gf128mul.h 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253
  1. /* gf128mul.h - GF(2^128) multiplication functions
  2. *
  3. * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.
  4. * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
  5. *
  6. * Based on Dr Brian Gladman's (GPL'd) work published at
  7. * http://fp.gladman.plus.com/cryptography_technology/index.htm
  8. * See the original copyright notice below.
  9. *
  10. * This program is free software; you can redistribute it and/or modify it
  11. * under the terms of the GNU General Public License as published by the Free
  12. * Software Foundation; either version 2 of the License, or (at your option)
  13. * any later version.
  14. */
  15. /*
  16. ---------------------------------------------------------------------------
  17. Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.
  18. LICENSE TERMS
  19. The free distribution and use of this software in both source and binary
  20. form is allowed (with or without changes) provided that:
  21. 1. distributions of this source code include the above copyright
  22. notice, this list of conditions and the following disclaimer;
  23. 2. distributions in binary form include the above copyright
  24. notice, this list of conditions and the following disclaimer
  25. in the documentation and/or other associated materials;
  26. 3. the copyright holder's name is not used to endorse products
  27. built using this software without specific written permission.
  28. ALTERNATIVELY, provided that this notice is retained in full, this product
  29. may be distributed under the terms of the GNU General Public License (GPL),
  30. in which case the provisions of the GPL apply INSTEAD OF those given above.
  31. DISCLAIMER
  32. This software is provided 'as is' with no explicit or implied warranties
  33. in respect of its properties, including, but not limited to, correctness
  34. and/or fitness for purpose.
  35. ---------------------------------------------------------------------------
  36. Issue Date: 31/01/2006
  37. An implementation of field multiplication in Galois Field GF(2^128)
  38. */
  39. #ifndef _CRYPTO_GF128MUL_H
  40. #define _CRYPTO_GF128MUL_H
  41. #include <asm/byteorder.h>
  42. #include <crypto/b128ops.h>
  43. #include <linux/slab.h>
  44. /* Comment by Rik:
  45. *
  46. * For some background on GF(2^128) see for example:
  47. * http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
  48. *
  49. * The elements of GF(2^128) := GF(2)[X]/(X^128-X^7-X^2-X^1-1) can
  50. * be mapped to computer memory in a variety of ways. Let's examine
  51. * three common cases.
  52. *
  53. * Take a look at the 16 binary octets below in memory order. The msb's
  54. * are left and the lsb's are right. char b[16] is an array and b[0] is
  55. * the first octet.
  56. *
  57. * 10000000 00000000 00000000 00000000 .... 00000000 00000000 00000000
  58. * b[0] b[1] b[2] b[3] b[13] b[14] b[15]
  59. *
  60. * Every bit is a coefficient of some power of X. We can store the bits
  61. * in every byte in little-endian order and the bytes themselves also in
  62. * little endian order. I will call this lle (little-little-endian).
  63. * The above buffer represents the polynomial 1, and X^7+X^2+X^1+1 looks
  64. * like 11100001 00000000 .... 00000000 = { 0xE1, 0x00, }.
  65. * This format was originally implemented in gf128mul and is used
  66. * in GCM (Galois/Counter mode) and in ABL (Arbitrary Block Length).
  67. *
  68. * Another convention says: store the bits in bigendian order and the
  69. * bytes also. This is bbe (big-big-endian). Now the buffer above
  70. * represents X^127. X^7+X^2+X^1+1 looks like 00000000 .... 10000111,
  71. * b[15] = 0x87 and the rest is 0. LRW uses this convention and bbe
  72. * is partly implemented.
  73. *
  74. * Both of the above formats are easy to implement on big-endian
  75. * machines.
  76. *
  77. * XTS and EME (the latter of which is patent encumbered) use the ble
  78. * format (bits are stored in big endian order and the bytes in little
  79. * endian). The above buffer represents X^7 in this case and the
  80. * primitive polynomial is b[0] = 0x87.
  81. *
  82. * The common machine word-size is smaller than 128 bits, so to make
  83. * an efficient implementation we must split into machine word sizes.
  84. * This implementation uses 64-bit words for the moment. Machine
  85. * endianness comes into play. The lle format in relation to machine
  86. * endianness is discussed below by the original author of gf128mul Dr
  87. * Brian Gladman.
  88. *
  89. * Let's look at the bbe and ble format on a little endian machine.
  90. *
  91. * bbe on a little endian machine u32 x[4]:
  92. *
  93. * MS x[0] LS MS x[1] LS
  94. * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls
  95. * 103..96 111.104 119.112 127.120 71...64 79...72 87...80 95...88
  96. *
  97. * MS x[2] LS MS x[3] LS
  98. * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls
  99. * 39...32 47...40 55...48 63...56 07...00 15...08 23...16 31...24
  100. *
  101. * ble on a little endian machine
  102. *
  103. * MS x[0] LS MS x[1] LS
  104. * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls
  105. * 31...24 23...16 15...08 07...00 63...56 55...48 47...40 39...32
  106. *
  107. * MS x[2] LS MS x[3] LS
  108. * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls
  109. * 95...88 87...80 79...72 71...64 127.120 199.112 111.104 103..96
  110. *
  111. * Multiplications in GF(2^128) are mostly bit-shifts, so you see why
  112. * ble (and lbe also) are easier to implement on a little-endian
  113. * machine than on a big-endian machine. The converse holds for bbe
  114. * and lle.
  115. *
  116. * Note: to have good alignment, it seems to me that it is sufficient
  117. * to keep elements of GF(2^128) in type u64[2]. On 32-bit wordsize
  118. * machines this will automatically aligned to wordsize and on a 64-bit
  119. * machine also.
  120. */
  121. /* Multiply a GF(2^128) field element by x. Field elements are
  122. held in arrays of bytes in which field bits 8n..8n + 7 are held in
  123. byte[n], with lower indexed bits placed in the more numerically
  124. significant bit positions within bytes.
  125. On little endian machines the bit indexes translate into the bit
  126. positions within four 32-bit words in the following way
  127. MS x[0] LS MS x[1] LS
  128. ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls
  129. 24...31 16...23 08...15 00...07 56...63 48...55 40...47 32...39
  130. MS x[2] LS MS x[3] LS
  131. ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls
  132. 88...95 80...87 72...79 64...71 120.127 112.119 104.111 96..103
  133. On big endian machines the bit indexes translate into the bit
  134. positions within four 32-bit words in the following way
  135. MS x[0] LS MS x[1] LS
  136. ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls
  137. 00...07 08...15 16...23 24...31 32...39 40...47 48...55 56...63
  138. MS x[2] LS MS x[3] LS
  139. ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls
  140. 64...71 72...79 80...87 88...95 96..103 104.111 112.119 120.127
  141. */
  142. /* A slow generic version of gf_mul, implemented for lle and bbe
  143. * It multiplies a and b and puts the result in a */
  144. void gf128mul_lle(be128 *a, const be128 *b);
  145. void gf128mul_bbe(be128 *a, const be128 *b);
  146. /*
  147. * The following functions multiply a field element by x in
  148. * the polynomial field representation. They use 64-bit word operations
  149. * to gain speed but compensate for machine endianness and hence work
  150. * correctly on both styles of machine.
  151. *
  152. * They are defined here for performance.
  153. */
  154. static inline u64 gf128mul_mask_from_bit(u64 x, int which)
  155. {
  156. /* a constant-time version of 'x & ((u64)1 << which) ? (u64)-1 : 0' */
  157. return ((s64)(x << (63 - which)) >> 63);
  158. }
  159. static inline void gf128mul_x_lle(be128 *r, const be128 *x)
  160. {
  161. u64 a = be64_to_cpu(x->a);
  162. u64 b = be64_to_cpu(x->b);
  163. /* equivalent to gf128mul_table_le[(b << 7) & 0xff] << 48
  164. * (see crypto/gf128mul.c): */
  165. u64 _tt = gf128mul_mask_from_bit(b, 0) & ((u64)0xe1 << 56);
  166. r->b = cpu_to_be64((b >> 1) | (a << 63));
  167. r->a = cpu_to_be64((a >> 1) ^ _tt);
  168. }
  169. static inline void gf128mul_x_bbe(be128 *r, const be128 *x)
  170. {
  171. u64 a = be64_to_cpu(x->a);
  172. u64 b = be64_to_cpu(x->b);
  173. /* equivalent to gf128mul_table_be[a >> 63] (see crypto/gf128mul.c): */
  174. u64 _tt = gf128mul_mask_from_bit(a, 63) & 0x87;
  175. r->a = cpu_to_be64((a << 1) | (b >> 63));
  176. r->b = cpu_to_be64((b << 1) ^ _tt);
  177. }
  178. /* needed by XTS */
  179. static inline void gf128mul_x_ble(le128 *r, const le128 *x)
  180. {
  181. u64 a = le64_to_cpu(x->a);
  182. u64 b = le64_to_cpu(x->b);
  183. /* equivalent to gf128mul_table_be[b >> 63] (see crypto/gf128mul.c): */
  184. u64 _tt = gf128mul_mask_from_bit(a, 63) & 0x87;
  185. r->a = cpu_to_le64((a << 1) | (b >> 63));
  186. r->b = cpu_to_le64((b << 1) ^ _tt);
  187. }
  188. /* 4k table optimization */
  189. struct gf128mul_4k {
  190. be128 t[256];
  191. };
  192. struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g);
  193. struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g);
  194. void gf128mul_4k_lle(be128 *a, const struct gf128mul_4k *t);
  195. void gf128mul_4k_bbe(be128 *a, const struct gf128mul_4k *t);
  196. static inline void gf128mul_free_4k(struct gf128mul_4k *t)
  197. {
  198. kzfree(t);
  199. }
  200. /* 64k table optimization, implemented for bbe */
  201. struct gf128mul_64k {
  202. struct gf128mul_4k *t[16];
  203. };
  204. /* First initialize with the constant factor with which you
  205. * want to multiply and then call gf128mul_64k_bbe with the other
  206. * factor in the first argument, and the table in the second.
  207. * Afterwards, the result is stored in *a.
  208. */
  209. struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g);
  210. void gf128mul_free_64k(struct gf128mul_64k *t);
  211. void gf128mul_64k_bbe(be128 *a, const struct gf128mul_64k *t);
  212. #endif /* _CRYPTO_GF128MUL_H */