123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585 |
- /*
- * Functions to sequence PREFLUSH and FUA writes.
- *
- * Copyright (C) 2011 Max Planck Institute for Gravitational Physics
- * Copyright (C) 2011 Tejun Heo <tj@kernel.org>
- *
- * This file is released under the GPLv2.
- *
- * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three
- * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
- * properties and hardware capability.
- *
- * If a request doesn't have data, only REQ_PREFLUSH makes sense, which
- * indicates a simple flush request. If there is data, REQ_PREFLUSH indicates
- * that the device cache should be flushed before the data is executed, and
- * REQ_FUA means that the data must be on non-volatile media on request
- * completion.
- *
- * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any
- * difference. The requests are either completed immediately if there's no data
- * or executed as normal requests otherwise.
- *
- * If the device has writeback cache and supports FUA, REQ_PREFLUSH is
- * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
- *
- * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
- * is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
- *
- * The actual execution of flush is double buffered. Whenever a request
- * needs to execute PRE or POSTFLUSH, it queues at
- * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a
- * REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush
- * completes, all the requests which were pending are proceeded to the next
- * step. This allows arbitrary merging of different types of PREFLUSH/FUA
- * requests.
- *
- * Currently, the following conditions are used to determine when to issue
- * flush.
- *
- * C1. At any given time, only one flush shall be in progress. This makes
- * double buffering sufficient.
- *
- * C2. Flush is deferred if any request is executing DATA of its sequence.
- * This avoids issuing separate POSTFLUSHes for requests which shared
- * PREFLUSH.
- *
- * C3. The second condition is ignored if there is a request which has
- * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid
- * starvation in the unlikely case where there are continuous stream of
- * FUA (without PREFLUSH) requests.
- *
- * For devices which support FUA, it isn't clear whether C2 (and thus C3)
- * is beneficial.
- *
- * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice.
- * Once while executing DATA and again after the whole sequence is
- * complete. The first completion updates the contained bio but doesn't
- * finish it so that the bio submitter is notified only after the whole
- * sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in
- * req_bio_endio().
- *
- * The above peculiarity requires that each PREFLUSH/FUA request has only one
- * bio attached to it, which is guaranteed as they aren't allowed to be
- * merged in the usual way.
- */
- #include <linux/kernel.h>
- #include <linux/module.h>
- #include <linux/bio.h>
- #include <linux/blkdev.h>
- #include <linux/gfp.h>
- #include <linux/blk-mq.h>
- #include "blk.h"
- #include "blk-mq.h"
- #include "blk-mq-tag.h"
- #include "blk-mq-sched.h"
- /* PREFLUSH/FUA sequences */
- enum {
- REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */
- REQ_FSEQ_DATA = (1 << 1), /* data write in progress */
- REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */
- REQ_FSEQ_DONE = (1 << 3),
- REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
- REQ_FSEQ_POSTFLUSH,
- /*
- * If flush has been pending longer than the following timeout,
- * it's issued even if flush_data requests are still in flight.
- */
- FLUSH_PENDING_TIMEOUT = 5 * HZ,
- };
- static bool blk_kick_flush(struct request_queue *q,
- struct blk_flush_queue *fq);
- static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq)
- {
- unsigned int policy = 0;
- if (blk_rq_sectors(rq))
- policy |= REQ_FSEQ_DATA;
- if (fflags & (1UL << QUEUE_FLAG_WC)) {
- if (rq->cmd_flags & REQ_PREFLUSH)
- policy |= REQ_FSEQ_PREFLUSH;
- if (!(fflags & (1UL << QUEUE_FLAG_FUA)) &&
- (rq->cmd_flags & REQ_FUA))
- policy |= REQ_FSEQ_POSTFLUSH;
- }
- return policy;
- }
- static unsigned int blk_flush_cur_seq(struct request *rq)
- {
- return 1 << ffz(rq->flush.seq);
- }
- static void blk_flush_restore_request(struct request *rq)
- {
- /*
- * After flush data completion, @rq->bio is %NULL but we need to
- * complete the bio again. @rq->biotail is guaranteed to equal the
- * original @rq->bio. Restore it.
- */
- rq->bio = rq->biotail;
- /* make @rq a normal request */
- rq->rq_flags &= ~RQF_FLUSH_SEQ;
- rq->end_io = rq->flush.saved_end_io;
- }
- static bool blk_flush_queue_rq(struct request *rq, bool add_front)
- {
- if (rq->q->mq_ops) {
- blk_mq_add_to_requeue_list(rq, add_front, true);
- return false;
- } else {
- if (add_front)
- list_add(&rq->queuelist, &rq->q->queue_head);
- else
- list_add_tail(&rq->queuelist, &rq->q->queue_head);
- return true;
- }
- }
- /**
- * blk_flush_complete_seq - complete flush sequence
- * @rq: PREFLUSH/FUA request being sequenced
- * @fq: flush queue
- * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
- * @error: whether an error occurred
- *
- * @rq just completed @seq part of its flush sequence, record the
- * completion and trigger the next step.
- *
- * CONTEXT:
- * spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
- *
- * RETURNS:
- * %true if requests were added to the dispatch queue, %false otherwise.
- */
- static bool blk_flush_complete_seq(struct request *rq,
- struct blk_flush_queue *fq,
- unsigned int seq, blk_status_t error)
- {
- struct request_queue *q = rq->q;
- struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
- bool queued = false, kicked;
- BUG_ON(rq->flush.seq & seq);
- rq->flush.seq |= seq;
- if (likely(!error))
- seq = blk_flush_cur_seq(rq);
- else
- seq = REQ_FSEQ_DONE;
- switch (seq) {
- case REQ_FSEQ_PREFLUSH:
- case REQ_FSEQ_POSTFLUSH:
- /* queue for flush */
- if (list_empty(pending))
- fq->flush_pending_since = jiffies;
- list_move_tail(&rq->flush.list, pending);
- break;
- case REQ_FSEQ_DATA:
- list_move_tail(&rq->flush.list, &fq->flush_data_in_flight);
- queued = blk_flush_queue_rq(rq, true);
- break;
- case REQ_FSEQ_DONE:
- /*
- * @rq was previously adjusted by blk_flush_issue() for
- * flush sequencing and may already have gone through the
- * flush data request completion path. Restore @rq for
- * normal completion and end it.
- */
- BUG_ON(!list_empty(&rq->queuelist));
- list_del_init(&rq->flush.list);
- blk_flush_restore_request(rq);
- if (q->mq_ops)
- blk_mq_end_request(rq, error);
- else
- __blk_end_request_all(rq, error);
- break;
- default:
- BUG();
- }
- kicked = blk_kick_flush(q, fq);
- return kicked | queued;
- }
- static void flush_end_io(struct request *flush_rq, blk_status_t error)
- {
- struct request_queue *q = flush_rq->q;
- struct list_head *running;
- bool queued = false;
- struct request *rq, *n;
- unsigned long flags = 0;
- struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
- if (q->mq_ops) {
- struct blk_mq_hw_ctx *hctx;
- /* release the tag's ownership to the req cloned from */
- spin_lock_irqsave(&fq->mq_flush_lock, flags);
- hctx = blk_mq_map_queue(q, flush_rq->mq_ctx->cpu);
- blk_mq_tag_set_rq(hctx, flush_rq->tag, fq->orig_rq);
- flush_rq->tag = -1;
- }
- running = &fq->flush_queue[fq->flush_running_idx];
- BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
- /* account completion of the flush request */
- fq->flush_running_idx ^= 1;
- if (!q->mq_ops)
- elv_completed_request(q, flush_rq);
- /* and push the waiting requests to the next stage */
- list_for_each_entry_safe(rq, n, running, flush.list) {
- unsigned int seq = blk_flush_cur_seq(rq);
- BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
- queued |= blk_flush_complete_seq(rq, fq, seq, error);
- }
- /*
- * Kick the queue to avoid stall for two cases:
- * 1. Moving a request silently to empty queue_head may stall the
- * queue.
- * 2. When flush request is running in non-queueable queue, the
- * queue is hold. Restart the queue after flush request is finished
- * to avoid stall.
- * This function is called from request completion path and calling
- * directly into request_fn may confuse the driver. Always use
- * kblockd.
- */
- if (queued || fq->flush_queue_delayed) {
- WARN_ON(q->mq_ops);
- blk_run_queue_async(q);
- }
- fq->flush_queue_delayed = 0;
- if (q->mq_ops)
- spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
- }
- /**
- * blk_kick_flush - consider issuing flush request
- * @q: request_queue being kicked
- * @fq: flush queue
- *
- * Flush related states of @q have changed, consider issuing flush request.
- * Please read the comment at the top of this file for more info.
- *
- * CONTEXT:
- * spin_lock_irq(q->queue_lock or fq->mq_flush_lock)
- *
- * RETURNS:
- * %true if flush was issued, %false otherwise.
- */
- static bool blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq)
- {
- struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
- struct request *first_rq =
- list_first_entry(pending, struct request, flush.list);
- struct request *flush_rq = fq->flush_rq;
- /* C1 described at the top of this file */
- if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
- return false;
- /* C2 and C3
- *
- * For blk-mq + scheduling, we can risk having all driver tags
- * assigned to empty flushes, and we deadlock if we are expecting
- * other requests to make progress. Don't defer for that case.
- */
- if (!list_empty(&fq->flush_data_in_flight) &&
- !(q->mq_ops && q->elevator) &&
- time_before(jiffies,
- fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
- return false;
- /*
- * Issue flush and toggle pending_idx. This makes pending_idx
- * different from running_idx, which means flush is in flight.
- */
- fq->flush_pending_idx ^= 1;
- blk_rq_init(q, flush_rq);
- /*
- * Borrow tag from the first request since they can't
- * be in flight at the same time. And acquire the tag's
- * ownership for flush req.
- */
- if (q->mq_ops) {
- struct blk_mq_hw_ctx *hctx;
- flush_rq->mq_ctx = first_rq->mq_ctx;
- flush_rq->tag = first_rq->tag;
- fq->orig_rq = first_rq;
- hctx = blk_mq_map_queue(q, first_rq->mq_ctx->cpu);
- blk_mq_tag_set_rq(hctx, first_rq->tag, flush_rq);
- }
- flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH;
- flush_rq->rq_flags |= RQF_FLUSH_SEQ;
- flush_rq->rq_disk = first_rq->rq_disk;
- flush_rq->end_io = flush_end_io;
- return blk_flush_queue_rq(flush_rq, false);
- }
- static void flush_data_end_io(struct request *rq, blk_status_t error)
- {
- struct request_queue *q = rq->q;
- struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
- lockdep_assert_held(q->queue_lock);
- /*
- * Updating q->in_flight[] here for making this tag usable
- * early. Because in blk_queue_start_tag(),
- * q->in_flight[BLK_RW_ASYNC] is used to limit async I/O and
- * reserve tags for sync I/O.
- *
- * More importantly this way can avoid the following I/O
- * deadlock:
- *
- * - suppose there are 40 fua requests comming to flush queue
- * and queue depth is 31
- * - 30 rqs are scheduled then blk_queue_start_tag() can't alloc
- * tag for async I/O any more
- * - all the 30 rqs are completed before FLUSH_PENDING_TIMEOUT
- * and flush_data_end_io() is called
- * - the other rqs still can't go ahead if not updating
- * q->in_flight[BLK_RW_ASYNC] here, meantime these rqs
- * are held in flush data queue and make no progress of
- * handling post flush rq
- * - only after the post flush rq is handled, all these rqs
- * can be completed
- */
- elv_completed_request(q, rq);
- /* for avoiding double accounting */
- rq->rq_flags &= ~RQF_STARTED;
- /*
- * After populating an empty queue, kick it to avoid stall. Read
- * the comment in flush_end_io().
- */
- if (blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error))
- blk_run_queue_async(q);
- }
- static void mq_flush_data_end_io(struct request *rq, blk_status_t error)
- {
- struct request_queue *q = rq->q;
- struct blk_mq_hw_ctx *hctx;
- struct blk_mq_ctx *ctx = rq->mq_ctx;
- unsigned long flags;
- struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
- hctx = blk_mq_map_queue(q, ctx->cpu);
- /*
- * After populating an empty queue, kick it to avoid stall. Read
- * the comment in flush_end_io().
- */
- spin_lock_irqsave(&fq->mq_flush_lock, flags);
- blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error);
- spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
- blk_mq_sched_restart(hctx);
- }
- /**
- * blk_insert_flush - insert a new PREFLUSH/FUA request
- * @rq: request to insert
- *
- * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
- * or __blk_mq_run_hw_queue() to dispatch request.
- * @rq is being submitted. Analyze what needs to be done and put it on the
- * right queue.
- */
- void blk_insert_flush(struct request *rq)
- {
- struct request_queue *q = rq->q;
- unsigned long fflags = q->queue_flags; /* may change, cache */
- unsigned int policy = blk_flush_policy(fflags, rq);
- struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
- if (!q->mq_ops)
- lockdep_assert_held(q->queue_lock);
- /*
- * @policy now records what operations need to be done. Adjust
- * REQ_PREFLUSH and FUA for the driver.
- */
- rq->cmd_flags &= ~REQ_PREFLUSH;
- if (!(fflags & (1UL << QUEUE_FLAG_FUA)))
- rq->cmd_flags &= ~REQ_FUA;
- /*
- * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
- * of those flags, we have to set REQ_SYNC to avoid skewing
- * the request accounting.
- */
- rq->cmd_flags |= REQ_SYNC;
- /*
- * An empty flush handed down from a stacking driver may
- * translate into nothing if the underlying device does not
- * advertise a write-back cache. In this case, simply
- * complete the request.
- */
- if (!policy) {
- if (q->mq_ops)
- blk_mq_end_request(rq, 0);
- else
- __blk_end_request(rq, 0, 0);
- return;
- }
- BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
- /*
- * If there's data but flush is not necessary, the request can be
- * processed directly without going through flush machinery. Queue
- * for normal execution.
- */
- if ((policy & REQ_FSEQ_DATA) &&
- !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
- if (q->mq_ops)
- blk_mq_sched_insert_request(rq, false, true, false, false);
- else
- list_add_tail(&rq->queuelist, &q->queue_head);
- return;
- }
- /*
- * @rq should go through flush machinery. Mark it part of flush
- * sequence and submit for further processing.
- */
- memset(&rq->flush, 0, sizeof(rq->flush));
- INIT_LIST_HEAD(&rq->flush.list);
- rq->rq_flags |= RQF_FLUSH_SEQ;
- rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
- if (q->mq_ops) {
- rq->end_io = mq_flush_data_end_io;
- spin_lock_irq(&fq->mq_flush_lock);
- blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
- spin_unlock_irq(&fq->mq_flush_lock);
- return;
- }
- rq->end_io = flush_data_end_io;
- blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
- }
- /**
- * blkdev_issue_flush - queue a flush
- * @bdev: blockdev to issue flush for
- * @gfp_mask: memory allocation flags (for bio_alloc)
- * @error_sector: error sector
- *
- * Description:
- * Issue a flush for the block device in question. Caller can supply
- * room for storing the error offset in case of a flush error, if they
- * wish to.
- */
- int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
- sector_t *error_sector)
- {
- struct request_queue *q;
- struct bio *bio;
- int ret = 0;
- if (bdev->bd_disk == NULL)
- return -ENXIO;
- q = bdev_get_queue(bdev);
- if (!q)
- return -ENXIO;
- /*
- * some block devices may not have their queue correctly set up here
- * (e.g. loop device without a backing file) and so issuing a flush
- * here will panic. Ensure there is a request function before issuing
- * the flush.
- */
- if (!q->make_request_fn)
- return -ENXIO;
- bio = bio_alloc(gfp_mask, 0);
- bio_set_dev(bio, bdev);
- bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
- ret = submit_bio_wait(bio);
- /*
- * The driver must store the error location in ->bi_sector, if
- * it supports it. For non-stacked drivers, this should be
- * copied from blk_rq_pos(rq).
- */
- if (error_sector)
- *error_sector = bio->bi_iter.bi_sector;
- bio_put(bio);
- return ret;
- }
- EXPORT_SYMBOL(blkdev_issue_flush);
- struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q,
- int node, int cmd_size)
- {
- struct blk_flush_queue *fq;
- int rq_sz = sizeof(struct request);
- fq = kzalloc_node(sizeof(*fq), GFP_KERNEL, node);
- if (!fq)
- goto fail;
- if (q->mq_ops)
- spin_lock_init(&fq->mq_flush_lock);
- rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
- fq->flush_rq = kzalloc_node(rq_sz, GFP_KERNEL, node);
- if (!fq->flush_rq)
- goto fail_rq;
- INIT_LIST_HEAD(&fq->flush_queue[0]);
- INIT_LIST_HEAD(&fq->flush_queue[1]);
- INIT_LIST_HEAD(&fq->flush_data_in_flight);
- return fq;
- fail_rq:
- kfree(fq);
- fail:
- return NULL;
- }
- void blk_free_flush_queue(struct blk_flush_queue *fq)
- {
- /* bio based request queue hasn't flush queue */
- if (!fq)
- return;
- kfree(fq->flush_rq);
- kfree(fq);
- }
|