ipv6.h 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014
  1. /*
  2. * Linux INET6 implementation
  3. *
  4. * Authors:
  5. * Pedro Roque <roque@di.fc.ul.pt>
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #ifndef _NET_IPV6_H
  13. #define _NET_IPV6_H
  14. #include <linux/ipv6.h>
  15. #include <linux/hardirq.h>
  16. #include <linux/jhash.h>
  17. #include <linux/refcount.h>
  18. #include <net/if_inet6.h>
  19. #include <net/ndisc.h>
  20. #include <net/flow.h>
  21. #include <net/flow_dissector.h>
  22. #include <net/snmp.h>
  23. #define SIN6_LEN_RFC2133 24
  24. #define IPV6_MAXPLEN 65535
  25. /*
  26. * NextHeader field of IPv6 header
  27. */
  28. #define NEXTHDR_HOP 0 /* Hop-by-hop option header. */
  29. #define NEXTHDR_TCP 6 /* TCP segment. */
  30. #define NEXTHDR_UDP 17 /* UDP message. */
  31. #define NEXTHDR_IPV6 41 /* IPv6 in IPv6 */
  32. #define NEXTHDR_ROUTING 43 /* Routing header. */
  33. #define NEXTHDR_FRAGMENT 44 /* Fragmentation/reassembly header. */
  34. #define NEXTHDR_GRE 47 /* GRE header. */
  35. #define NEXTHDR_ESP 50 /* Encapsulating security payload. */
  36. #define NEXTHDR_AUTH 51 /* Authentication header. */
  37. #define NEXTHDR_ICMP 58 /* ICMP for IPv6. */
  38. #define NEXTHDR_NONE 59 /* No next header */
  39. #define NEXTHDR_DEST 60 /* Destination options header. */
  40. #define NEXTHDR_SCTP 132 /* SCTP message. */
  41. #define NEXTHDR_MOBILITY 135 /* Mobility header. */
  42. #define NEXTHDR_MAX 255
  43. #define IPV6_DEFAULT_HOPLIMIT 64
  44. #define IPV6_DEFAULT_MCASTHOPS 1
  45. /*
  46. * Addr type
  47. *
  48. * type - unicast | multicast
  49. * scope - local | site | global
  50. * v4 - compat
  51. * v4mapped
  52. * any
  53. * loopback
  54. */
  55. #define IPV6_ADDR_ANY 0x0000U
  56. #define IPV6_ADDR_UNICAST 0x0001U
  57. #define IPV6_ADDR_MULTICAST 0x0002U
  58. #define IPV6_ADDR_LOOPBACK 0x0010U
  59. #define IPV6_ADDR_LINKLOCAL 0x0020U
  60. #define IPV6_ADDR_SITELOCAL 0x0040U
  61. #define IPV6_ADDR_COMPATv4 0x0080U
  62. #define IPV6_ADDR_SCOPE_MASK 0x00f0U
  63. #define IPV6_ADDR_MAPPED 0x1000U
  64. /*
  65. * Addr scopes
  66. */
  67. #define IPV6_ADDR_MC_SCOPE(a) \
  68. ((a)->s6_addr[1] & 0x0f) /* nonstandard */
  69. #define __IPV6_ADDR_SCOPE_INVALID -1
  70. #define IPV6_ADDR_SCOPE_NODELOCAL 0x01
  71. #define IPV6_ADDR_SCOPE_LINKLOCAL 0x02
  72. #define IPV6_ADDR_SCOPE_SITELOCAL 0x05
  73. #define IPV6_ADDR_SCOPE_ORGLOCAL 0x08
  74. #define IPV6_ADDR_SCOPE_GLOBAL 0x0e
  75. /*
  76. * Addr flags
  77. */
  78. #define IPV6_ADDR_MC_FLAG_TRANSIENT(a) \
  79. ((a)->s6_addr[1] & 0x10)
  80. #define IPV6_ADDR_MC_FLAG_PREFIX(a) \
  81. ((a)->s6_addr[1] & 0x20)
  82. #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a) \
  83. ((a)->s6_addr[1] & 0x40)
  84. /*
  85. * fragmentation header
  86. */
  87. struct frag_hdr {
  88. __u8 nexthdr;
  89. __u8 reserved;
  90. __be16 frag_off;
  91. __be32 identification;
  92. };
  93. #define IP6_MF 0x0001
  94. #define IP6_OFFSET 0xFFF8
  95. #define IP6_REPLY_MARK(net, mark) \
  96. ((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0)
  97. #include <net/sock.h>
  98. /* sysctls */
  99. extern int sysctl_mld_max_msf;
  100. extern int sysctl_mld_qrv;
  101. #define _DEVINC(net, statname, mod, idev, field) \
  102. ({ \
  103. struct inet6_dev *_idev = (idev); \
  104. if (likely(_idev != NULL)) \
  105. mod##SNMP_INC_STATS64((_idev)->stats.statname, (field));\
  106. mod##SNMP_INC_STATS64((net)->mib.statname##_statistics, (field));\
  107. })
  108. /* per device counters are atomic_long_t */
  109. #define _DEVINCATOMIC(net, statname, mod, idev, field) \
  110. ({ \
  111. struct inet6_dev *_idev = (idev); \
  112. if (likely(_idev != NULL)) \
  113. SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
  114. mod##SNMP_INC_STATS((net)->mib.statname##_statistics, (field));\
  115. })
  116. /* per device and per net counters are atomic_long_t */
  117. #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field) \
  118. ({ \
  119. struct inet6_dev *_idev = (idev); \
  120. if (likely(_idev != NULL)) \
  121. SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
  122. SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\
  123. })
  124. #define _DEVADD(net, statname, mod, idev, field, val) \
  125. ({ \
  126. struct inet6_dev *_idev = (idev); \
  127. if (likely(_idev != NULL)) \
  128. mod##SNMP_ADD_STATS((_idev)->stats.statname, (field), (val)); \
  129. mod##SNMP_ADD_STATS((net)->mib.statname##_statistics, (field), (val));\
  130. })
  131. #define _DEVUPD(net, statname, mod, idev, field, val) \
  132. ({ \
  133. struct inet6_dev *_idev = (idev); \
  134. if (likely(_idev != NULL)) \
  135. mod##SNMP_UPD_PO_STATS((_idev)->stats.statname, field, (val)); \
  136. mod##SNMP_UPD_PO_STATS((net)->mib.statname##_statistics, field, (val));\
  137. })
  138. /* MIBs */
  139. #define IP6_INC_STATS(net, idev,field) \
  140. _DEVINC(net, ipv6, , idev, field)
  141. #define __IP6_INC_STATS(net, idev,field) \
  142. _DEVINC(net, ipv6, __, idev, field)
  143. #define IP6_ADD_STATS(net, idev,field,val) \
  144. _DEVADD(net, ipv6, , idev, field, val)
  145. #define __IP6_ADD_STATS(net, idev,field,val) \
  146. _DEVADD(net, ipv6, __, idev, field, val)
  147. #define IP6_UPD_PO_STATS(net, idev,field,val) \
  148. _DEVUPD(net, ipv6, , idev, field, val)
  149. #define __IP6_UPD_PO_STATS(net, idev,field,val) \
  150. _DEVUPD(net, ipv6, __, idev, field, val)
  151. #define ICMP6_INC_STATS(net, idev, field) \
  152. _DEVINCATOMIC(net, icmpv6, , idev, field)
  153. #define __ICMP6_INC_STATS(net, idev, field) \
  154. _DEVINCATOMIC(net, icmpv6, __, idev, field)
  155. #define ICMP6MSGOUT_INC_STATS(net, idev, field) \
  156. _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256)
  157. #define ICMP6MSGIN_INC_STATS(net, idev, field) \
  158. _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field)
  159. struct ip6_ra_chain {
  160. struct ip6_ra_chain *next;
  161. struct sock *sk;
  162. int sel;
  163. void (*destructor)(struct sock *);
  164. };
  165. extern struct ip6_ra_chain *ip6_ra_chain;
  166. extern rwlock_t ip6_ra_lock;
  167. /*
  168. This structure is prepared by protocol, when parsing
  169. ancillary data and passed to IPv6.
  170. */
  171. struct ipv6_txoptions {
  172. refcount_t refcnt;
  173. /* Length of this structure */
  174. int tot_len;
  175. /* length of extension headers */
  176. __u16 opt_flen; /* after fragment hdr */
  177. __u16 opt_nflen; /* before fragment hdr */
  178. struct ipv6_opt_hdr *hopopt;
  179. struct ipv6_opt_hdr *dst0opt;
  180. struct ipv6_rt_hdr *srcrt; /* Routing Header */
  181. struct ipv6_opt_hdr *dst1opt;
  182. struct rcu_head rcu;
  183. /* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */
  184. };
  185. struct ip6_flowlabel {
  186. struct ip6_flowlabel __rcu *next;
  187. __be32 label;
  188. atomic_t users;
  189. struct in6_addr dst;
  190. struct ipv6_txoptions *opt;
  191. unsigned long linger;
  192. struct rcu_head rcu;
  193. u8 share;
  194. union {
  195. struct pid *pid;
  196. kuid_t uid;
  197. } owner;
  198. unsigned long lastuse;
  199. unsigned long expires;
  200. struct net *fl_net;
  201. };
  202. #define IPV6_FLOWINFO_MASK cpu_to_be32(0x0FFFFFFF)
  203. #define IPV6_FLOWLABEL_MASK cpu_to_be32(0x000FFFFF)
  204. #define IPV6_FLOWLABEL_STATELESS_FLAG cpu_to_be32(0x00080000)
  205. #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK)
  206. #define IPV6_TCLASS_SHIFT 20
  207. struct ipv6_fl_socklist {
  208. struct ipv6_fl_socklist __rcu *next;
  209. struct ip6_flowlabel *fl;
  210. struct rcu_head rcu;
  211. };
  212. struct ipcm6_cookie {
  213. __s16 hlimit;
  214. __s16 tclass;
  215. __s8 dontfrag;
  216. struct ipv6_txoptions *opt;
  217. __u16 gso_size;
  218. };
  219. static inline struct ipv6_txoptions *txopt_get(const struct ipv6_pinfo *np)
  220. {
  221. struct ipv6_txoptions *opt;
  222. rcu_read_lock();
  223. opt = rcu_dereference(np->opt);
  224. if (opt) {
  225. if (!refcount_inc_not_zero(&opt->refcnt))
  226. opt = NULL;
  227. else
  228. opt = rcu_pointer_handoff(opt);
  229. }
  230. rcu_read_unlock();
  231. return opt;
  232. }
  233. static inline void txopt_put(struct ipv6_txoptions *opt)
  234. {
  235. if (opt && refcount_dec_and_test(&opt->refcnt))
  236. kfree_rcu(opt, rcu);
  237. }
  238. struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk, __be32 label);
  239. struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space,
  240. struct ip6_flowlabel *fl,
  241. struct ipv6_txoptions *fopt);
  242. void fl6_free_socklist(struct sock *sk);
  243. int ipv6_flowlabel_opt(struct sock *sk, char __user *optval, int optlen);
  244. int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq,
  245. int flags);
  246. int ip6_flowlabel_init(void);
  247. void ip6_flowlabel_cleanup(void);
  248. bool ip6_autoflowlabel(struct net *net, const struct ipv6_pinfo *np);
  249. static inline void fl6_sock_release(struct ip6_flowlabel *fl)
  250. {
  251. if (fl)
  252. atomic_dec(&fl->users);
  253. }
  254. void icmpv6_notify(struct sk_buff *skb, u8 type, u8 code, __be32 info);
  255. int icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6,
  256. struct icmp6hdr *thdr, int len);
  257. int ip6_ra_control(struct sock *sk, int sel);
  258. int ipv6_parse_hopopts(struct sk_buff *skb);
  259. struct ipv6_txoptions *ipv6_dup_options(struct sock *sk,
  260. struct ipv6_txoptions *opt);
  261. struct ipv6_txoptions *ipv6_renew_options(struct sock *sk,
  262. struct ipv6_txoptions *opt,
  263. int newtype,
  264. struct ipv6_opt_hdr *newopt);
  265. struct ipv6_txoptions *ipv6_fixup_options(struct ipv6_txoptions *opt_space,
  266. struct ipv6_txoptions *opt);
  267. bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb,
  268. const struct inet6_skb_parm *opt);
  269. struct ipv6_txoptions *ipv6_update_options(struct sock *sk,
  270. struct ipv6_txoptions *opt);
  271. static inline bool ipv6_accept_ra(struct inet6_dev *idev)
  272. {
  273. /* If forwarding is enabled, RA are not accepted unless the special
  274. * hybrid mode (accept_ra=2) is enabled.
  275. */
  276. return idev->cnf.forwarding ? idev->cnf.accept_ra == 2 :
  277. idev->cnf.accept_ra;
  278. }
  279. #define IPV6_FRAG_HIGH_THRESH (4 * 1024*1024) /* 4194304 */
  280. #define IPV6_FRAG_LOW_THRESH (3 * 1024*1024) /* 3145728 */
  281. #define IPV6_FRAG_TIMEOUT (60 * HZ) /* 60 seconds */
  282. int __ipv6_addr_type(const struct in6_addr *addr);
  283. static inline int ipv6_addr_type(const struct in6_addr *addr)
  284. {
  285. return __ipv6_addr_type(addr) & 0xffff;
  286. }
  287. static inline int ipv6_addr_scope(const struct in6_addr *addr)
  288. {
  289. return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK;
  290. }
  291. static inline int __ipv6_addr_src_scope(int type)
  292. {
  293. return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16);
  294. }
  295. static inline int ipv6_addr_src_scope(const struct in6_addr *addr)
  296. {
  297. return __ipv6_addr_src_scope(__ipv6_addr_type(addr));
  298. }
  299. static inline bool __ipv6_addr_needs_scope_id(int type)
  300. {
  301. return type & IPV6_ADDR_LINKLOCAL ||
  302. (type & IPV6_ADDR_MULTICAST &&
  303. (type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL)));
  304. }
  305. static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface)
  306. {
  307. return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0;
  308. }
  309. static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2)
  310. {
  311. return memcmp(a1, a2, sizeof(struct in6_addr));
  312. }
  313. static inline bool
  314. ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m,
  315. const struct in6_addr *a2)
  316. {
  317. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  318. const unsigned long *ul1 = (const unsigned long *)a1;
  319. const unsigned long *ulm = (const unsigned long *)m;
  320. const unsigned long *ul2 = (const unsigned long *)a2;
  321. return !!(((ul1[0] ^ ul2[0]) & ulm[0]) |
  322. ((ul1[1] ^ ul2[1]) & ulm[1]));
  323. #else
  324. return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) |
  325. ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) |
  326. ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) |
  327. ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3]));
  328. #endif
  329. }
  330. static inline void ipv6_addr_prefix(struct in6_addr *pfx,
  331. const struct in6_addr *addr,
  332. int plen)
  333. {
  334. /* caller must guarantee 0 <= plen <= 128 */
  335. int o = plen >> 3,
  336. b = plen & 0x7;
  337. memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr));
  338. memcpy(pfx->s6_addr, addr, o);
  339. if (b != 0)
  340. pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b);
  341. }
  342. static inline void ipv6_addr_prefix_copy(struct in6_addr *addr,
  343. const struct in6_addr *pfx,
  344. int plen)
  345. {
  346. /* caller must guarantee 0 <= plen <= 128 */
  347. int o = plen >> 3,
  348. b = plen & 0x7;
  349. memcpy(addr->s6_addr, pfx, o);
  350. if (b != 0) {
  351. addr->s6_addr[o] &= ~(0xff00 >> b);
  352. addr->s6_addr[o] |= (pfx->s6_addr[o] & (0xff00 >> b));
  353. }
  354. }
  355. static inline void __ipv6_addr_set_half(__be32 *addr,
  356. __be32 wh, __be32 wl)
  357. {
  358. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  359. #if defined(__BIG_ENDIAN)
  360. if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) {
  361. *(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl));
  362. return;
  363. }
  364. #elif defined(__LITTLE_ENDIAN)
  365. if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) {
  366. *(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh));
  367. return;
  368. }
  369. #endif
  370. #endif
  371. addr[0] = wh;
  372. addr[1] = wl;
  373. }
  374. static inline void ipv6_addr_set(struct in6_addr *addr,
  375. __be32 w1, __be32 w2,
  376. __be32 w3, __be32 w4)
  377. {
  378. __ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2);
  379. __ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4);
  380. }
  381. static inline bool ipv6_addr_equal(const struct in6_addr *a1,
  382. const struct in6_addr *a2)
  383. {
  384. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  385. const unsigned long *ul1 = (const unsigned long *)a1;
  386. const unsigned long *ul2 = (const unsigned long *)a2;
  387. return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL;
  388. #else
  389. return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) |
  390. (a1->s6_addr32[1] ^ a2->s6_addr32[1]) |
  391. (a1->s6_addr32[2] ^ a2->s6_addr32[2]) |
  392. (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0;
  393. #endif
  394. }
  395. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  396. static inline bool __ipv6_prefix_equal64_half(const __be64 *a1,
  397. const __be64 *a2,
  398. unsigned int len)
  399. {
  400. if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len))))
  401. return false;
  402. return true;
  403. }
  404. static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
  405. const struct in6_addr *addr2,
  406. unsigned int prefixlen)
  407. {
  408. const __be64 *a1 = (const __be64 *)addr1;
  409. const __be64 *a2 = (const __be64 *)addr2;
  410. if (prefixlen >= 64) {
  411. if (a1[0] ^ a2[0])
  412. return false;
  413. return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64);
  414. }
  415. return __ipv6_prefix_equal64_half(a1, a2, prefixlen);
  416. }
  417. #else
  418. static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
  419. const struct in6_addr *addr2,
  420. unsigned int prefixlen)
  421. {
  422. const __be32 *a1 = addr1->s6_addr32;
  423. const __be32 *a2 = addr2->s6_addr32;
  424. unsigned int pdw, pbi;
  425. /* check complete u32 in prefix */
  426. pdw = prefixlen >> 5;
  427. if (pdw && memcmp(a1, a2, pdw << 2))
  428. return false;
  429. /* check incomplete u32 in prefix */
  430. pbi = prefixlen & 0x1f;
  431. if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi))))
  432. return false;
  433. return true;
  434. }
  435. #endif
  436. static inline bool ipv6_addr_any(const struct in6_addr *a)
  437. {
  438. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  439. const unsigned long *ul = (const unsigned long *)a;
  440. return (ul[0] | ul[1]) == 0UL;
  441. #else
  442. return (a->s6_addr32[0] | a->s6_addr32[1] |
  443. a->s6_addr32[2] | a->s6_addr32[3]) == 0;
  444. #endif
  445. }
  446. static inline u32 ipv6_addr_hash(const struct in6_addr *a)
  447. {
  448. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  449. const unsigned long *ul = (const unsigned long *)a;
  450. unsigned long x = ul[0] ^ ul[1];
  451. return (u32)(x ^ (x >> 32));
  452. #else
  453. return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^
  454. a->s6_addr32[2] ^ a->s6_addr32[3]);
  455. #endif
  456. }
  457. /* more secured version of ipv6_addr_hash() */
  458. static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval)
  459. {
  460. u32 v = (__force u32)a->s6_addr32[0] ^ (__force u32)a->s6_addr32[1];
  461. return jhash_3words(v,
  462. (__force u32)a->s6_addr32[2],
  463. (__force u32)a->s6_addr32[3],
  464. initval);
  465. }
  466. static inline bool ipv6_addr_loopback(const struct in6_addr *a)
  467. {
  468. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  469. const __be64 *be = (const __be64 *)a;
  470. return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL;
  471. #else
  472. return (a->s6_addr32[0] | a->s6_addr32[1] |
  473. a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0;
  474. #endif
  475. }
  476. /*
  477. * Note that we must __force cast these to unsigned long to make sparse happy,
  478. * since all of the endian-annotated types are fixed size regardless of arch.
  479. */
  480. static inline bool ipv6_addr_v4mapped(const struct in6_addr *a)
  481. {
  482. return (
  483. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  484. *(unsigned long *)a |
  485. #else
  486. (__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) |
  487. #endif
  488. (__force unsigned long)(a->s6_addr32[2] ^
  489. cpu_to_be32(0x0000ffff))) == 0UL;
  490. }
  491. /*
  492. * Check for a RFC 4843 ORCHID address
  493. * (Overlay Routable Cryptographic Hash Identifiers)
  494. */
  495. static inline bool ipv6_addr_orchid(const struct in6_addr *a)
  496. {
  497. return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010);
  498. }
  499. static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr)
  500. {
  501. return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000);
  502. }
  503. static inline void ipv6_addr_set_v4mapped(const __be32 addr,
  504. struct in6_addr *v4mapped)
  505. {
  506. ipv6_addr_set(v4mapped,
  507. 0, 0,
  508. htonl(0x0000FFFF),
  509. addr);
  510. }
  511. /*
  512. * find the first different bit between two addresses
  513. * length of address must be a multiple of 32bits
  514. */
  515. static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen)
  516. {
  517. const __be32 *a1 = token1, *a2 = token2;
  518. int i;
  519. addrlen >>= 2;
  520. for (i = 0; i < addrlen; i++) {
  521. __be32 xb = a1[i] ^ a2[i];
  522. if (xb)
  523. return i * 32 + 31 - __fls(ntohl(xb));
  524. }
  525. /*
  526. * we should *never* get to this point since that
  527. * would mean the addrs are equal
  528. *
  529. * However, we do get to it 8) And exacly, when
  530. * addresses are equal 8)
  531. *
  532. * ip route add 1111::/128 via ...
  533. * ip route add 1111::/64 via ...
  534. * and we are here.
  535. *
  536. * Ideally, this function should stop comparison
  537. * at prefix length. It does not, but it is still OK,
  538. * if returned value is greater than prefix length.
  539. * --ANK (980803)
  540. */
  541. return addrlen << 5;
  542. }
  543. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  544. static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen)
  545. {
  546. const __be64 *a1 = token1, *a2 = token2;
  547. int i;
  548. addrlen >>= 3;
  549. for (i = 0; i < addrlen; i++) {
  550. __be64 xb = a1[i] ^ a2[i];
  551. if (xb)
  552. return i * 64 + 63 - __fls(be64_to_cpu(xb));
  553. }
  554. return addrlen << 6;
  555. }
  556. #endif
  557. static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen)
  558. {
  559. #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
  560. if (__builtin_constant_p(addrlen) && !(addrlen & 7))
  561. return __ipv6_addr_diff64(token1, token2, addrlen);
  562. #endif
  563. return __ipv6_addr_diff32(token1, token2, addrlen);
  564. }
  565. static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2)
  566. {
  567. return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr));
  568. }
  569. __be32 ipv6_select_ident(struct net *net,
  570. const struct in6_addr *daddr,
  571. const struct in6_addr *saddr);
  572. __be32 ipv6_proxy_select_ident(struct net *net, struct sk_buff *skb);
  573. int ip6_dst_hoplimit(struct dst_entry *dst);
  574. static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6,
  575. struct dst_entry *dst)
  576. {
  577. int hlimit;
  578. if (ipv6_addr_is_multicast(&fl6->daddr))
  579. hlimit = np->mcast_hops;
  580. else
  581. hlimit = np->hop_limit;
  582. if (hlimit < 0)
  583. hlimit = ip6_dst_hoplimit(dst);
  584. return hlimit;
  585. }
  586. /* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store
  587. * Equivalent to : flow->v6addrs.src = iph->saddr;
  588. * flow->v6addrs.dst = iph->daddr;
  589. */
  590. static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow,
  591. const struct ipv6hdr *iph)
  592. {
  593. BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) !=
  594. offsetof(typeof(flow->addrs), v6addrs.src) +
  595. sizeof(flow->addrs.v6addrs.src));
  596. memcpy(&flow->addrs.v6addrs, &iph->saddr, sizeof(flow->addrs.v6addrs));
  597. flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
  598. }
  599. #if IS_ENABLED(CONFIG_IPV6)
  600. /* Sysctl settings for net ipv6.auto_flowlabels */
  601. #define IP6_AUTO_FLOW_LABEL_OFF 0
  602. #define IP6_AUTO_FLOW_LABEL_OPTOUT 1
  603. #define IP6_AUTO_FLOW_LABEL_OPTIN 2
  604. #define IP6_AUTO_FLOW_LABEL_FORCED 3
  605. #define IP6_AUTO_FLOW_LABEL_MAX IP6_AUTO_FLOW_LABEL_FORCED
  606. #define IP6_DEFAULT_AUTO_FLOW_LABELS IP6_AUTO_FLOW_LABEL_OPTOUT
  607. static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
  608. __be32 flowlabel, bool autolabel,
  609. struct flowi6 *fl6)
  610. {
  611. u32 hash;
  612. /* @flowlabel may include more than a flow label, eg, the traffic class.
  613. * Here we want only the flow label value.
  614. */
  615. flowlabel &= IPV6_FLOWLABEL_MASK;
  616. if (flowlabel ||
  617. net->ipv6.sysctl.auto_flowlabels == IP6_AUTO_FLOW_LABEL_OFF ||
  618. (!autolabel &&
  619. net->ipv6.sysctl.auto_flowlabels != IP6_AUTO_FLOW_LABEL_FORCED))
  620. return flowlabel;
  621. hash = skb_get_hash_flowi6(skb, fl6);
  622. /* Since this is being sent on the wire obfuscate hash a bit
  623. * to minimize possbility that any useful information to an
  624. * attacker is leaked. Only lower 20 bits are relevant.
  625. */
  626. hash = rol32(hash, 16);
  627. flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK;
  628. if (net->ipv6.sysctl.flowlabel_state_ranges)
  629. flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG;
  630. return flowlabel;
  631. }
  632. static inline int ip6_default_np_autolabel(struct net *net)
  633. {
  634. switch (net->ipv6.sysctl.auto_flowlabels) {
  635. case IP6_AUTO_FLOW_LABEL_OFF:
  636. case IP6_AUTO_FLOW_LABEL_OPTIN:
  637. default:
  638. return 0;
  639. case IP6_AUTO_FLOW_LABEL_OPTOUT:
  640. case IP6_AUTO_FLOW_LABEL_FORCED:
  641. return 1;
  642. }
  643. }
  644. #else
  645. static inline void ip6_set_txhash(struct sock *sk) { }
  646. static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
  647. __be32 flowlabel, bool autolabel,
  648. struct flowi6 *fl6)
  649. {
  650. return flowlabel;
  651. }
  652. static inline int ip6_default_np_autolabel(struct net *net)
  653. {
  654. return 0;
  655. }
  656. #endif
  657. /*
  658. * Header manipulation
  659. */
  660. static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass,
  661. __be32 flowlabel)
  662. {
  663. *(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel;
  664. }
  665. static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr)
  666. {
  667. return *(__be32 *)hdr & IPV6_FLOWINFO_MASK;
  668. }
  669. static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr)
  670. {
  671. return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK;
  672. }
  673. static inline u8 ip6_tclass(__be32 flowinfo)
  674. {
  675. return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT;
  676. }
  677. static inline __be32 ip6_make_flowinfo(unsigned int tclass, __be32 flowlabel)
  678. {
  679. return htonl(tclass << IPV6_TCLASS_SHIFT) | flowlabel;
  680. }
  681. static inline __be32 flowi6_get_flowlabel(const struct flowi6 *fl6)
  682. {
  683. return fl6->flowlabel & IPV6_FLOWLABEL_MASK;
  684. }
  685. /*
  686. * Prototypes exported by ipv6
  687. */
  688. /*
  689. * rcv function (called from netdevice level)
  690. */
  691. int ipv6_rcv(struct sk_buff *skb, struct net_device *dev,
  692. struct packet_type *pt, struct net_device *orig_dev);
  693. void ipv6_list_rcv(struct list_head *head, struct packet_type *pt,
  694. struct net_device *orig_dev);
  695. int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb);
  696. /*
  697. * upper-layer output functions
  698. */
  699. int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6,
  700. __u32 mark, struct ipv6_txoptions *opt, int tclass);
  701. int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr);
  702. int ip6_append_data(struct sock *sk,
  703. int getfrag(void *from, char *to, int offset, int len,
  704. int odd, struct sk_buff *skb),
  705. void *from, int length, int transhdrlen,
  706. struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
  707. struct rt6_info *rt, unsigned int flags,
  708. const struct sockcm_cookie *sockc);
  709. int ip6_push_pending_frames(struct sock *sk);
  710. void ip6_flush_pending_frames(struct sock *sk);
  711. int ip6_send_skb(struct sk_buff *skb);
  712. struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue,
  713. struct inet_cork_full *cork,
  714. struct inet6_cork *v6_cork);
  715. struct sk_buff *ip6_make_skb(struct sock *sk,
  716. int getfrag(void *from, char *to, int offset,
  717. int len, int odd, struct sk_buff *skb),
  718. void *from, int length, int transhdrlen,
  719. struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
  720. struct rt6_info *rt, unsigned int flags,
  721. struct inet_cork_full *cork,
  722. const struct sockcm_cookie *sockc);
  723. static inline struct sk_buff *ip6_finish_skb(struct sock *sk)
  724. {
  725. return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork,
  726. &inet6_sk(sk)->cork);
  727. }
  728. int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst,
  729. struct flowi6 *fl6);
  730. struct dst_entry *ip6_dst_lookup_flow(struct net *net, const struct sock *sk, struct flowi6 *fl6,
  731. const struct in6_addr *final_dst);
  732. struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6,
  733. const struct in6_addr *final_dst);
  734. struct dst_entry *ip6_blackhole_route(struct net *net,
  735. struct dst_entry *orig_dst);
  736. /*
  737. * skb processing functions
  738. */
  739. int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb);
  740. int ip6_forward(struct sk_buff *skb);
  741. int ip6_input(struct sk_buff *skb);
  742. int ip6_mc_input(struct sk_buff *skb);
  743. void ip6_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int nexthdr,
  744. bool have_final);
  745. int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
  746. int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
  747. /*
  748. * Extension header (options) processing
  749. */
  750. void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
  751. u8 *proto, struct in6_addr **daddr_p,
  752. struct in6_addr *saddr);
  753. void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
  754. u8 *proto);
  755. int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp,
  756. __be16 *frag_offp);
  757. bool ipv6_ext_hdr(u8 nexthdr);
  758. enum {
  759. IP6_FH_F_FRAG = (1 << 0),
  760. IP6_FH_F_AUTH = (1 << 1),
  761. IP6_FH_F_SKIP_RH = (1 << 2),
  762. };
  763. /* find specified header and get offset to it */
  764. int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target,
  765. unsigned short *fragoff, int *fragflg);
  766. int ipv6_find_tlv(const struct sk_buff *skb, int offset, int type);
  767. struct in6_addr *fl6_update_dst(struct flowi6 *fl6,
  768. const struct ipv6_txoptions *opt,
  769. struct in6_addr *orig);
  770. /*
  771. * socket options (ipv6_sockglue.c)
  772. */
  773. int ipv6_setsockopt(struct sock *sk, int level, int optname,
  774. char __user *optval, unsigned int optlen);
  775. int ipv6_getsockopt(struct sock *sk, int level, int optname,
  776. char __user *optval, int __user *optlen);
  777. int compat_ipv6_setsockopt(struct sock *sk, int level, int optname,
  778. char __user *optval, unsigned int optlen);
  779. int compat_ipv6_getsockopt(struct sock *sk, int level, int optname,
  780. char __user *optval, int __user *optlen);
  781. int __ip6_datagram_connect(struct sock *sk, struct sockaddr *addr,
  782. int addr_len);
  783. int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len);
  784. int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr,
  785. int addr_len);
  786. int ip6_datagram_dst_update(struct sock *sk, bool fix_sk_saddr);
  787. void ip6_datagram_release_cb(struct sock *sk);
  788. int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len,
  789. int *addr_len);
  790. int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len,
  791. int *addr_len);
  792. void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port,
  793. u32 info, u8 *payload);
  794. void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info);
  795. void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu);
  796. int inet6_release(struct socket *sock);
  797. int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len);
  798. int inet6_getname(struct socket *sock, struct sockaddr *uaddr, int *uaddr_len,
  799. int peer);
  800. int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
  801. int inet6_hash_connect(struct inet_timewait_death_row *death_row,
  802. struct sock *sk);
  803. /*
  804. * reassembly.c
  805. */
  806. extern const struct proto_ops inet6_stream_ops;
  807. extern const struct proto_ops inet6_dgram_ops;
  808. extern const struct proto_ops inet6_sockraw_ops;
  809. struct group_source_req;
  810. struct group_filter;
  811. int ip6_mc_source(int add, int omode, struct sock *sk,
  812. struct group_source_req *pgsr);
  813. int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf);
  814. int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf,
  815. struct group_filter __user *optval, int __user *optlen);
  816. #ifdef CONFIG_PROC_FS
  817. int ac6_proc_init(struct net *net);
  818. void ac6_proc_exit(struct net *net);
  819. int raw6_proc_init(void);
  820. void raw6_proc_exit(void);
  821. int tcp6_proc_init(struct net *net);
  822. void tcp6_proc_exit(struct net *net);
  823. int udp6_proc_init(struct net *net);
  824. void udp6_proc_exit(struct net *net);
  825. int udplite6_proc_init(void);
  826. void udplite6_proc_exit(void);
  827. int ipv6_misc_proc_init(void);
  828. void ipv6_misc_proc_exit(void);
  829. int snmp6_register_dev(struct inet6_dev *idev);
  830. int snmp6_unregister_dev(struct inet6_dev *idev);
  831. #else
  832. static inline int ac6_proc_init(struct net *net) { return 0; }
  833. static inline void ac6_proc_exit(struct net *net) { }
  834. static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; }
  835. static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; }
  836. #endif
  837. #ifdef CONFIG_SYSCTL
  838. extern struct ctl_table ipv6_route_table_template[];
  839. struct ctl_table *ipv6_icmp_sysctl_init(struct net *net);
  840. struct ctl_table *ipv6_route_sysctl_init(struct net *net);
  841. int ipv6_sysctl_register(void);
  842. void ipv6_sysctl_unregister(void);
  843. #endif
  844. int ipv6_sock_mc_join(struct sock *sk, int ifindex,
  845. const struct in6_addr *addr);
  846. int ipv6_sock_mc_drop(struct sock *sk, int ifindex,
  847. const struct in6_addr *addr);
  848. #endif /* _NET_IPV6_H */