123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * Copyright 2019 Google LLC
- */
- /*
- * Refer to Documentation/block/inline-encryption.rst for detailed explanation.
- */
- #define pr_fmt(fmt) "blk-crypto-fallback: " fmt
- #include <crypto/skcipher.h>
- #include <linux/blk-cgroup.h>
- #include <linux/blk-crypto.h>
- #include <linux/crypto.h>
- #include <linux/keyslot-manager.h>
- #include <linux/mempool.h>
- #include <linux/module.h>
- #include <linux/random.h>
- #include "blk-crypto-internal.h"
- static unsigned int num_prealloc_bounce_pg = 32;
- module_param(num_prealloc_bounce_pg, uint, 0);
- MODULE_PARM_DESC(num_prealloc_bounce_pg,
- "Number of preallocated bounce pages for the blk-crypto crypto API fallback");
- static unsigned int blk_crypto_num_keyslots = 100;
- module_param_named(num_keyslots, blk_crypto_num_keyslots, uint, 0);
- MODULE_PARM_DESC(num_keyslots,
- "Number of keyslots for the blk-crypto crypto API fallback");
- static unsigned int num_prealloc_fallback_crypt_ctxs = 128;
- module_param(num_prealloc_fallback_crypt_ctxs, uint, 0);
- MODULE_PARM_DESC(num_prealloc_crypt_fallback_ctxs,
- "Number of preallocated bio fallback crypto contexts for blk-crypto to use during crypto API fallback");
- struct bio_fallback_crypt_ctx {
- struct bio_crypt_ctx crypt_ctx;
- /*
- * Copy of the bvec_iter when this bio was submitted.
- * We only want to en/decrypt the part of the bio as described by the
- * bvec_iter upon submission because bio might be split before being
- * resubmitted
- */
- struct bvec_iter crypt_iter;
- u64 fallback_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
- };
- /* The following few vars are only used during the crypto API fallback */
- static struct kmem_cache *bio_fallback_crypt_ctx_cache;
- static mempool_t *bio_fallback_crypt_ctx_pool;
- /*
- * Allocating a crypto tfm during I/O can deadlock, so we have to preallocate
- * all of a mode's tfms when that mode starts being used. Since each mode may
- * need all the keyslots at some point, each mode needs its own tfm for each
- * keyslot; thus, a keyslot may contain tfms for multiple modes. However, to
- * match the behavior of real inline encryption hardware (which only supports a
- * single encryption context per keyslot), we only allow one tfm per keyslot to
- * be used at a time - the rest of the unused tfms have their keys cleared.
- */
- static DEFINE_MUTEX(tfms_init_lock);
- static bool tfms_inited[BLK_ENCRYPTION_MODE_MAX];
- struct blk_crypto_decrypt_work {
- struct work_struct work;
- struct bio *bio;
- };
- static struct blk_crypto_keyslot {
- struct crypto_skcipher *tfm;
- enum blk_crypto_mode_num crypto_mode;
- struct crypto_skcipher *tfms[BLK_ENCRYPTION_MODE_MAX];
- } *blk_crypto_keyslots;
- /* The following few vars are only used during the crypto API fallback */
- static struct keyslot_manager *blk_crypto_ksm;
- static struct workqueue_struct *blk_crypto_wq;
- static mempool_t *blk_crypto_bounce_page_pool;
- static struct kmem_cache *blk_crypto_decrypt_work_cache;
- bool bio_crypt_fallback_crypted(const struct bio_crypt_ctx *bc)
- {
- return bc && bc->bc_ksm == blk_crypto_ksm;
- }
- /*
- * This is the key we set when evicting a keyslot. This *should* be the all 0's
- * key, but AES-XTS rejects that key, so we use some random bytes instead.
- */
- static u8 blank_key[BLK_CRYPTO_MAX_KEY_SIZE];
- static void blk_crypto_evict_keyslot(unsigned int slot)
- {
- struct blk_crypto_keyslot *slotp = &blk_crypto_keyslots[slot];
- enum blk_crypto_mode_num crypto_mode = slotp->crypto_mode;
- int err;
- WARN_ON(slotp->crypto_mode == BLK_ENCRYPTION_MODE_INVALID);
- /* Clear the key in the skcipher */
- err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], blank_key,
- blk_crypto_modes[crypto_mode].keysize);
- WARN_ON(err);
- slotp->crypto_mode = BLK_ENCRYPTION_MODE_INVALID;
- }
- static int blk_crypto_keyslot_program(struct keyslot_manager *ksm,
- const struct blk_crypto_key *key,
- unsigned int slot)
- {
- struct blk_crypto_keyslot *slotp = &blk_crypto_keyslots[slot];
- const enum blk_crypto_mode_num crypto_mode = key->crypto_mode;
- int err;
- if (crypto_mode != slotp->crypto_mode &&
- slotp->crypto_mode != BLK_ENCRYPTION_MODE_INVALID) {
- blk_crypto_evict_keyslot(slot);
- }
- if (!slotp->tfms[crypto_mode])
- return -ENOMEM;
- slotp->crypto_mode = crypto_mode;
- err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], key->raw,
- key->size);
- if (err) {
- blk_crypto_evict_keyslot(slot);
- return err;
- }
- return 0;
- }
- static int blk_crypto_keyslot_evict(struct keyslot_manager *ksm,
- const struct blk_crypto_key *key,
- unsigned int slot)
- {
- blk_crypto_evict_keyslot(slot);
- return 0;
- }
- /*
- * The crypto API fallback KSM ops - only used for a bio when it specifies a
- * blk_crypto_mode for which we failed to get a keyslot in the device's inline
- * encryption hardware (which probably means the device doesn't have inline
- * encryption hardware that supports that crypto mode).
- */
- static const struct keyslot_mgmt_ll_ops blk_crypto_ksm_ll_ops = {
- .keyslot_program = blk_crypto_keyslot_program,
- .keyslot_evict = blk_crypto_keyslot_evict,
- };
- static void blk_crypto_encrypt_endio(struct bio *enc_bio)
- {
- struct bio *src_bio = enc_bio->bi_private;
- int i;
- for (i = 0; i < enc_bio->bi_vcnt; i++)
- mempool_free(enc_bio->bi_io_vec[i].bv_page,
- blk_crypto_bounce_page_pool);
- src_bio->bi_status = enc_bio->bi_status;
- bio_put(enc_bio);
- bio_endio(src_bio);
- }
- static struct bio *blk_crypto_clone_bio(struct bio *bio_src)
- {
- struct bvec_iter iter;
- struct bio_vec bv;
- struct bio *bio;
- bio = bio_alloc_bioset(GFP_NOIO, bio_segments(bio_src), NULL);
- if (!bio)
- return NULL;
- bio->bi_disk = bio_src->bi_disk;
- bio->bi_opf = bio_src->bi_opf;
- bio->bi_ioprio = bio_src->bi_ioprio;
- bio->bi_write_hint = bio_src->bi_write_hint;
- bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
- bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
- bio_for_each_segment(bv, bio_src, iter)
- bio->bi_io_vec[bio->bi_vcnt++] = bv;
- if (bio_integrity(bio_src) &&
- bio_integrity_clone(bio, bio_src, GFP_NOIO) < 0) {
- bio_put(bio);
- return NULL;
- }
- bio_clone_blkcg_association(bio, bio_src);
- bio_clone_skip_dm_default_key(bio, bio_src);
- return bio;
- }
- static int blk_crypto_alloc_cipher_req(struct bio *src_bio,
- struct skcipher_request **ciph_req_ret,
- struct crypto_wait *wait)
- {
- struct skcipher_request *ciph_req;
- const struct blk_crypto_keyslot *slotp;
- slotp = &blk_crypto_keyslots[src_bio->bi_crypt_context->bc_keyslot];
- ciph_req = skcipher_request_alloc(slotp->tfms[slotp->crypto_mode],
- GFP_NOIO);
- if (!ciph_req) {
- src_bio->bi_status = BLK_STS_RESOURCE;
- return -ENOMEM;
- }
- skcipher_request_set_callback(ciph_req,
- CRYPTO_TFM_REQ_MAY_BACKLOG |
- CRYPTO_TFM_REQ_MAY_SLEEP,
- crypto_req_done, wait);
- *ciph_req_ret = ciph_req;
- return 0;
- }
- static int blk_crypto_split_bio_if_needed(struct bio **bio_ptr)
- {
- struct bio *bio = *bio_ptr;
- unsigned int i = 0;
- unsigned int num_sectors = 0;
- struct bio_vec bv;
- struct bvec_iter iter;
- bio_for_each_segment(bv, bio, iter) {
- num_sectors += bv.bv_len >> SECTOR_SHIFT;
- if (++i == BIO_MAX_PAGES)
- break;
- }
- if (num_sectors < bio_sectors(bio)) {
- struct bio *split_bio;
- split_bio = bio_split(bio, num_sectors, GFP_NOIO, NULL);
- if (!split_bio) {
- bio->bi_status = BLK_STS_RESOURCE;
- return -ENOMEM;
- }
- bio_chain(split_bio, bio);
- generic_make_request(bio);
- *bio_ptr = split_bio;
- }
- return 0;
- }
- union blk_crypto_iv {
- __le64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
- u8 bytes[BLK_CRYPTO_MAX_IV_SIZE];
- };
- static void blk_crypto_dun_to_iv(const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
- union blk_crypto_iv *iv)
- {
- int i;
- for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++)
- iv->dun[i] = cpu_to_le64(dun[i]);
- }
- /*
- * The crypto API fallback's encryption routine.
- * Allocate a bounce bio for encryption, encrypt the input bio using crypto API,
- * and replace *bio_ptr with the bounce bio. May split input bio if it's too
- * large.
- */
- static int blk_crypto_encrypt_bio(struct bio **bio_ptr)
- {
- struct bio *src_bio;
- struct skcipher_request *ciph_req = NULL;
- DECLARE_CRYPTO_WAIT(wait);
- u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
- union blk_crypto_iv iv;
- struct scatterlist src, dst;
- struct bio *enc_bio;
- unsigned int i, j;
- int data_unit_size;
- struct bio_crypt_ctx *bc;
- int err = 0;
- /* Split the bio if it's too big for single page bvec */
- err = blk_crypto_split_bio_if_needed(bio_ptr);
- if (err)
- return err;
- src_bio = *bio_ptr;
- bc = src_bio->bi_crypt_context;
- data_unit_size = bc->bc_key->data_unit_size;
- /* Allocate bounce bio for encryption */
- enc_bio = blk_crypto_clone_bio(src_bio);
- if (!enc_bio) {
- src_bio->bi_status = BLK_STS_RESOURCE;
- return -ENOMEM;
- }
- /*
- * Use the crypto API fallback keyslot manager to get a crypto_skcipher
- * for the algorithm and key specified for this bio.
- */
- err = bio_crypt_ctx_acquire_keyslot(bc, blk_crypto_ksm);
- if (err) {
- src_bio->bi_status = BLK_STS_IOERR;
- goto out_put_enc_bio;
- }
- /* and then allocate an skcipher_request for it */
- err = blk_crypto_alloc_cipher_req(src_bio, &ciph_req, &wait);
- if (err)
- goto out_release_keyslot;
- memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun));
- sg_init_table(&src, 1);
- sg_init_table(&dst, 1);
- skcipher_request_set_crypt(ciph_req, &src, &dst, data_unit_size,
- iv.bytes);
- /* Encrypt each page in the bounce bio */
- for (i = 0; i < enc_bio->bi_vcnt; i++) {
- struct bio_vec *enc_bvec = &enc_bio->bi_io_vec[i];
- struct page *plaintext_page = enc_bvec->bv_page;
- struct page *ciphertext_page =
- mempool_alloc(blk_crypto_bounce_page_pool, GFP_NOIO);
- enc_bvec->bv_page = ciphertext_page;
- if (!ciphertext_page) {
- src_bio->bi_status = BLK_STS_RESOURCE;
- err = -ENOMEM;
- goto out_free_bounce_pages;
- }
- sg_set_page(&src, plaintext_page, data_unit_size,
- enc_bvec->bv_offset);
- sg_set_page(&dst, ciphertext_page, data_unit_size,
- enc_bvec->bv_offset);
- /* Encrypt each data unit in this page */
- for (j = 0; j < enc_bvec->bv_len; j += data_unit_size) {
- blk_crypto_dun_to_iv(curr_dun, &iv);
- err = crypto_wait_req(crypto_skcipher_encrypt(ciph_req),
- &wait);
- if (err) {
- i++;
- src_bio->bi_status = BLK_STS_RESOURCE;
- goto out_free_bounce_pages;
- }
- bio_crypt_dun_increment(curr_dun, 1);
- src.offset += data_unit_size;
- dst.offset += data_unit_size;
- }
- }
- enc_bio->bi_private = src_bio;
- enc_bio->bi_end_io = blk_crypto_encrypt_endio;
- *bio_ptr = enc_bio;
- enc_bio = NULL;
- err = 0;
- goto out_free_ciph_req;
- out_free_bounce_pages:
- while (i > 0)
- mempool_free(enc_bio->bi_io_vec[--i].bv_page,
- blk_crypto_bounce_page_pool);
- out_free_ciph_req:
- skcipher_request_free(ciph_req);
- out_release_keyslot:
- bio_crypt_ctx_release_keyslot(bc);
- out_put_enc_bio:
- if (enc_bio)
- bio_put(enc_bio);
- return err;
- }
- static void blk_crypto_free_fallback_crypt_ctx(struct bio *bio)
- {
- mempool_free(container_of(bio->bi_crypt_context,
- struct bio_fallback_crypt_ctx,
- crypt_ctx),
- bio_fallback_crypt_ctx_pool);
- bio->bi_crypt_context = NULL;
- }
- /*
- * The crypto API fallback's main decryption routine.
- * Decrypts input bio in place.
- */
- static void blk_crypto_decrypt_bio(struct work_struct *work)
- {
- struct blk_crypto_decrypt_work *decrypt_work =
- container_of(work, struct blk_crypto_decrypt_work, work);
- struct bio *bio = decrypt_work->bio;
- struct skcipher_request *ciph_req = NULL;
- DECLARE_CRYPTO_WAIT(wait);
- struct bio_vec bv;
- struct bvec_iter iter;
- u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
- union blk_crypto_iv iv;
- struct scatterlist sg;
- struct bio_crypt_ctx *bc = bio->bi_crypt_context;
- struct bio_fallback_crypt_ctx *f_ctx =
- container_of(bc, struct bio_fallback_crypt_ctx, crypt_ctx);
- const int data_unit_size = bc->bc_key->data_unit_size;
- unsigned int i;
- int err;
- /*
- * Use the crypto API fallback keyslot manager to get a crypto_skcipher
- * for the algorithm and key specified for this bio.
- */
- if (bio_crypt_ctx_acquire_keyslot(bc, blk_crypto_ksm)) {
- bio->bi_status = BLK_STS_RESOURCE;
- goto out_no_keyslot;
- }
- /* and then allocate an skcipher_request for it */
- err = blk_crypto_alloc_cipher_req(bio, &ciph_req, &wait);
- if (err)
- goto out;
- memcpy(curr_dun, f_ctx->fallback_dun, sizeof(curr_dun));
- sg_init_table(&sg, 1);
- skcipher_request_set_crypt(ciph_req, &sg, &sg, data_unit_size,
- iv.bytes);
- /* Decrypt each segment in the bio */
- __bio_for_each_segment(bv, bio, iter, f_ctx->crypt_iter) {
- struct page *page = bv.bv_page;
- sg_set_page(&sg, page, data_unit_size, bv.bv_offset);
- /* Decrypt each data unit in the segment */
- for (i = 0; i < bv.bv_len; i += data_unit_size) {
- blk_crypto_dun_to_iv(curr_dun, &iv);
- if (crypto_wait_req(crypto_skcipher_decrypt(ciph_req),
- &wait)) {
- bio->bi_status = BLK_STS_IOERR;
- goto out;
- }
- bio_crypt_dun_increment(curr_dun, 1);
- sg.offset += data_unit_size;
- }
- }
- out:
- skcipher_request_free(ciph_req);
- bio_crypt_ctx_release_keyslot(bc);
- out_no_keyslot:
- kmem_cache_free(blk_crypto_decrypt_work_cache, decrypt_work);
- blk_crypto_free_fallback_crypt_ctx(bio);
- bio_endio(bio);
- }
- /*
- * Queue bio for decryption.
- * Returns true iff bio was queued for decryption.
- */
- bool blk_crypto_queue_decrypt_bio(struct bio *bio)
- {
- struct blk_crypto_decrypt_work *decrypt_work;
- /* If there was an IO error, don't queue for decrypt. */
- if (bio->bi_status)
- goto out;
- decrypt_work = kmem_cache_zalloc(blk_crypto_decrypt_work_cache,
- GFP_ATOMIC);
- if (!decrypt_work) {
- bio->bi_status = BLK_STS_RESOURCE;
- goto out;
- }
- INIT_WORK(&decrypt_work->work, blk_crypto_decrypt_bio);
- decrypt_work->bio = bio;
- queue_work(blk_crypto_wq, &decrypt_work->work);
- return true;
- out:
- blk_crypto_free_fallback_crypt_ctx(bio);
- return false;
- }
- /*
- * Prepare blk-crypto-fallback for the specified crypto mode.
- * Returns -ENOPKG if the needed crypto API support is missing.
- */
- int blk_crypto_fallback_start_using_mode(enum blk_crypto_mode_num mode_num)
- {
- const char *cipher_str = blk_crypto_modes[mode_num].cipher_str;
- struct blk_crypto_keyslot *slotp;
- unsigned int i;
- int err = 0;
- /*
- * Fast path
- * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
- * for each i are visible before we try to access them.
- */
- if (likely(smp_load_acquire(&tfms_inited[mode_num])))
- return 0;
- mutex_lock(&tfms_init_lock);
- if (likely(tfms_inited[mode_num]))
- goto out;
- for (i = 0; i < blk_crypto_num_keyslots; i++) {
- slotp = &blk_crypto_keyslots[i];
- slotp->tfms[mode_num] = crypto_alloc_skcipher(cipher_str, 0, 0);
- if (IS_ERR(slotp->tfms[mode_num])) {
- err = PTR_ERR(slotp->tfms[mode_num]);
- if (err == -ENOENT) {
- pr_warn_once("Missing crypto API support for \"%s\"\n",
- cipher_str);
- err = -ENOPKG;
- }
- slotp->tfms[mode_num] = NULL;
- goto out_free_tfms;
- }
- crypto_skcipher_set_flags(slotp->tfms[mode_num],
- CRYPTO_TFM_REQ_WEAK_KEY);
- }
- /*
- * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num]
- * for each i are visible before we set tfms_inited[mode_num].
- */
- smp_store_release(&tfms_inited[mode_num], true);
- goto out;
- out_free_tfms:
- for (i = 0; i < blk_crypto_num_keyslots; i++) {
- slotp = &blk_crypto_keyslots[i];
- crypto_free_skcipher(slotp->tfms[mode_num]);
- slotp->tfms[mode_num] = NULL;
- }
- out:
- mutex_unlock(&tfms_init_lock);
- return err;
- }
- int blk_crypto_fallback_evict_key(const struct blk_crypto_key *key)
- {
- return keyslot_manager_evict_key(blk_crypto_ksm, key);
- }
- int blk_crypto_fallback_submit_bio(struct bio **bio_ptr)
- {
- struct bio *bio = *bio_ptr;
- struct bio_crypt_ctx *bc = bio->bi_crypt_context;
- struct bio_fallback_crypt_ctx *f_ctx;
- if (bc->bc_key->is_hw_wrapped) {
- pr_warn_once("HW wrapped key cannot be used with fallback.\n");
- bio->bi_status = BLK_STS_NOTSUPP;
- return -EOPNOTSUPP;
- }
- if (!tfms_inited[bc->bc_key->crypto_mode]) {
- bio->bi_status = BLK_STS_IOERR;
- return -EIO;
- }
- if (bio_data_dir(bio) == WRITE)
- return blk_crypto_encrypt_bio(bio_ptr);
- /*
- * Mark bio as fallback crypted and replace the bio_crypt_ctx with
- * another one contained in a bio_fallback_crypt_ctx, so that the
- * fallback has space to store the info it needs for decryption.
- */
- bc->bc_ksm = blk_crypto_ksm;
- f_ctx = mempool_alloc(bio_fallback_crypt_ctx_pool, GFP_NOIO);
- f_ctx->crypt_ctx = *bc;
- memcpy(f_ctx->fallback_dun, bc->bc_dun, sizeof(f_ctx->fallback_dun));
- f_ctx->crypt_iter = bio->bi_iter;
- bio_crypt_free_ctx(bio);
- bio->bi_crypt_context = &f_ctx->crypt_ctx;
- return 0;
- }
- int __init blk_crypto_fallback_init(void)
- {
- int i;
- unsigned int crypto_mode_supported[BLK_ENCRYPTION_MODE_MAX];
- prandom_bytes(blank_key, BLK_CRYPTO_MAX_KEY_SIZE);
- /* All blk-crypto modes have a crypto API fallback. */
- for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++)
- crypto_mode_supported[i] = 0xFFFFFFFF;
- crypto_mode_supported[BLK_ENCRYPTION_MODE_INVALID] = 0;
- blk_crypto_ksm = keyslot_manager_create(
- NULL, blk_crypto_num_keyslots,
- &blk_crypto_ksm_ll_ops,
- BLK_CRYPTO_FEATURE_STANDARD_KEYS,
- crypto_mode_supported, NULL);
- if (!blk_crypto_ksm)
- return -ENOMEM;
- blk_crypto_wq = alloc_workqueue("blk_crypto_wq",
- WQ_UNBOUND | WQ_HIGHPRI |
- WQ_MEM_RECLAIM, num_online_cpus());
- if (!blk_crypto_wq)
- return -ENOMEM;
- blk_crypto_keyslots = kcalloc(blk_crypto_num_keyslots,
- sizeof(blk_crypto_keyslots[0]),
- GFP_KERNEL);
- if (!blk_crypto_keyslots)
- return -ENOMEM;
- blk_crypto_bounce_page_pool =
- mempool_create_page_pool(num_prealloc_bounce_pg, 0);
- if (!blk_crypto_bounce_page_pool)
- return -ENOMEM;
- blk_crypto_decrypt_work_cache = KMEM_CACHE(blk_crypto_decrypt_work,
- SLAB_RECLAIM_ACCOUNT);
- if (!blk_crypto_decrypt_work_cache)
- return -ENOMEM;
- bio_fallback_crypt_ctx_cache = KMEM_CACHE(bio_fallback_crypt_ctx, 0);
- if (!bio_fallback_crypt_ctx_cache)
- return -ENOMEM;
- bio_fallback_crypt_ctx_pool =
- mempool_create_slab_pool(num_prealloc_fallback_crypt_ctxs,
- bio_fallback_crypt_ctx_cache);
- if (!bio_fallback_crypt_ctx_pool)
- return -ENOMEM;
- return 0;
- }
|