  80. }
  81. /* half-multiply add: acc += (unknown * mask * value).
  82. * An intermediate step in the multiply algorithm.
  83. */
  84. static struct tnum hma(struct tnum acc, u64 value, u64 mask)
  85. {
  86. while (mask) {
  87. if (mask & 1)
  88. acc = tnum_add(acc, TNUM(0, value));
  89. mask >>= 1;
  90. value <<= 1;
  91. }
  92. return acc;
  93. }
  94. struct tnum tnum_mul(struct tnum a, struct tnum b)
  95. {
  96. struct tnum acc;
  97. u64 pi;
  98. pi = a.value * b.value;
  99. acc = hma(TNUM(pi, 0), a.mask, b.mask | b.value);
  100. return hma(acc, b.mask, a.value);
  101. }
  102. /* Note that if a and b disagree - i.e. one has a 'known 1' where the other has
  103. * a 'known 0' - this will return a 'known 1' for that bit.
  104. */
  105. struct tnum tnum_intersect(struct tnum a, struct tnum b)
  106. {
  107. u64 v, mu;
  108. v = a.value | b.value;
  109. mu = a.mask & b.mask;
  110. return TNUM(v & ~mu, mu);
  111. }
  112. struct tnum tnum_cast(struct tnum a, u8 size)
  113. {
  114. a.value &= (1ULL << (size * 8)) - 1;
  115. a.mask &= (1ULL << (size * 8)) - 1;
  116. return a;
  117. }
  118. bool tnum_is_aligned(struct tnum a, u64 size)
  119. {
  120. if (!size)
  121. return true;
  122. return !((a.value | a.mask) & (size - 1));
  123. }
  124. bool tnum_in(struct tnum a, struct tnum b)
  125. {
  126. if (b.mask & ~a.mask)
  127. return false;
  128. b.value &= ~a.mask;
  129. return a.value == b.value;
  130. }
  131. int tnum_strn(char *str, size_t size, struct tnum a)
  132. {
  133. return snprintf(str, size, "(%#llx; %#llx)", a.value, a.mask);
  134. }
  135. EXPORT_SYMBOL_GPL(tnum_strn);
  136. int tnum_sbin(char *str, size_t size, struct tnum a)
  137. {
  138. size_t n;
  139. for (n = 64; n; n--) {
  140. if (n < size) {
  141. if (a.mask & 1)
  142. str[n - 1] = 'x';
  143. else if (a.value & 1)
  144. str[n - 1] = '1';
  145. else
  146. str[n - 1] = '0';
  147. }
  148. a.mask >>= 1;
  149. a.value >>= 1;
  150. }
  151. str[min(size - 1, (size_t)64)] = 0;
  152. return 64;
  153. }