123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * Copyright 2019 Google LLC
- */
- /**
- * DOC: The Keyslot Manager
- *
- * Many devices with inline encryption support have a limited number of "slots"
- * into which encryption contexts may be programmed, and requests can be tagged
- * with a slot number to specify the key to use for en/decryption.
- *
- * As the number of slots are limited, and programming keys is expensive on
- * many inline encryption hardware, we don't want to program the same key into
- * multiple slots - if multiple requests are using the same key, we want to
- * program just one slot with that key and use that slot for all requests.
- *
- * The keyslot manager manages these keyslots appropriately, and also acts as
- * an abstraction between the inline encryption hardware and the upper layers.
- *
- * Lower layer devices will set up a keyslot manager in their request queue
- * and tell it how to perform device specific operations like programming/
- * evicting keys from keyslots.
- *
- * Upper layers will call keyslot_manager_get_slot_for_key() to program a
- * key into some slot in the inline encryption hardware.
- */
- #include <crypto/algapi.h>
- #include <linux/keyslot-manager.h>
- #include <linux/atomic.h>
- #include <linux/mutex.h>
- #include <linux/pm_runtime.h>
- #include <linux/wait.h>
- #include <linux/blkdev.h>
- #include <linux/overflow.h>
- struct keyslot {
- atomic_t slot_refs;
- struct list_head idle_slot_node;
- struct hlist_node hash_node;
- struct blk_crypto_key key;
- };
- struct keyslot_manager {
- unsigned int num_slots;
- struct keyslot_mgmt_ll_ops ksm_ll_ops;
- unsigned int features;
- unsigned int crypto_mode_supported[BLK_ENCRYPTION_MODE_MAX];
- unsigned int max_dun_bytes_supported;
- void *ll_priv_data;
- #ifdef CONFIG_PM
- /* Device for runtime power management (NULL if none) */
- struct device *dev;
- #endif
- /* Protects programming and evicting keys from the device */
- struct rw_semaphore lock;
- /*
- * Above rw_semaphore maybe nested when used a dm stack layer
- * which is with inline encryption
- */
- unsigned int lock_flags;
- /* List of idle slots, with least recently used slot at front */
- wait_queue_head_t idle_slots_wait_queue;
- struct list_head idle_slots;
- spinlock_t idle_slots_lock;
- /*
- * Hash table which maps key hashes to keyslots, so that we can find a
- * key's keyslot in O(1) time rather than O(num_slots). Protected by
- * 'lock'. A cryptographic hash function is used so that timing attacks
- * can't leak information about the raw keys.
- */
- struct hlist_head *slot_hashtable;
- unsigned int slot_hashtable_size;
- /* Per-keyslot data */
- struct keyslot slots[];
- };
- static inline bool keyslot_manager_is_passthrough(struct keyslot_manager *ksm)
- {
- return ksm->num_slots == 0;
- }
- #ifdef CONFIG_PM
- static inline void keyslot_manager_set_dev(struct keyslot_manager *ksm,
- struct device *dev)
- {
- ksm->dev = dev;
- }
- /* If there's an underlying device and it's suspended, resume it. */
- static inline void keyslot_manager_pm_get(struct keyslot_manager *ksm)
- {
- if (ksm->dev)
- pm_runtime_get_sync(ksm->dev);
- }
- static inline void keyslot_manager_pm_put(struct keyslot_manager *ksm)
- {
- if (ksm->dev)
- pm_runtime_put_sync(ksm->dev);
- }
- #else /* CONFIG_PM */
- static inline void keyslot_manager_set_dev(struct keyslot_manager *ksm,
- struct device *dev)
- {
- }
- static inline void keyslot_manager_pm_get(struct keyslot_manager *ksm)
- {
- }
- static inline void keyslot_manager_pm_put(struct keyslot_manager *ksm)
- {
- }
- #endif /* !CONFIG_PM */
- static inline void keyslot_manager_hw_enter(struct keyslot_manager *ksm)
- {
- /*
- * Calling into the driver requires ksm->lock held and the device
- * resumed. But we must resume the device first, since that can acquire
- * and release ksm->lock via keyslot_manager_reprogram_all_keys().
- */
- keyslot_manager_pm_get(ksm);
- if (!ksm->lock_flags)
- down_write(&ksm->lock);
- else
- down_write_nested(&ksm->lock, ksm->lock_flags);
- }
- static inline void keyslot_manager_hw_exit(struct keyslot_manager *ksm)
- {
- up_write(&ksm->lock);
- keyslot_manager_pm_put(ksm);
- }
- /**
- * keyslot_manager_create() - Create a keyslot manager
- * @dev: Device for runtime power management (NULL if none)
- * @num_slots: The number of key slots to manage.
- * @ksm_ll_ops: The struct keyslot_mgmt_ll_ops for the device that this keyslot
- * manager will use to perform operations like programming and
- * evicting keys.
- * @features: The supported features as a bitmask of BLK_CRYPTO_FEATURE_* flags.
- * Most drivers should set BLK_CRYPTO_FEATURE_STANDARD_KEYS here.
- * @crypto_mode_supported: Array of size BLK_ENCRYPTION_MODE_MAX of
- * bitmasks that represents whether a crypto mode
- * and data unit size are supported. The i'th bit
- * of crypto_mode_supported[crypto_mode] is set iff
- * a data unit size of (1 << i) is supported. We
- * only support data unit sizes that are powers of
- * 2.
- * @ll_priv_data: Private data passed as is to the functions in ksm_ll_ops.
- *
- * Allocate memory for and initialize a keyslot manager. Called by e.g.
- * storage drivers to set up a keyslot manager in their request_queue.
- *
- * Context: May sleep
- * Return: Pointer to constructed keyslot manager or NULL on error.
- */
- struct keyslot_manager *keyslot_manager_create(
- struct device *dev,
- unsigned int num_slots,
- const struct keyslot_mgmt_ll_ops *ksm_ll_ops,
- unsigned int features,
- const unsigned int crypto_mode_supported[BLK_ENCRYPTION_MODE_MAX],
- void *ll_priv_data)
- {
- struct keyslot_manager *ksm;
- unsigned int slot;
- unsigned int i;
- if (num_slots == 0)
- return NULL;
- /* Check that all ops are specified */
- if (ksm_ll_ops->keyslot_program == NULL ||
- ksm_ll_ops->keyslot_evict == NULL)
- return NULL;
- ksm = kvzalloc(struct_size(ksm, slots, num_slots), GFP_KERNEL);
- if (!ksm)
- return NULL;
- ksm->num_slots = num_slots;
- ksm->ksm_ll_ops = *ksm_ll_ops;
- ksm->features = features;
- memcpy(ksm->crypto_mode_supported, crypto_mode_supported,
- sizeof(ksm->crypto_mode_supported));
- ksm->max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE;
- ksm->ll_priv_data = ll_priv_data;
- keyslot_manager_set_dev(ksm, dev);
- init_rwsem(&ksm->lock);
- init_waitqueue_head(&ksm->idle_slots_wait_queue);
- INIT_LIST_HEAD(&ksm->idle_slots);
- for (slot = 0; slot < num_slots; slot++) {
- list_add_tail(&ksm->slots[slot].idle_slot_node,
- &ksm->idle_slots);
- }
- spin_lock_init(&ksm->idle_slots_lock);
- ksm->slot_hashtable_size = roundup_pow_of_two(num_slots);
- ksm->slot_hashtable = kvmalloc_array(ksm->slot_hashtable_size,
- sizeof(ksm->slot_hashtable[0]),
- GFP_KERNEL);
- if (!ksm->slot_hashtable)
- goto err_free_ksm;
- for (i = 0; i < ksm->slot_hashtable_size; i++)
- INIT_HLIST_HEAD(&ksm->slot_hashtable[i]);
- return ksm;
- err_free_ksm:
- keyslot_manager_destroy(ksm);
- return NULL;
- }
- EXPORT_SYMBOL_GPL(keyslot_manager_create);
- void keyslot_manager_set_max_dun_bytes(struct keyslot_manager *ksm,
- unsigned int max_dun_bytes)
- {
- ksm->max_dun_bytes_supported = max_dun_bytes;
- }
- EXPORT_SYMBOL_GPL(keyslot_manager_set_max_dun_bytes);
- static inline struct hlist_head *
- hash_bucket_for_key(struct keyslot_manager *ksm,
- const struct blk_crypto_key *key)
- {
- return &ksm->slot_hashtable[blk_crypto_key_hash(key) &
- (ksm->slot_hashtable_size - 1)];
- }
- static void remove_slot_from_lru_list(struct keyslot_manager *ksm, int slot)
- {
- unsigned long flags;
- spin_lock_irqsave(&ksm->idle_slots_lock, flags);
- list_del(&ksm->slots[slot].idle_slot_node);
- spin_unlock_irqrestore(&ksm->idle_slots_lock, flags);
- }
- static int find_keyslot(struct keyslot_manager *ksm,
- const struct blk_crypto_key *key)
- {
- const struct hlist_head *head = hash_bucket_for_key(ksm, key);
- const struct keyslot *slotp;
- hlist_for_each_entry(slotp, head, hash_node) {
- if (slotp->key.hash == key->hash &&
- slotp->key.crypto_mode == key->crypto_mode &&
- slotp->key.size == key->size &&
- slotp->key.data_unit_size == key->data_unit_size &&
- !crypto_memneq(slotp->key.raw, key->raw, key->size))
- return slotp - ksm->slots;
- }
- return -ENOKEY;
- }
- static int find_and_grab_keyslot(struct keyslot_manager *ksm,
- const struct blk_crypto_key *key)
- {
- int slot;
- slot = find_keyslot(ksm, key);
- if (slot < 0)
- return slot;
- if (atomic_inc_return(&ksm->slots[slot].slot_refs) == 1) {
- /* Took first reference to this slot; remove it from LRU list */
- remove_slot_from_lru_list(ksm, slot);
- }
- return slot;
- }
- /**
- * keyslot_manager_get_slot_for_key() - Program a key into a keyslot.
- * @ksm: The keyslot manager to program the key into.
- * @key: Pointer to the key object to program, including the raw key, crypto
- * mode, and data unit size.
- *
- * Get a keyslot that's been programmed with the specified key. If one already
- * exists, return it with incremented refcount. Otherwise, wait for a keyslot
- * to become idle and program it.
- *
- * Context: Process context. Takes and releases ksm->lock.
- * Return: The keyslot on success, else a -errno value.
- */
- int keyslot_manager_get_slot_for_key(struct keyslot_manager *ksm,
- const struct blk_crypto_key *key)
- {
- int slot;
- int err;
- struct keyslot *idle_slot;
- if (keyslot_manager_is_passthrough(ksm))
- return 0;
- down_read(&ksm->lock);
- slot = find_and_grab_keyslot(ksm, key);
- up_read(&ksm->lock);
- if (slot != -ENOKEY)
- return slot;
- for (;;) {
- keyslot_manager_hw_enter(ksm);
- slot = find_and_grab_keyslot(ksm, key);
- if (slot != -ENOKEY) {
- keyslot_manager_hw_exit(ksm);
- return slot;
- }
- /*
- * If we're here, that means there wasn't a slot that was
- * already programmed with the key. So try to program it.
- */
- if (!list_empty(&ksm->idle_slots))
- break;
- keyslot_manager_hw_exit(ksm);
- wait_event(ksm->idle_slots_wait_queue,
- !list_empty(&ksm->idle_slots));
- }
- idle_slot = list_first_entry(&ksm->idle_slots, struct keyslot,
- idle_slot_node);
- slot = idle_slot - ksm->slots;
- err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot);
- if (err) {
- wake_up(&ksm->idle_slots_wait_queue);
- keyslot_manager_hw_exit(ksm);
- return err;
- }
- /* Move this slot to the hash list for the new key. */
- if (idle_slot->key.crypto_mode != BLK_ENCRYPTION_MODE_INVALID)
- hlist_del(&idle_slot->hash_node);
- hlist_add_head(&idle_slot->hash_node, hash_bucket_for_key(ksm, key));
- atomic_set(&idle_slot->slot_refs, 1);
- idle_slot->key = *key;
- remove_slot_from_lru_list(ksm, slot);
- keyslot_manager_hw_exit(ksm);
- return slot;
- }
- /**
- * keyslot_manager_get_slot() - Increment the refcount on the specified slot.
- * @ksm: The keyslot manager that we want to modify.
- * @slot: The slot to increment the refcount of.
- *
- * This function assumes that there is already an active reference to that slot
- * and simply increments the refcount. This is useful when cloning a bio that
- * already has a reference to a keyslot, and we want the cloned bio to also have
- * its own reference.
- *
- * Context: Any context.
- */
- void keyslot_manager_get_slot(struct keyslot_manager *ksm, unsigned int slot)
- {
- if (keyslot_manager_is_passthrough(ksm))
- return;
- if (WARN_ON(slot >= ksm->num_slots))
- return;
- WARN_ON(atomic_inc_return(&ksm->slots[slot].slot_refs) < 2);
- }
- /**
- * keyslot_manager_put_slot() - Release a reference to a slot
- * @ksm: The keyslot manager to release the reference from.
- * @slot: The slot to release the reference from.
- *
- * Context: Any context.
- */
- void keyslot_manager_put_slot(struct keyslot_manager *ksm, unsigned int slot)
- {
- unsigned long flags;
- if (keyslot_manager_is_passthrough(ksm))
- return;
- if (WARN_ON(slot >= ksm->num_slots))
- return;
- if (atomic_dec_and_lock_irqsave(&ksm->slots[slot].slot_refs,
- &ksm->idle_slots_lock, flags)) {
- list_add_tail(&ksm->slots[slot].idle_slot_node,
- &ksm->idle_slots);
- spin_unlock_irqrestore(&ksm->idle_slots_lock, flags);
- wake_up(&ksm->idle_slots_wait_queue);
- }
- }
- /**
- * keyslot_manager_crypto_mode_supported() - Find out if a crypto_mode /
- * data unit size / is_hw_wrapped_key
- * combination is supported by a ksm.
- * @ksm: The keyslot manager to check
- * @crypto_mode: The crypto mode to check for.
- * @dun_bytes: The number of bytes that will be used to specify the DUN
- * @data_unit_size: The data_unit_size for the mode.
- * @is_hw_wrapped_key: Whether a hardware-wrapped key will be used.
- *
- * Calls and returns the result of the crypto_mode_supported function specified
- * by the ksm.
- *
- * Context: Process context.
- * Return: Whether or not this ksm supports the specified crypto settings.
- */
- bool keyslot_manager_crypto_mode_supported(struct keyslot_manager *ksm,
- enum blk_crypto_mode_num crypto_mode,
- unsigned int dun_bytes,
- unsigned int data_unit_size,
- bool is_hw_wrapped_key)
- {
- if (!ksm)
- return false;
- if (WARN_ON(crypto_mode >= BLK_ENCRYPTION_MODE_MAX))
- return false;
- if (WARN_ON(!is_power_of_2(data_unit_size)))
- return false;
- if (is_hw_wrapped_key) {
- if (!(ksm->features & BLK_CRYPTO_FEATURE_WRAPPED_KEYS))
- return false;
- } else {
- if (!(ksm->features & BLK_CRYPTO_FEATURE_STANDARD_KEYS))
- return false;
- }
- if (!(ksm->crypto_mode_supported[crypto_mode] & data_unit_size))
- return false;
- return ksm->max_dun_bytes_supported >= dun_bytes;
- }
- /**
- * keyslot_manager_evict_key() - Evict a key from the lower layer device.
- * @ksm: The keyslot manager to evict from
- * @key: The key to evict
- *
- * Find the keyslot that the specified key was programmed into, and evict that
- * slot from the lower layer device if that slot is not currently in use.
- *
- * Context: Process context. Takes and releases ksm->lock.
- * Return: 0 on success, -EBUSY if the key is still in use, or another
- * -errno value on other error.
- */
- int keyslot_manager_evict_key(struct keyslot_manager *ksm,
- const struct blk_crypto_key *key)
- {
- int slot;
- int err;
- struct keyslot *slotp;
- if (keyslot_manager_is_passthrough(ksm)) {
- if (ksm->ksm_ll_ops.keyslot_evict) {
- keyslot_manager_hw_enter(ksm);
- err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, -1);
- keyslot_manager_hw_exit(ksm);
- return err;
- }
- return 0;
- }
- keyslot_manager_hw_enter(ksm);
- slot = find_keyslot(ksm, key);
- if (slot < 0) {
- err = slot;
- goto out_unlock;
- }
- slotp = &ksm->slots[slot];
- if (atomic_read(&slotp->slot_refs) != 0) {
- err = -EBUSY;
- goto out_unlock;
- }
- err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, slot);
- if (err)
- goto out_unlock;
- hlist_del(&slotp->hash_node);
- memzero_explicit(&slotp->key, sizeof(slotp->key));
- err = 0;
- out_unlock:
- keyslot_manager_hw_exit(ksm);
- return err;
- }
- /**
- * keyslot_manager_reprogram_all_keys() - Re-program all keyslots.
- * @ksm: The keyslot manager
- *
- * Re-program all keyslots that are supposed to have a key programmed. This is
- * intended only for use by drivers for hardware that loses its keys on reset.
- *
- * Context: Process context. Takes and releases ksm->lock.
- */
- void keyslot_manager_reprogram_all_keys(struct keyslot_manager *ksm)
- {
- unsigned int slot;
- if (WARN_ON(keyslot_manager_is_passthrough(ksm)))
- return;
- /* This is for device initialization, so don't resume the device */
- down_write(&ksm->lock);
- for (slot = 0; slot < ksm->num_slots; slot++) {
- const struct keyslot *slotp = &ksm->slots[slot];
- int err;
- if (slotp->key.crypto_mode == BLK_ENCRYPTION_MODE_INVALID)
- continue;
- err = ksm->ksm_ll_ops.keyslot_program(ksm, &slotp->key, slot);
- WARN_ON(err);
- }
- up_write(&ksm->lock);
- }
- EXPORT_SYMBOL_GPL(keyslot_manager_reprogram_all_keys);
- /**
- * keyslot_manager_private() - return the private data stored with ksm
- * @ksm: The keyslot manager
- *
- * Returns the private data passed to the ksm when it was created.
- */
- void *keyslot_manager_private(struct keyslot_manager *ksm)
- {
- return ksm->ll_priv_data;
- }
- EXPORT_SYMBOL_GPL(keyslot_manager_private);
- void keyslot_manager_destroy(struct keyslot_manager *ksm)
- {
- if (ksm) {
- kvfree(ksm->slot_hashtable);
- memzero_explicit(ksm, struct_size(ksm, slots, ksm->num_slots));
- kvfree(ksm);
- }
- }
- EXPORT_SYMBOL_GPL(keyslot_manager_destroy);
- /**
- * keyslot_manager_create_passthrough() - Create a passthrough keyslot manager
- * @dev: Device for runtime power management (NULL if none)
- * @ksm_ll_ops: The struct keyslot_mgmt_ll_ops
- * @features: Bitmask of BLK_CRYPTO_FEATURE_* flags
- * @crypto_mode_supported: Bitmasks for supported encryption modes
- * @ll_priv_data: Private data passed as is to the functions in ksm_ll_ops.
- *
- * Allocate memory for and initialize a passthrough keyslot manager.
- * Called by e.g. storage drivers to set up a keyslot manager in their
- * request_queue, when the storage driver wants to manage its keys by itself.
- * This is useful for inline encryption hardware that don't have a small fixed
- * number of keyslots, and for layered devices.
- *
- * See keyslot_manager_create() for more details about the parameters.
- *
- * Context: This function may sleep
- * Return: Pointer to constructed keyslot manager or NULL on error.
- */
- struct keyslot_manager *keyslot_manager_create_passthrough(
- struct device *dev,
- const struct keyslot_mgmt_ll_ops *ksm_ll_ops,
- unsigned int features,
- const unsigned int crypto_mode_supported[BLK_ENCRYPTION_MODE_MAX],
- void *ll_priv_data)
- {
- struct keyslot_manager *ksm;
- ksm = kzalloc(sizeof(*ksm), GFP_KERNEL);
- if (!ksm)
- return NULL;
- ksm->ksm_ll_ops = *ksm_ll_ops;
- ksm->features = features;
- memcpy(ksm->crypto_mode_supported, crypto_mode_supported,
- sizeof(ksm->crypto_mode_supported));
- ksm->max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE;
- ksm->ll_priv_data = ll_priv_data;
- keyslot_manager_set_dev(ksm, dev);
- init_rwsem(&ksm->lock);
- return ksm;
- }
- EXPORT_SYMBOL_GPL(keyslot_manager_create_passthrough);
- /**
- * keyslot_manager_intersect_modes() - restrict supported modes by child device
- * @parent: The keyslot manager for parent device
- * @child: The keyslot manager for child device, or NULL
- *
- * Clear any crypto mode support bits in @parent that aren't set in @child.
- * If @child is NULL, then all parent bits are cleared.
- *
- * Only use this when setting up the keyslot manager for a layered device,
- * before it's been exposed yet.
- */
- void keyslot_manager_intersect_modes(struct keyslot_manager *parent,
- const struct keyslot_manager *child)
- {
- if (child) {
- unsigned int i;
- parent->features &= child->features;
- parent->max_dun_bytes_supported =
- min(parent->max_dun_bytes_supported,
- child->max_dun_bytes_supported);
- for (i = 0; i < ARRAY_SIZE(child->crypto_mode_supported); i++) {
- parent->crypto_mode_supported[i] &=
- child->crypto_mode_supported[i];
- }
- } else {
- parent->features = 0;
- parent->max_dun_bytes_supported = 0;
- memset(parent->crypto_mode_supported, 0,
- sizeof(parent->crypto_mode_supported));
- }
- }
- EXPORT_SYMBOL_GPL(keyslot_manager_intersect_modes);
- /**
- * keyslot_manager_derive_raw_secret() - Derive software secret from wrapped key
- * @ksm: The keyslot manager
- * @wrapped_key: The wrapped key
- * @wrapped_key_size: Size of the wrapped key in bytes
- * @secret: (output) the software secret
- * @secret_size: (output) the number of secret bytes to derive
- *
- * Given a hardware-wrapped key, ask the hardware to derive a secret which
- * software can use for cryptographic tasks other than inline encryption. The
- * derived secret is guaranteed to be cryptographically isolated from the key
- * with which any inline encryption with this wrapped key would actually be
- * done. I.e., both will be derived from the unwrapped key.
- *
- * Return: 0 on success, -EOPNOTSUPP if hardware-wrapped keys are unsupported,
- * or another -errno code.
- */
- int keyslot_manager_derive_raw_secret(struct keyslot_manager *ksm,
- const u8 *wrapped_key,
- unsigned int wrapped_key_size,
- u8 *secret, unsigned int secret_size)
- {
- int err;
- if (ksm->ksm_ll_ops.derive_raw_secret) {
- keyslot_manager_hw_enter(ksm);
- err = ksm->ksm_ll_ops.derive_raw_secret(ksm, wrapped_key,
- wrapped_key_size,
- secret, secret_size);
- keyslot_manager_hw_exit(ksm);
- } else {
- err = -EOPNOTSUPP;
- }
- return err;
- }
- EXPORT_SYMBOL_GPL(keyslot_manager_derive_raw_secret);
- /**
- * ksm_lock() - set one-depth nesting of lock class
- * @flags: now, it's only support one depth
- *
- * Some scenarios ksm->lock will be nest such as DM stack layer,
- * although DM's is different with lower device driver's ksm->lock,
- * lockdep recognizes them as a same one, then will trigger deadlock
- * detection, set another lock sub-class could avoid it.
- *
- */
- inline void ksm_flock(struct keyslot_manager *ksm, unsigned int flags)
- {
- ksm->lock_flags = flags;
- }
- EXPORT_SYMBOL_GPL(ksm_flock);
|